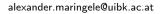


Completeness of Inst-saturated Sets of Clauses with Equality

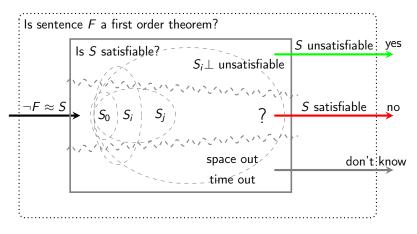
Alexander Maringele



December 6th, 2017

Instantiation-based first order ATP

The big picture



 $S_0 = S$, S_{i+1} is inferred from S_i by a sound calculus.

Harald Ganzinger and Konstantin Korovin.

Integrating Equational Reasoning into Instantiation-Based Theorem Proving.

In *18th CSL 2004. Proceedings*, volume 3210 of *LNCS*, pages 71–84, 2004.

(or predicates $P \approx \bullet$)

Preliminaries I

Equational First Order Logic

- ► first order signature with function (and predicate) symbols
- ► terms s, t, ℓ, r (and predicates P, Q, \bullet)
- atoms are equations of terms $s \approx t$
- literals are atoms or negated atoms
- clauses are a multisets of literals
- closures are pairs of clauses and ground substitutions

$$(f(x) \approx b \lor x \not\approx a) \cdot \{x \mapsto f(a)\}$$

Preliminaries II

Equational First Order Logic

orderings

 $\begin{array}{ll} \succ_{gr} & \mbox{ order on ground terms, literals, and clauses defined by} \\ & \mbox{ a total, well-founded, and monotone extension of} \\ & \mbox{ a total simplification ordering } \succ_{gr}' \mbox{ on ground terms} \\ & \mbox{ } s \not\approx t \succ_{gr} s \approx t, \ L \lor L \succ_{gr} L \qquad (P \succ_{gr} \bullet) \end{array}$

 $\succ_{\ell} \qquad \text{ a total well-founded extension of } \succ_{gr} \text{ such that} \\ L\sigma \succ_{gr} L'\sigma' \Rightarrow L \cdot \sigma \succ_{\ell} L' \cdot \sigma'$

 $\succ_{cl} \qquad \text{a total well-founded extension of } \succ_{gr} \text{ such that} \\ C\tau \succ_{gr} D\rho \Rightarrow C \cdot \tau \succ_{cl} D \cdot \rho \\ (C\tau = D\rho \text{ and } C\theta = D) \Rightarrow C \cdot \tau \succ_{cl} D \cdot \rho \\ \text{where } \theta \text{ is not a renaming} \end{cases}$

Unit Paramodulation

$$\frac{(\ell \approx r) \cdot \sigma \quad \mathcal{L}[\ell'] \cdot \sigma'}{\mathcal{L}[r]\theta \cdot \rho} \ \theta \qquad \qquad \frac{(s \not\approx t) \cdot \tau}{\Box} \ \mu$$

where

►
$$\ell \sigma \succ_{gr} r \sigma$$
, $\theta = mgu(\ell, \ell')$, $\ell \sigma = \ell' \sigma' = \ell' \theta \rho$, $\ell' \notin \mathcal{V}$
► $s\tau = t\tau$, $\mu = mgu(s, t)$

Example 1

The set of literal closures { $(f(x) \approx b) \cdot \{x \mapsto a\}$, $a \approx b$, $f(b) \not\approx b$ } is inconsistent, but the empty clause is not derivable if a $\succ_{gr} b$.

Lemma 2 If σ , σ' are irreducible by a ground rewrite system R then ρ is irreducible by R.

UP-Redundancy

Let \mathcal{L} be a set of literal closures. We define

irred_R(L) = { L · σ ∈ L | σ is irreducible w.r.t. R } for an arbitrary ground rewrite system R

$$\blacktriangleright \mathcal{L}_{L \cdot \sigma \succ_{\ell}} = \{ L' \cdot \sigma' \in \mathcal{L} \mid L \cdot \sigma \succ_{\ell} L' \cdot \sigma' \}.$$

• Literal closure $L \cdot \sigma$ is UP-redundant in \mathcal{L} if

$$R \cup irred_R(\mathcal{L}_{L \cdot \sigma \succ_\ell}) \vDash L\sigma$$

for every ground rewrite system Roriented by \succ_{gr} where σ is irreducible w.r.t. R.

• $\mathcal{R}_{UP}(\mathcal{L})$ denotes the set of all UP-redundant closures in \mathcal{L} .

UP-Saturation

The UP-saturation process for \mathcal{L} is a sequence $\{\mathcal{L}_i\}_{i=0}^{\infty}$ where

$\blacktriangleright \ \mathcal{L}_0 = \mathcal{L}$			
	$\mathcal{L}_i \setminus L \cdot \sigma$	if	$R \cup \operatorname{irred}_R(\mathcal{L}_{i,L \cdot \sigma \succ_\ell}) \vDash L\sigma$
	$\mathcal{L}_i \cup \Box$	if	$\left\{ egin{array}{l} ({\pmb{s}} otin t) \cdot au \in {\mathcal L}_i \ {\pmb{s}} au = t au, \ \mu = {\sf mgu}({\pmb{s}},t) \end{array} ight.$
• $\mathcal{L}_{i+1} = \langle$	$\mathcal{L}_i \cup L[r] heta \cdot ho$	if	$\begin{aligned} R \cup \operatorname{irred}_{R}(\mathcal{L}_{i,L\cdot\sigma\succ_{\ell}}) &\vDash L\sigma \\ \left\{ \begin{array}{l} (s \not\approx t) \cdot \tau \in \mathcal{L}_{i} \\ s\tau = t\tau, \ \mu = \operatorname{mgu}(s,t) \end{array} \right. \\ \left\{ \begin{array}{l} (\ell \approx r) \cdot \sigma, \ L[\ell'] \cdot \sigma' \in \mathcal{L}_{i} \\ \ell\sigma \succ_{gr} r\sigma, \ \theta = \operatorname{mgu}(\ell,\ell'), \\ \ell' \notin \mathcal{V}, \ \ell\sigma = \ell'\sigma' = \ell'\theta\rho, \end{array} \right. \end{aligned}$
	\mathcal{L}_i		otherwise

Let \mathcal{L}^∞ be the set of persistent closures, i.e. the lower limit of $\mathcal{L}_{\mathit{i}}.$

UP-Fairness

The UP-saturation process is UP-fair if for every UP-inference with premises in \mathcal{L}^{∞} the conclusion is UP-redundant w.r.t. \mathcal{L}_j for some j. For a set of literals \mathcal{L} we define the saturated set of literal closures $\mathcal{L}^{sat} = \mathcal{L}^{\infty} \setminus \mathcal{R}_{UP}(\mathcal{L}^{\infty})$ for some UP-saturation process $\{\mathcal{L}_i\}_{i=0}^{\infty}$ with $\mathcal{L}_0 = \mathcal{L}$.

Lemma 3

The set \mathcal{L}^{sat} is unique because for any two UP-fair saturation processes $\{\mathcal{L}_i\}_{i=0}^{\infty}$ and $\{\mathcal{L}'_i\}_{i=0}^{\infty}$ with $\mathcal{L}_0 = \mathcal{L}'_0$ we have

$$\mathcal{L}^{\infty}ackslash\mathcal{R}_{\mathit{UP}}(\mathcal{L}^{\infty})=\mathcal{L}'^{\infty}ackslash\mathcal{R}_{\mathit{UP}}(\mathcal{L}'^{\infty})$$

Inst-Redundancy

Let S be a set of clauses.

• A ground closure C is Inst-redundant in S if for some k

►
$$C'_i \in S$$
, $C_i = C'_i \cdot \sigma'_i$, $C \succ_{cl} C_i$ for $i \in 1...k$
► such that $C_1, ..., C_k \models C$

• A (possible non-ground) clause C is called Inst-redundant in S if each ground closure
$$C \cdot \sigma$$
 is Inst-redundant in S.

• $R_{Inst}(S)$ denotes the set of all Inst-redundant clauses in S.

Example 4

$$S = \{ f(x) \approx x, f(a) \approx a, f(f(x)) \approx f(x) \}$$

$$R_{Inst}(S) = \{ f(f(x)) \approx f(x) \}$$

Selection

Let S be a set of clauses S, let I_{\perp} be a model of S_{\perp} .

A selection function sel maps clauses to literals such that

$${
m sel}({\it C})\in {\it C}$$
 ${\it I}_{\perp}\models {
m sel}({\it C})ot$

The set of S-relevant literal closures

$$\mathcal{L}_{S} = \left\{ \begin{array}{l} L \lor \sigma \mid \begin{array}{c} L \lor C \in S, \ L = \mathsf{sel}(L \lor C) \\ (L \lor C) \cdot \sigma \text{ is not Inst-redundant in S,} \end{array} \right\}$$

- \mathcal{L}_{S}^{sat} denotes the saturation process of \mathcal{L}_{S} .
- ► A set of clauses S is Inst-saturated w.r.t. a selection function, if L^{sat}_S does not contain the empty clause.

Completeness

Theorem 5

If a set of clauses S is Inst-saturated, and $S \perp$ is satisfiable, then S is also satisfiable.

Proof.

- 1. Construction of a candidate model
- 2. Assumption that candidate is not a model

4

Construction

Let S be an Inst-saturated set of clauses, i.e. $\Box \notin \mathcal{L}_{S}^{sat}$, SAT $(S \perp)$.

Let $L = L' \cdot \sigma \in \mathcal{L}_{S}^{sat}$. We define inductively:

- $I_L = \{ \epsilon_M \mid L \succ_\ell M \}$ IH: ϵ_M is defined for any $M \mid L \succ_\ell M$ • $R_L = \{ s \rightarrow t \mid s \approx t \in I_L, s \succ_{gr} t \}$ • $\epsilon_L = \begin{cases} \emptyset & \text{if } L'\sigma \text{ reducible by } R_L \\ \emptyset & \text{if } I_L \vDash L'\sigma \text{ or } I_L \vDash \overline{L'}\sigma \text{ (defined)} \\ \{L'\sigma\} \text{ otherwise (productive)} \end{cases}$
- *R_S* = ⋃_{*L*∈*L*^{sat}_S} *R_L R_S* is convergent and interreduced
 I_S = ⋃_{*L*∈*L*^{sat}_S} *ϵ_L I_S* is consistent, *L*σ ∈ *I_S* is irreducible by *R_S*

Let \mathcal{I} be an arbitrary consistent extension of I_S in all the following lemmata.

If any $L \cdot \sigma \in \mathcal{L}_S$, irreducible by R_S exists with $\mathcal{I} \not\models L\sigma$ then there is a $L' \cdot \sigma' \in irred_{R_S}(\mathcal{L}_S^{sat})$ with $\mathcal{I} \not\models L'\sigma'$.

Proof.

We have two cases

- ▶ If $L \cdot \sigma$ is not UP-redundant in \mathcal{L}_{S}^{sat} , then $L' \cdot \sigma' = L \cdot \sigma$. \checkmark
- If $L \cdot \sigma$ is UP-redundant in \mathcal{L}_{S}^{sat} . By construction σ is irreducible by R_{S} . Then we have

$$R_{S} \cup irred_{R_{S}}(\{L' \cdot \sigma' \in \mathcal{L}_{S}^{sat} \mid L \cdot \sigma \succ_{\ell} L' \cdot \sigma'\}) \models L\sigma$$

At least one
$$L' \cdot \sigma' \in irred_{R_S}(\mathcal{L}_S^{sat})$$
 with $\mathcal{I} \not\models L'\sigma'$. \checkmark

Lemma 7 Whenever

$$M \cdot \tau = \min_{\succ_{\ell}} \left\{ L' \cdot \tau' \mid L' \cdot \sigma' \in irred_{\mathcal{R}_{\mathcal{S}}}(\mathcal{L}_{\mathcal{S}}^{sat}), \, L'\sigma' \text{ false in } \mathcal{I} \right\}$$

is defined, then $M \cdot \tau$ is irreducible by R_S .

Proof

Assume $M \cdot \tau$ is reducible by $(\ell \to r) \in R_S$ and $(\ell \to r)$ is produced by $(\ell' \approx r') \cdot \rho \in \mathcal{L}_S^{sat}$.

Now UP-inference is applicable because τ is irreducible by R_S ,

$$\frac{(\ell' \approx r') \cdot \rho \quad M[\ell''] \cdot \tau}{M[r']\theta \cdot \mu} \ UP$$

 μ is irreducible by R_S , and $M[r']\theta\mu$ is false in \mathcal{I} .

. . .

We have two cases

- If M[r']θ · μ is not UP-redundant in L_S^{sat} then M[r']θ · μ ∈ L_S^{sat}.
 Now M · τ ≻_ℓ M[r']θ · μ ∈ irred_{R_S}(L_S^{sat}) contradicts minimality of M · τ.
- If $M[r']\theta \cdot \mu$ is UP-redundant in \mathcal{L}_S^{sat} then

 $R_{\mathcal{S}} \cup \textit{irred}_{R_{\mathcal{S}}}(\{M' \cdot \tau' \in \mathcal{L}_{\mathcal{S}}^{\textit{sat}} \mid M[r']\theta \cdot \mu \succ_{\ell} M'\tau'\} \models M[r']\theta\mu$

Hence there is $M' \cdot \tau' \in \mathcal{L}_{S}^{sat}$ false in \mathcal{I} such that $M \cdot \tau \succ_{\ell} M[r'] \theta \cdot \mu \succ_{\ell} M' \cdot \tau',$ $M' \cdot \tau'$ contradicts minimality of $M \cdot \tau.$

4

Hence $M \cdot \tau$ is irreducible by R_S .

Let $M \cdot \tau \in \mathcal{L}_{S}^{sat}$, irreducible by R_{S} , and defined (not productive). From $\mathcal{I} \not\models M\tau$ follows that M is not an equation ($s \approx t$).

Proof.

Assume $M = (s \approx t)$. Then we have

- $I_{M \cdot \tau} \models (s \not\approx t) \tau$
- All literals in $I_{M\cdot\tau}$ are irreducible by $R_{M\cdot\tau}$
- $s\tau$ and $t\tau$ are irreducible by $R_{M\cdot\tau}$
- $R_{M\cdot\tau}$ is a convergent term rewrite system

Hence $(s \not\approx t)\tau \in I_{M\cdot\tau}$ is produced to $I_{M\cdot\tau}$ by some $(s' \not\approx t') \cdot \tau'$, but $(s' \not\approx t')\tau' \succ_{gr} (s \approx t)\tau$ and $(s' \not\approx t') \cdot \tau' \succ_{\ell} M \cdot \tau$.

Let $M \cdot \tau \in \mathcal{L}_{S}^{sat}$, irreducible by R_{S} , and defined (not productive). From $\mathcal{I} \not\models M\tau$ follows that M is not an inequation ($s \not\approx t$).

Proof.

Assume $M \cdot \tau$ is inequation $(s \not\approx t) \cdot \tau$. We have

- $\blacktriangleright I_{M\cdot\tau} \models (s \approx t)\tau$
- $s\tau$ and $t\tau$ are irreducible by $R_{M\cdot\tau}$

Hence $s\tau = t\tau$ and equality resolution is applicable. Contradiction to $\Box \notin \mathcal{L}_S^{sat}$.

4

 ${\mathcal I}$ is a model for all ground instances of S

Proof.

Assume $D = \min_{\succ_{cl}} \{ C' \cdot \sigma \mid C' \in S, C'\sigma \text{ false in } \mathcal{I} \}$ exists, then

• $D = D' \cdot \sigma$ is not Inst-redundant.

Otherwise there are $D_1, \ldots, D_n \models D$, $D \succ_{cl} D_i$ for all *i*, and D_j false in \mathcal{I} for one *j*, which contradicts minimality. 4

► $x\sigma$ irreducible by R_S for every variable x in D'. Otherwise let $(\ell \rightarrow r)\tau \in R_L$ and $x\sigma = x\sigma[I\tau]_p$ for some variable x in D'. We define substitution σ' with $x\sigma' = x\sigma[r\tau]_p$ and $y\sigma' = y\sigma$ for $y \neq x$. $D'\sigma'$ is false in \mathcal{I} and $D \succ_{cl} D' \cdot \sigma'$, which contradicts minimality. Since D is not Inst-redundant in S, we have for some literal L, that $D' = L \vee D''$, sel(D') = L, $L \cdot \sigma \in \mathcal{L}_S$, $L\sigma$ is false in \mathcal{I}

Hence the following literal closure

$$M \cdot \tau = \min_{\succ_{\ell}} \left\{ L' \cdot \tau' \mid L' \cdot \sigma' \in irred_{\mathcal{R}_{\mathcal{S}}}(\mathcal{L}_{\mathcal{S}}^{sat}), \ L' \cdot \sigma' \text{ false in } \mathcal{I} \right\}$$

exists by Lemma 6, is irreducible by Lemma 7, and not productive.

- M is not an equation by lemma 8
- M is not an inequation by lemma 9

This is a contradiction.

Our assumption was false and \mathcal{I} is a model for all instances of S.

4