AC compatible simplification orders

Alexander Lochmann

Jan 24, 2018

Main reference

References

 AKIHISA YAMADA, SARAH WINKLER, NAO HIROKAWA, and AART MIDDELDORP. AC-KBO revisited. Theory and Practice of Logic Programming, 16(2):163–188, 2016.

Table of Content

- O Motivation
- 2 Reminder
- Rewriting modulo equations
- 4 KBO
- ACKBO
- Variants of AC-KBO orders and relation
- Complexity

• term rewriting is Turing complete

- term rewriting is Turing complete
- well suited to check properties, e.g. termination

- term rewriting is Turing complete
- well suited to check properties, e.g. termination
- problem
 - many algebraic structures and other areas have AC symbols
 - TRS with AC-rules is not terminating
 - for all $f \in F_{AC}$
 - f(x, y) = f(y, x)
 - f(x, f(y, z)) = f(f(x, y), z)

- term rewriting is Turing complete
- well suited to check properties, e.g. termination
- problem
 - many algebraic structures and other areas have AC symbols
 - TRS with AC-rules is not terminating
 - for all $f \in F_{AC}$
 - f(x,y) = f(y,x)
 f(x,f(y,z)) = f(f(x,y),z)

example: $1 + 2 \rightarrow 2 + 1$, $x + y \rightarrow y + x$

- term rewriting is Turing complete
- well suited to check properties, e.g. termination
- problem
 - many algebraic structures and other areas have AC symbols
 - TRS with AC-rules is not terminating
 - for all $f \in F_{AC}$
 - f(x,y) = f(y,x)
 f(x,f(y,z)) = f(f(x,y),z)

example: $1 + 2 \rightarrow 2 + 1$, $x + y \rightarrow y + x$

aim

- termination modulo AC
- accomplished by AC-compatible simplification order

let R be a strict order

Rewrite relation

• closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C

let R be a strict order

Rewrite relation

- closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C
- **2** closed under substitutions $s R t \rightarrow s\sigma R t\sigma$, for all substitutions σ and terms s, t

let R be a strict order

Rewrite relation

- closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C
- 2 closed under substitutions $s R t \rightarrow s\sigma R t\sigma$, for all substitutions σ and terms s, t

Subterm property

R has subterm property if C[s] R s for all non-empty contexts C and terms s

let R be a strict order

Rewrite relation

- closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C
- 2 closed under substitutions $s R t \rightarrow s\sigma R t\sigma$, for all substitutions σ and terms s, t

Subterm property

R has subterm property if C[s] R s for all non-empty contexts C and terms s

Simplification order

simplification order is rewrite relation with subterm property

Rewriting modulo equations

ARS *R* terminates modulo *E*, set of equations, if no term t_1 with infinite chain

 $t_1 =_E \cdot \rightarrow_R \cdot =_E t_2 =_E \cdot \rightarrow_R \cdot =_E t_3 \dots$

Rewriting modulo equations

ARS *R* terminates modulo *E*, set of equations, if no term t_1 with infinite chain

$$t_1 =_E \cdot \rightarrow_R \cdot =_E t_2 =_E \cdot \rightarrow_R \cdot =_E t_3 \dots$$

consider AC equations for all $f \in F_{AC}$

denote $=_E$ as $=_{AC}$

example:

- $1+2 \rightarrow 2+1$ is terminating
- $1+2 \rightarrow 2+1 =_{AC} 1+2 \rightarrow 2+1 \dots$ not terminating modulo AC

AC-compatible simplification order

> is AC-compatible simplification order if

- \bullet > is simplification order
- $=_{AC} \cdot > \cdot =_{AC} \subseteq >$

example: $1 + 2 \rightarrow 2 + 1$

- assume $R \subseteq >$
- assume > AC-compatible simplification order
- \implies 1+2 \rightarrow 2+1=_{AC}1+2 \rightarrow 2+1...
- \implies 1+2>1+2, > not simplification order

Weight function

weight function (w, w_0) over signature F is defined

•
$$w_0 > 0$$

• constant $c \in F \implies w(c) \ge w_0$

$$w(t) := \left\{ \begin{array}{ll} w_0, & \text{if } t \in V \\ w(f) + \sum_{i=1}^n w(t_i) & \text{if } t = f(t_1, \dots, t_n) \end{array} \right\}$$

precedence > over F then (w, w_0) is admissible if

f unary
 w(*f*) = 0
 f ≠ *g*

 $\implies f > g$

- precedence >
- admissible weight function (*w*, *w*₀)
- $s>_{KBO} t$

$$|s|_x \ge |t|_x \text{ for all } x \in V$$

2
$$w(s) > w(t)$$
 or

• w(s) = w(t) and one of the following holds

•
$$s = f^k(t), t \in V$$
 for some $k > 0$

• $s = f(s_1, \ldots, s_m), t = g(t_1, \ldots, t_n), f > g$

• $s = f(s_1, \ldots, s_m), t = f(t_1, \ldots, t_m), (s_1, \ldots, s_m) >_{KBO}^{lex} (t_1, \ldots, t_m)$

Top Flattening

$$abla_f(t) := \left\{ egin{array}{ll} \{t\}, & ext{if } root(t)
eq f \
abla_f(t_1)
otin
abla_f(t_2), & ext{if } t = f(t_1, t_2) \end{array}
ight\}$$

example:

•
$$\nabla_+(f(a) + g(b)) = \{f(a), g(b)\}$$

Top Flattening

$$abla_f(t) := \left\{ egin{array}{ll} \{t\}, & ext{if } root(t)
eq f \
abla_f(t_1)
otin
abla_f(t_2), & ext{if } t = f(t_1, t_2) \end{array}
ight\}$$

example:

extracting variables from term set denoted as

$$T \upharpoonright_{v} := \{x \in T \mid x \in V\}$$

extracting terms where the root symbol is in relation to f

$$T \upharpoonright_{f}^{R} := \{t \in T \setminus V \mid root(t) R f\}$$

extracting variables from term set denoted as

$$T \upharpoonright_{v} := \{x \in T \mid x \in V\}$$

extracting terms where the root symbol is in relation to f

$$T \upharpoonright_{f}^{R} := \{t \in T \setminus V \mid root(t) R f\}$$

examples:

•
$$T = \{f(b), g(a), g(x), x, y\}$$
 then $T \upharpoonright_{v} = \{x, y\}$

extracting variables from term set denoted as

$$T \upharpoonright_{v} := \{x \in T \mid x \in V\}$$

extracting terms where the root symbol is in relation to f

$$T \upharpoonright_{f}^{R} := \{t \in T \setminus V \mid root(t) R f\}$$

examples:

•
$$T = \{f(b), g(a), g(x), x, y\}$$
 then $T \upharpoonright_{v} = \{x, y\}$

• precedence f > + > g then $T \upharpoonright_{+}^{\measuredangle} := \{f(b)\}$

 $SR^{f}T$ denotes $S\upharpoonright_{f}^{\not\prec}R^{\mathrm{mul}}T\upharpoonright_{f}^{\not\prec} \uplus T\upharpoonright_{v} -S\upharpoonright_{v}$

 $SR^{f}T$ denotes $S \upharpoonright_{f}^{\measuredangle} R^{\text{mul}} T \upharpoonright_{f}^{\measuredangle} \uplus T \upharpoonright_{v} - S \upharpoonright_{v}$ example:

• precedence
$$f > + > g$$

• $S = \{f(a), g(b), x, y\}$
• $T = \{f(b), g(a), x, y\}$
• $S \upharpoonright_{+}^{\not <} = \{f(a)\}$
• $T \upharpoonright_{+}^{\not <} \uplus T \upharpoonright_{v} - S \upharpoonright_{v} = \{f(b)\}$

 $SR^{f}T$ denotes $S \upharpoonright_{f}^{\measuredangle} R^{\text{mul}} T \upharpoonright_{f}^{\measuredangle} \uplus T \upharpoonright_{v} - S \upharpoonright_{v}$ example:

• precedence
$$f > + > g$$

• $S = \{f(a), g(b), x, y\}$
• $T = \{f(b), g(a), x, y\}$
• $S \upharpoonright_{+}^{\not{<}} = \{f(a)\}$
• $T \upharpoonright_{+}^{\not{<}} \uplus T \upharpoonright_{v} - S \upharpoonright_{v} = \{f(b)\}$
 $S >^{+} T \Leftrightarrow \{f(a)\} >^{mul} \{f(b)\}$

ACKBO

- \bullet precedence >
- admissible weight function (w, w_0)
- $s >_{ACKBO} t$

•
$$|s|_x \ge |t|_x$$
 for all $x \in V$
• $w(s) > w(t)$ or
• $w(s) = w(t)$ and one of the following holds
1 $s = f^k(t), t \in V$ for some $k > 0$
2 $s = f(s_1, ..., s_m), t = g(t_1, ..., t_n), f > g$
3 $s = f(s_1, ..., s_m), t = f(t_1, ..., t_m), f \notin F_{AC}, (s_1, ..., s_m) >_{ACKBO}^{lex} (t_1, ..., t_m)$
3 $s = f(s_1, s_2), t = f(t_1, t_2), f \in F_{AC}, S = \nabla_f(s), T = \nabla_f(t), \int S >_{ACKBO}^{f} T$ or

ACKBO

- \bullet precedence >
- admissible weight function (w, w_0)
- $s >_{ACKBO} t$

•
$$|s|_{x} \ge |t|_{x}$$
 for all $x \in V$
• $w(s) > w(t)$ or
• $w(s) = w(t)$ and one of the following holds
• $s = f^{k}(t), t \in V$ for some $k > 0$
• $s = f(s_{1}, ..., s_{m}), t = g(t_{1}, ..., t_{n}), f > g$
• $s = f(s_{1}, ..., s_{m}), t = f(t_{1}, ..., t_{m}), f \notin F_{AC},$
• $(s_{1}, ..., s_{m}) >_{ACKBO}^{lex}(t_{1}, ..., t_{m})$
• $s = f(s_{1}, s_{2}), t = f(t_{1}, t_{2}), f \in F_{AC}, S = \nabla_{f}(s), T = \nabla_{f}(t),$
• $S >_{ACKBO}^{l} T$ or
• $S = f_{AC}^{l} T, |S| > |T|$ or

ACKBO

- \bullet precedence >
- admissible weight function (w, w_0)
- $s >_{ACKBO} t$

•
$$|s|_{x} \ge |t|_{x}$$
 for all $x \in V$
• $w(s) > w(t)$ or
• $w(s) = w(t)$ and one of the following holds
• $s = f^{k}(t), t \in V$ for some $k > 0$
• $s = f(s_{1}, ..., s_{m}), t = g(t_{1}, ..., t_{n}), f > g$
• $s = f(s_{1}, ..., s_{m}), t = f(t_{1}, ..., t_{m}), f \notin F_{AC}, (s_{1}, ..., s_{m}) >_{ACKBO}^{lex}(t_{1}, ..., t_{m})$
• $s = f(s_{1}, s_{2}), t = f(t_{1}, t_{2}), f \in F_{AC}, S = \nabla_{f}(s), T = \nabla_{f}(t),$
• $s =_{AC}^{lex} T, |S| > |T|$ or
• $s =_{AC}^{lex} T, |S| = |T|, S \upharpoonright_{f}^{lex} >_{ACKBO}^{mul} T \upharpoonright_{f}^{lex}$

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

• precedence
$$f > + > g > a > b$$

- $w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$
- precedence f > + > g > a > b
- *S* = {*f*(*a*), *g*(*b*), *a*, *b*, *x*, *y*}

- $w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$
- precedence f > + > g > a > b
- *S* = {*f*(*a*), *g*(*b*), *a*, *b*, *x*, *y*}
- $T = \{f(b), g(a), g(x), x, y\}$

- $w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$
- precedence f > + > g > a > b
- $S = \{f(a), g(b), a, b, x, y\}$
- $T = \{f(b), g(a), g(x), x, y\}$
 - $S \upharpoonright^{\not<}_{+} = \{f(a)\}$

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

- precedence f > + > g > a > b
- *S* = {*f*(*a*), *g*(*b*), *a*, *b*, *x*, *y*}
- $T = \{f(b), g(a), g(x), x, y\}$

•
$$S \upharpoonright^{\measuredangle}_{+} = \{f(a)\}$$

• $T \upharpoonright^{\not<}_{+} \uplus T \upharpoonright_{v} - S \upharpoonright_{v} = \{f(b)\}$

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

- precedence f > + > g > a > b
- *S* = {*f*(*a*), *g*(*b*), *a*, *b*, *x*, *y*}
- $T = \{f(b), g(a), g(x), x, y\}$
 - $S \upharpoonright^{\not<}_{+} = \{f(a)\}$
 - $T \upharpoonright^{\not<}_{+} \uplus T \upharpoonright_{v} S \upharpoonright_{v} = \{f(b)\}$
 - $S >^+ T \Leftrightarrow \{f(a)\} >^{mul} \{f(b)\}$

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

- precedence f > + > g > a > b
- $S = \{f(b), g(b), a, b, x, y\}$
- $T = \{f(b), g(a), g(x), x, y\}$

•
$$S \upharpoonright^{\not<}_{+} = \{f(b)\}$$

Examples

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

- precedence f > + > g > a > b
- $S = \{f(b), g(b), a, b, x, y\}$
- $T = \{f(b), g(a), g(x), x, y\}$

•
$$S \upharpoonright^{\not<}_{+} = \{f(b)\}$$

•
$$T \upharpoonright^{\checkmark}_{+} \uplus T \upharpoonright_{\nu} - S \upharpoonright_{\nu} = \{f(b)\}$$

Examples

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

- precedence f > + > g > a > b
- $S = \{f(b), g(b), a, b, x, y\}$
- $T = \{f(b), g(a), g(x), x, y\}$
 - $S \upharpoonright^{\not<}_{+} = \{f(b)\}$
 - $T \upharpoonright^{\not<}_{+} \uplus T \upharpoonright_{v} S \upharpoonright_{v} = \{f(b)\}$
 - $S =_{AC}^{+} T \Leftrightarrow \{f(b)\} =_{AC}^{+} \{f(b)\}$

Examples

•
$$w(f) = w(a) = w(b) = w_0 = 1, w(g) = 2$$

- precedence f > + > g > a > b
- $S = \{f(b), g(b), a, b, x, y\}$
- $T = \{f(b), g(a), g(x), x, y\}$
 - $S \upharpoonright^{\not<}_{+} = \{f(b)\}$
 - $T \upharpoonright^{\not<}_{+} \uplus T \upharpoonright_{v} S \upharpoonright_{v} = \{f(b)\}$
 - $S =_{AC}^{+} T \Leftrightarrow \{f(b)\} =_{AC}^{+} \{f(b)\}$
 - |S| > |T|

Analyzed AC-KBO orders

paper analyzes three orders

Steinbach

Analyzed AC-KBO orders

paper analyzes three orders

- Steinbach
- Korovin and Voronkov (which is extended in the paper)

Analyzed AC-KBO orders

paper analyzes three orders

- Steinbach
- Korovin and Voronkov (which is extended in the paper)
- ACKBO

TRS R $f(a+a) \rightarrow f(a) + f(a)$ $a + f(f(a)) \rightarrow f(a) + f(a)$

• first rule implies w(f) = 0

TRS R $f(a + a) \rightarrow f(a) + f(a)$ $a + f(f(a)) \rightarrow f(a) + f(a)$

- first rule implies w(f) = 0
- admissible implies f > a and f > +

TRS R $f(a + a) \rightarrow f(a) + f(a)$ $a + f(f(a)) \rightarrow f(a) + f(a)$

- first rule implies w(f) = 0
- admissible implies f > a and f > +
- $S = \{a, f(f(a))\}$ and $T = \{f(a), f(a)\}$

TRS R $f(a + a) \rightarrow f(a) + f(a)$ $a + f(f(a)) \rightarrow f(a) + f(a)$

- first rule implies w(f) = 0
- admissible implies f > a and f > +
- $S = \{a, f(f(a))\}$ and $T = \{f(a), f(a)\}$
- case a > +

TRS R $f(a + a) \rightarrow f(a) + f(a)$ $a + f(f(a)) \rightarrow f(a) + f(a)$

- first rule implies w(f) = 0
- admissible implies f > a and f > +
- $S = \{a, f(f(a))\}$ and $T = \{f(a), f(a)\}$
- case a > +

•
$$S \upharpoonright^{\bigstar}_{+} = \{a, f(f(a))\}$$

TRS R $f(a + a) \rightarrow f(a) + f(a)$ $a + f(f(a)) \rightarrow f(a) + f(a)$

- first rule implies w(f) = 0
- admissible implies f > a and f > +
- $S = \{a, f(f(a))\}$ and $T = \{f(a), f(a)\}$
- case a > +

•
$$S \upharpoonright^{\not<}_{+} = \{a, f(f(a))\}$$

•
$$f(f(a)) >_{ACKBO} f(a)$$

membership problem:

- given precedence
- given admissible weight function

membership problem:

- given precedence
- given admissible weight function
- does $s >_{AC-KBO} t$ hold

orientability problem:

• given TRS R

exists a weight function and precedence so that $R \subseteq >_{AC-KBO}$

Complexity

method	membership	orientability
Steinbach	Р	?
ACKBO	Р	NP-complete
KV	Р	NP-complete
KV'	NP-complete	NP-complete
AC-RPO	NP-hard	NP-hard

lemma 1

- $\succ \cdot \succ \cdot \succeq \subseteq \succ$ • we call (\succeq, \succ) an order pair • $\sim := \succeq \setminus \succ$ symmetric
- if $s \sim t$ then $M \succ^{mul} N \Leftrightarrow M \uplus \{s\} \succ^{mul} N \uplus \{t\}$

lemma 1

٨

•
$$\succ \cdot \succ \cdot \succeq \subseteq \succ$$

• we call (\succeq, \succ) an order pair
• $\sim := \succeq \setminus \succ$ symmetric
• if $s \sim t$ then $M \succ^{mul} N \Leftrightarrow M \uplus \{s\} \succ^{mul} N \uplus \{t\}$
 $M \succ^{mul} N$ if exist order $M = \{s_1 \dots s_m\}$ and $N = \{t_1 \dots t_n\}$ and

exist $0 \le k \le min(m-1, n)$ where

lemma 1

•
$$\succ \cdots \succ \succeq \subseteq \succ$$

• we call (\succeq, \succ) an order pair
• $\sim := \succeq \setminus \succ$ symmetric
• if $s \sim t$ then $M \succ^{mul} N \Leftrightarrow M \uplus \{s\} \succ^{mul} N \uplus \{t\}$
 $M \succ^{mul} N$ if exist order $M = \{s_1 \dots s_m\}$ and $N = \{t_1 \dots t_n\}$ and
xist $0 \le k \le \min(m-1, n)$ where

proof:

۸ e

indices *i*, *j* with $s_i = s$ and $t_j = t$, *k* number of elements in the preorder case

• Case $i, j \leq k$

lemma 1

•
$$\succ \cdot \succ \cdot \succeq \subseteq \succ$$

• we call (\succeq, \succ) an order pair
• $\sim := \succeq \setminus \succ$ symmetric
• if $s \sim t$ then $M \succ^{mul} N \Leftrightarrow M \uplus \{s\} \succ^{mul} N \uplus \{t\}$
 $M \succ^{mul} N$ if exist order $M = \{s_1 \dots s_m\}$ and $N = \{t_1 \dots t_n\}$ and
xist $0 \le k \le min(m-1, n)$ where

proof:

٨

e

indices i, j with $s_i = s$ and $t_j = t$, k number of elements in the preorder case

- Case $i, j \leq k$
- Case $i \le k < j$

lemma 2

- (\succeq,\succ) be an order pair
- $\sim := \succeq \setminus \succ$ is symmetric
- \bullet decision problem for \succsim and \succ are in P
- the decision problem for \succ^{mul} is in P

proof multisets S and T

- each $(s, t) \in S \times T$ if $s \sim t$ then $S := S \setminus s$ and $T := T \setminus t$
- **2** each $t \in T$ search $s \in S$ such that $s \succ t$

membership in polynomial time follows from lemmas and induction argument

problem of infinitely many weight functions solved by guessing the inequalities

• TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$

problem of infinitely many weight functions solved by guessing the inequalities

• TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$

•
$$S := \{t \mid s \in R_t \land s \succeq t\}$$

- TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$
- $S := \{t \mid s \in R_t \land s \succeq t\}$
- substitute all variables to w_0

- TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$
- $S := \{t \mid s \in R_t \land s \succeq t\}$
- substitute all variables to w_0
- TRS finitely many rules implies S finite

- TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$
- $S := \{t \mid s \in R_t \land s \succeq t\}$
- substitute all variables to w_0
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities

- TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$
- $S := \{t \mid s \in R_t \land s \succeq t\}$
- substitute all variables to w_0
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P

- TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$
- $S := \{t \mid s \in R_t \land s \succeq t\}$
- substitute all variables to w₀
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P
- solving set of inequalities is in P (Schrijver, 1986)

- TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$
- $S := \{t \mid s \in R_t \land s \succeq t\}$
- substitute all variables to w₀
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P
- solving set of inequalities is in P (Schrijver, 1986)
- set of inequalities has solution

- TRS R, let $R_t := \{t \mid \exists u(tRu \lor uRt)\}$
- $S := \{t \mid s \in R_t \land s \succeq t\}$
- substitute all variables to w₀
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P
- solving set of inequalities is in P (Schrijver, 1986)
- set of inequalities has solution
- TRS is oriented

formalize ACKBO order in Isabelle/HOL:

reason for ACKBO order over the variants analyzed in paper

- includes Steinbach
- membership check in P

Thank you for your attention.

AKIHISA, YAMADA, SARAH WINKLER, NAO HIROKAWA, and MIDDELDORP AART. 2016. "AC-KBO Revisited." *Theory and Practice of Logic Programming* 16 (2). Cambridge University Press:163–88. https://doi.org/10.1017/S1471068415000083.

Schrijver, Alexander. 1986. *Theory of Linear and Integer Programming*. John Wiley; Sons, Chichester.