AC compatible simplification orders

Alexander Lochmann

Jan 24, 2018

Main reference

References

[1] AKIHISA YAMADA, SARAH WINKLER, NAO HIROKAWA, and AART MIDDELDORP. AC-KBO revisited. Theory and Practice of Logic Programming, 16(2):163-188, 2016.

Table of Content

(1) Motivation
2. Reminder
(3. Rewriting modulo equations
(4) KBO
(3. ACKBO
© . Variants of $\mathrm{AC}-\mathrm{KBO}$ orders and relation
(1) Complexity

Motivation

- term rewriting is Turing complete

Motivation

- term rewriting is Turing complete
- well suited to check properties, e.g. termination

Motivation

- term rewriting is Turing complete
- well suited to check properties, e.g. termination
- problem
- many algebraic structures and other areas have $A C$ symbols
- TRS with AC-rules is not terminating for all $f \in F_{A C}$
- $f(x, y)=f(y, x)$
- $f(x, f(y, z))=f(f(x, y), z)$

Motivation

- term rewriting is Turing complete
- well suited to check properties, e.g. termination
- problem
- many algebraic structures and other areas have $A C$ symbols
- TRS with AC-rules is not terminating for all $f \in F_{A C}$
- $f(x, y)=f(y, x)$
- $f(x, f(y, z))=f(f(x, y), z)$
example: $1+2 \rightarrow 2+1, x+y \rightarrow y+x$

Motivation

- term rewriting is Turing complete
- well suited to check properties, e.g. termination
- problem
- many algebraic structures and other areas have $A C$ symbols
- TRS with AC-rules is not terminating for all $f \in F_{A C}$
- $f(x, y)=f(y, x)$
- $f(x, f(y, z))=f(f(x, y), z)$
example: $1+2 \rightarrow 2+1, x+y \rightarrow y+x$
- aim
- termination modulo AC
- accomplished by AC-compatible simplification order

Reminder

let R be a strict order
Rewrite relation
(1) closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C

Reminder

let R be a strict order
Rewrite relation
(1) closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C
(2) closed under substitutions $s R t \rightarrow s \sigma R t \sigma$, for all substitutions σ and terms s, t

Reminder

let R be a strict order
Rewrite relation
(1) closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C
(2) closed under substitutions $s R t \rightarrow s \sigma R t \sigma$, for all substitutions σ and terms s, t

Subterm property

R has subterm property if $C[s] R s$ for all non-empty contexts C and terms s

Reminder

let R be a strict order
Rewrite relation
(1) closed under contexts $s R t \rightarrow C[s] R C[t]$ for all contexts C
(2) closed under substitutions $s R t \rightarrow s \sigma R t \sigma$, for all substitutions σ and terms s, t

Subterm property

R has subterm property if $C[s] R s$ for all non-empty contexts C and terms s

Simplification order
simplification order is rewrite relation with subterm property

Rewriting modulo equations

ARS R terminates modulo E, set of equations, if no term t_{1} with infinite chain
$t_{1}=E \cdot \rightarrow_{R} \cdot=_{E} t_{2}=E \cdot \rightarrow_{R} \cdot=_{E} t_{3} \ldots$

Rewriting modulo equations

ARS R terminates modulo E, set of equations, if no term t_{1} with infinite chain
$t_{1}=E \cdot \rightarrow_{R} \cdot=_{E} t_{2}=E \cdot \rightarrow_{R} \cdot=_{E} t_{3} \ldots$
consider AC equations for all $f \in F_{A C}$

- $f(x, y)=f(y, x)$
- $f(x, f(y, z))=f(f(x, y), z)$
- $f(f(x, y), z)=f(x, f(y, z))$
denote $=E$ as $=A C$
example:
- $1+2 \rightarrow 2+1$ is terminating
- $1+2 \rightarrow 2+1=A C 1+2 \rightarrow 2+1 \ldots$ not terminating modulo $A C$

AC-compatible simplification order

> is AC-compatible simplification order if

- $>$ is simplification order
- $=A_{A C} \cdot>\cdot{ }_{A C} \subseteq>$
example: $1+2 \rightarrow 2+1$
- assume $R \subseteq>$
- assume $>$ AC-compatible simplification order
- $\Longrightarrow 1+2 \rightarrow 2+1={ }_{A C} 1+2 \rightarrow 2+1 \ldots$
- $\Longrightarrow 1+2>1+2$, $>$ not simplification order

Weight function

weight function (w, w_{0}) over signature F is defined

- $w_{0}>0$
- constant $c \in F \Longrightarrow w(c) \geq w_{0}$

$$
w(t):=\left\{\begin{array}{ll}
w_{0}, & \text { if } t \in V \\
w(f)+\sum_{i=1}^{n} w\left(t_{i}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)
\end{array}\right\}
$$

precedence $>$ over F then $\left(w, w_{0}\right)$ is admissible if

- f unary
- $w(f)=0$
- $f \neq g$
$\Longrightarrow f>g$

KBO

- precedence $>$
- admissible weight function (w, w_{0})
$s>K B O t$
(1) $|s|_{x} \geq|t|_{x}$ for all $x \in V$
(2) $w(s)>w(t)$ or
(3) $w(s)=w(t)$ and one of the following holds
(1) $s=f^{k}(t), t \in V$ for some $k>0$
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right), f>g$

3 (3) $=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right),\left(s_{1}, \ldots, s_{m}\right)>{ }_{K B O}^{l e x}\left(t_{1}, \ldots, t_{m}\right)$

Definitions

Top Flattening

$$
\nabla_{f}(t):=\left\{\begin{array}{ll}
\{t\}, & \text { if } \operatorname{root}(t) \neq f \\
\nabla_{f}\left(t_{1}\right) \uplus \nabla_{f}\left(t_{2}\right), & \text { if } t=f\left(t_{1}, t_{2}\right)
\end{array}\right\}
$$

example:

- $\nabla_{+}(f(a)+g(b))=\{f(a), g(b)\}$

Definitions

Top Flattening

$$
\nabla_{f}(t):=\left\{\begin{array}{ll}
\{t\}, & \text { if } \operatorname{root}(t) \neq f \\
\nabla_{f}\left(t_{1}\right) \uplus \nabla_{f}\left(t_{2}\right), & \text { if } t=f\left(t_{1}, t_{2}\right)
\end{array}\right\}
$$

example:

- $\nabla_{+}(f(a)+g(b))=\{f(a), g(b)\}$
- $\nabla_{+}(a+b+a)=\{a, a, b\}$

Definitions

extracting variables from term set denoted as

$$
T \upharpoonright_{v}:=\{x \in T \mid x \in V\}
$$

extracting terms where the root symbol is in relation to f

$$
\left.T\right|_{f} ^{R}:=\{t \in T \backslash V \mid \operatorname{root}(t) R f\}
$$

Definitions

extracting variables from term set denoted as

$$
T \upharpoonright_{v}:=\{x \in T \mid x \in V\}
$$

extracting terms where the root symbol is in relation to f

$$
\left.T\right|_{f} ^{R}:=\{t \in T \backslash V \mid \operatorname{root}(t) R f\}
$$

examples:

- $T=\{f(b), g(a), g(x), x, y\}$ then $T \upharpoonright_{v}=\{x, y\}$

Definitions

extracting variables from term set denoted as

$$
T \upharpoonright_{v}:=\{x \in T \mid x \in V\}
$$

extracting terms where the root symbol is in relation to f

$$
\left.T\right|_{f} ^{R}:=\{t \in T \backslash V \mid \operatorname{root}(t) R f\}
$$

examples:

- $T=\{f(b), g(a), g(x), x, y\}$ then $T \upharpoonright_{v}=\{x, y\}$
- precedence $f>+>g$ then $T \upharpoonright_{+}^{\star}:=\{f(b)\}$

Definitions

$S R^{f} T$ denotes $S \upharpoonright_{f}^{\star} R^{\text {mul }} T \upharpoonright_{f}^{\star} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}$

Definitions

$S R^{f} T$ denotes $\left.\left.S\right|_{f} ^{\star} R^{m u l} T\right|_{f} ^{\star} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}$
example:

- precedence $f>+>g$
- $S=\{f(a), g(b), x, y\}$
- $T=\{f(b), g(a), x, y\}$
- $S \upharpoonright_{+}^{\nless}=\{f(a)\}$
- $T \upharpoonright_{+}^{\nless} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}=\{f(b)\}$

Definitions

$S R^{f} T$ denotes $S \upharpoonright_{f}^{\star} R^{\text {mul }} T \upharpoonright_{f}^{\star} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}$
example:

- precedence $f>+>g$
- $S=\{f(a), g(b), x, y\}$
- $T=\{f(b), g(a), x, y\}$
- $S \upharpoonright_{+}^{\nless}=\{f(a)\}$
- $T \upharpoonright_{+}^{\nless} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}=\{f(b)\}$
$S>^{+} T \Leftrightarrow\{f(a)\}>^{m u l}\{f(b)\}$

ACKBO

- precedence $>$
- admissible weight function (w, w_{0})
$s>{ }_{A C K B O} t$
- $|s|_{x} \geq|t|_{x}$ for all $x \in V$
- $w(s)>w(t)$ or
- $w(s)=w(t)$ and one of the following holds
(1) $s=f^{k}(t), t \in V$ for some $k>0$
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right), f>g$
(3) $s=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right), f \notin F_{A C}$,
$\left(s_{1}, \ldots, s_{m}\right) \gg_{A C K B O}^{l e x}\left(t_{1}, \ldots, t_{m}\right)$
(4) $s=f\left(s_{1}, s_{2}\right), t=f\left(t_{1}, t_{2}\right), f \in F_{A C}, S=\nabla_{f}(s), T=\nabla_{f}(t)$, (1) $S>{ }_{A C K B O}^{f} T$ or

ACKBO

- precedence $>$
- admissible weight function (w, w_{0})
$s>{ }_{A C K B O} t$
- $|s|_{x} \geq|t|_{x}$ for all $x \in V$
- $w(s)>w(t)$ or
- $w(s)=w(t)$ and one of the following holds
(1) $s=f^{k}(t), t \in V$ for some $k>0$
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right), f>g$
(3) $s=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right), f \notin F_{A C}$,
$\left(s_{1}, \ldots, s_{m}\right) \gg_{A C K B O}^{l e x}\left(t_{1}, \ldots, t_{m}\right)$
(4) $s=f\left(s_{1}, s_{2}\right), t=f\left(t_{1}, t_{2}\right), f \in F_{A C}, S=\nabla_{f}(s), T=\nabla_{f}(t)$,
(1) $S>{ }_{A C K B O}^{f} T$ or
(2) $S={ }_{A C}^{f} T,|S|>|T|$ or

ACKBO

- precedence $>$
- admissible weight function (w, w_{0})
$s>{ }_{A C K B O} t$
- $|s|_{x} \geq|t|_{x}$ for all $x \in V$
- $w(s)>w(t)$ or
- $w(s)=w(t)$ and one of the following holds
(1) $s=f^{k}(t), t \in V$ for some $k>0$
(2) $s=f\left(s_{1}, \ldots, s_{m}\right), t=g\left(t_{1}, \ldots, t_{n}\right), f>g$
(3) $s=f\left(s_{1}, \ldots, s_{m}\right), t=f\left(t_{1}, \ldots, t_{m}\right), f \notin F_{A C}$,
$\left(s_{1}, \ldots, s_{m}\right) \gg_{A C K B O}^{l e x}\left(t_{1}, \ldots, t_{m}\right)$
(4) $s=f\left(s_{1}, s_{2}\right), t=f\left(t_{1}, t_{2}\right), f \in F_{A C}, S=\nabla_{f}(s), T=\nabla_{f}(t)$,
(1) $S>{ }_{A C K B O}^{f} T$ or
(2) $S={ }_{A C}^{f} T,|S|>|T|$ or
(3) $S={ }_{A C}^{f} T,|S|=|T|,\left.S\right|_{f} ^{<}>\left.{ }_{A C K B O}^{m u l} T\right|_{f} ^{<}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(a), g(b), a, b, x, y\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(a), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(a), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$
- $\left.S\right|_{+} ^{\star}=\{f(a)\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(a), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$
- $\left.S\right|_{+} ^{\star}=\{f(a)\}$
- $T \upharpoonright_{+}^{\nless} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}=\{f(b)\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(a), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$
- $\left.S\right|_{+} ^{\star}=\{f(a)\}$
- $T \upharpoonright_{+}^{K} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}=\{f(b)\}$
- $S>^{+} T \Leftrightarrow\{f(a)\}>^{m u l}\{f(b)\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(b), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$
- $\left.S\right|_{+} ^{\star}=\{f(b)\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(b), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$
- $S \upharpoonright_{+}^{\star}=\{f(b)\}$
- $T \upharpoonright_{+}^{\nless} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}=\{f(b)\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(b), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$
- $S \upharpoonright_{+}^{\star}=\{f(b)\}$
- $T \upharpoonright_{+}^{\star} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}=\{f(b)\}$
- $S={ }_{A C}^{+} T \Leftrightarrow\{f(b)\}={ }_{A C}^{+}\{f(b)\}$

Examples

- $w(f)=w(a)=w(b)=w_{0}=1, w(g)=2$
- precedence $f>+>g>a>b$
- $S=\{f(b), g(b), a, b, x, y\}$
- $T=\{f(b), g(a), g(x), x, y\}$
- $\left.S\right|_{+} ^{\star}=\{f(b)\}$
- $T \upharpoonright_{+}^{\star} \uplus T \upharpoonright_{v}-S \upharpoonright_{v}=\{f(b)\}$
- $S={ }_{A C}^{+} T \Leftrightarrow\{f(b)\}={ }_{A C}^{+}\{f(b)\}$
- $|S|>|T|$

Analyzed AC-KBO orders

paper analyzes three orders

- Steinbach

Analyzed AC-KBO orders

paper analyzes three orders

- Steinbach
- Korovin and Voronkov (which is extended in the paper)

Analyzed AC-KBO orders

paper analyzes three orders

- Steinbach
- Korovin and Voronkov (which is extended in the paper)
- ACKBO

Relation to other orders

TRS R $\quad f(a+a) \rightarrow f(a)+f(a) \quad a+f(f(a)) \rightarrow f(a)+f(a)$

- first rule implies $w(f)=0$

Relation to other orders

TRS R $\quad f(a+a) \rightarrow f(a)+f(a) \quad a+f(f(a)) \rightarrow f(a)+f(a)$

- first rule implies $w(f)=0$
- admissible implies $f>a$ and $f>+$

Relation to other orders

TRS R $\quad f(a+a) \rightarrow f(a)+f(a) \quad a+f(f(a)) \rightarrow f(a)+f(a)$

- first rule implies $w(f)=0$
- admissible implies $f>a$ and $f>+$
- $S=\{a, f(f(a))\}$ and $T=\{f(a), f(a)\}$

Relation to other orders

TRS R $\quad f(a+a) \rightarrow f(a)+f(a) \quad a+f(f(a)) \rightarrow f(a)+f(a)$

- first rule implies $w(f)=0$
- admissible implies $f>a$ and $f>+$
- $S=\{a, f(f(a))\}$ and $T=\{f(a), f(a)\}$
- case $a>+$

Relation to other orders

TRS R $\quad f(a+a) \rightarrow f(a)+f(a) \quad a+f(f(a)) \rightarrow f(a)+f(a)$

- first rule implies $w(f)=0$
- admissible implies $f>a$ and $f>+$
- $S=\{a, f(f(a))\}$ and $T=\{f(a), f(a)\}$
- case $a>+$
- $\left.S\right|_{+} ^{\star}=\{a, f(f(a))\}$

Relation to other orders

TRS R $\quad f(a+a) \rightarrow f(a)+f(a) \quad a+f(f(a)) \rightarrow f(a)+f(a)$

- first rule implies $w(f)=0$
- admissible implies $f>a$ and $f>+$
- $S=\{a, f(f(a))\}$ and $T=\{f(a), f(a)\}$
- case $a>+$
- $\left.S\right|_{+} ^{\star}=\{a, f(f(a))\}$
- $f(f(a))>_{A C K B O} f(a)$

Complexity

membership problem:

- given precedence
- given admissible weight function

Complexity

membership problem:

- given precedence
- given admissible weight function
does $s>_{A C-K B O} t$ hold
orientability problem:
- given TRS R
exists a weight function and precedence so that $R \subseteq>_{A C-K B O}$

Complexity

method	membership	orientability
Steinbach	P	$?$
ACKBO	P	NP-complete
KV	P	NP-complete
KV'	NP-complete	NP-complete
AC-RPO	NP-hard	NP-hard

Proof membership in polynomial time

lemma 1

- $\succsim \cdot \succ \cdot \succsim \subseteq \succ$
- we call (\succsim, \succ) an order pair
- ~:= $\succsim \backslash \succ$ symmetric
- if $s \sim t$ then $M \succ^{m u l} N \Leftrightarrow M \uplus\{s\} \succ^{m u l} N \uplus\{t\}$

Proof membership in polynomial time

lemma 1

- $\succsim \cdot \succ \cdot \succsim \subseteq \succ$
- we call (\succsim, \succ) an order pair
- ~:= $\succsim \backslash \succ$ symmetric
- if $s \sim t$ then $M \succ^{m u l} N \Leftrightarrow M \uplus\{s\} \succ^{m u l} N \uplus\{t\}$
$M \succ^{m u l} N$ if exist order $M=\left\{s_{1} \ldots s_{m}\right\}$ and $N=\left\{t_{1} \ldots t_{n}\right\}$ and exist $0 \leq k \leq \min (m-1, n)$ where
- for all $i \leq k s_{i} \succsim t_{i}$
- for all $i>k$ exists j with $s_{j} \succ t_{i}$

Proof membership in polynomial time

lemma 1

- $\succsim \cdot \succ \cdot \succsim \subseteq \succ$
- we call (\succsim, \succ) an order pair
- ~:= $\succsim \backslash \succ$ symmetric
- if $s \sim t$ then $M \succ^{m u l} N \Leftrightarrow M \uplus\{s\} \succ^{m u l} N \uplus\{t\}$
$M \succ^{m u l} N$ if exist order $M=\left\{s_{1} \ldots s_{m}\right\}$ and $N=\left\{t_{1} \ldots t_{n}\right\}$ and exist $0 \leq k \leq \min (m-1, n)$ where
- for all $i \leq k s_{i} \succsim t_{i}$
- for all $i>k$ exists j with $s_{j} \succ t_{i}$
proof:
indices i, j with $s_{i}=s$ and $t_{j}=t, k$ number of elements in the preorder case
- Case $i, j \leq k$

Proof membership in polynomial time

lemma 1

- $\succsim \cdot \succ \cdot \succsim \subseteq \succ$
- we call (\succsim, \succ) an order pair
- ~: $=\succsim \backslash \succ$ symmetric
- if $s \sim t$ then $M \succ^{m u l} N \Leftrightarrow M \uplus\{s\} \succ^{m u l} N \uplus\{t\}$
$M \succ^{m u l} N$ if exist order $M=\left\{s_{1} \ldots s_{m}\right\}$ and $N=\left\{t_{1} \ldots t_{n}\right\}$ and exist $0 \leq k \leq \min (m-1, n)$ where
- for all $i \leq k s_{i} \succsim t_{i}$
- for all $i>k$ exists j with $s_{j} \succ t_{i}$
proof:
indices i, j with $s_{i}=s$ and $t_{j}=t, k$ number of elements in the preorder case
- Case $i, j \leq k$
- Case $i \leq k<j$

Proof membership in polynomial time

lemma 2

- (\succsim, \succ) be an order pair
- ~:= $\succsim \backslash$ is symmetric
- decision problem for \succsim and \succ are in P
- the decision problem for $\succ^{m u l}$ is in P
proof multisets S and T
(1) each $(s, t) \in S \times T$ if $s \sim t$ then $S:=S \backslash s$ and $T:=T \backslash t$
(2.) each $t \in T$ search $s \in S$ such that $s \succ t$
membership in polynomial time follows from lemmas and induction argument

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$
- substitute all variables to w_{0}

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$
- substitute all variables to w_{0}
- TRS finitely many rules implies S finite

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$
- substitute all variables to w_{0}
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$
- substitute all variables to w_{0}
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$
- substitute all variables to w_{0}
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P
- solving set of inequalities is in P (Schrijver, 1986)

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$
- substitute all variables to w_{0}
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P
- solving set of inequalities is in P (Schrijver, 1986)
- set of inequalities has solution

Proof sketch orientation

problem of infinitely many weight functions solved by guessing the inequalities

- TRS R, let $R_{t}:=\{t \mid \exists u(t R u \vee u R t)\}$
- $S:=\left\{t \mid s \in R_{t} \wedge s \unrhd t\right\}$
- substitute all variables to w_{0}
- TRS finitely many rules implies S finite
- $3^{|S|-1}$ possible inequalities
- membership is in P
- solving set of inequalities is in P (Schrijver, 1986)
- set of inequalities has solution
- TRS is oriented

Further work

formalize ACKBO order in Isabelle/HOL:
reason for ACKBO order over the variants analyzed in paper

- includes Steinbach
- membership check in P

End

Thank you for your attention.

References

AKIHISA, YAMADA, SARAH WINKLER, NAO HIROKAWA, and MIDDELDORP AART. 2016. "AC-KBO Revisited." Theory and Practice of Logic Programming 16 (2). Cambridge University Press:163-88. https://doi.org/10.1017/S1471068415000083.

Schrijver, Alexander. 1986. Theory of Linear and Integer Programming. John Wiley; Sons, Chichester.

