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ATP The big picture

Instantiation-based first order ATP
The big picture

Is sentence F a first order theorem?

¬F ≈ S
S0

Is S satisfiable?

Si

Si⊥ unsatisfiable
S unsatisfiable yes

Sj ? S satisfiable no

space out

time out
don’t know

S0 = S , Si+1 is inferred from Si by a sound calculus.
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Preliminaries Clauses, closures and orderings

Preliminaries I
Equational First Order Logic

I first order signature with function (and predicate) symbols
I terms s, t, `, r (and predicates P,Q, •)
I atoms are equations of terms s ≈ t (or predicates P ≈ •)
I literals are atoms or negated atoms
I clauses are a multisets of literals
I closures are pairs of clauses and ground substitutions

( f(x) ≈ b ∨ x 6≈ a ) · { x 7→ f(a) }
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Preliminaries Clauses, closures and orderings

Preliminaries II
Equational First Order Logic

I orderings
�gr order on ground terms, literals, and clauses defined by

a total, well-founded, and monotone extension of
a total simplification ordering �′gr on ground terms

s 6≈ t �gr s ≈ t, L ∨ L �gr L (P �gr •)

�̀ a total well-founded extension of �gr such that
Lσ �gr L′σ′ ⇒ L · σ �̀ L′ · σ′

�cl a total well-founded extension of �gr such that
Cτ �gr Dρ⇒ C · τ �cl D · ρ

(Cτ = Dρ and Cθ = D)⇒ C · τ �cl D · ρ
where θ is not a renaming
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Unit Paramodulation Inferences

Unit Paramodulation

(` ≈ r) · σ L[`′] · σ′

L[r ]θ · ρ θ
(s 6≈ t) · τ
�

µ

where

I `σ �gr rσ, θ = mgu(`, `′), `σ = `′σ′ = `′θρ, `′ /∈ V
I sτ = tτ , µ = mgu(s, t)

Example 1
The set of literal closures { (f(x) ≈ b) · {x 7→ a}, a ≈ b, f(b) 6≈ b }
is inconsistent, but the empty clause is not derivable if a �gr b.

Lemma 2
If σ, σ′ are irreducible by a ground rewrite system R
then ρ is irreducible by R .
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Unit Paramodulation Redundancy

UP-Redundancy

Let L be a set of literal closures. We define
I irredR(L) = { L · σ ∈ L | σ is irreducible w.r.t. R }

for an arbitrary ground rewrite system R

I LL·σ�̀ = { L′ · σ′ ∈ L | L · σ �̀ L′ · σ′ }.

I Literal closure L · σ is UP-redundant in L if

R ∪ irredR(LL·σ�̀ ) � Lσ

for every ground rewrite system R
oriented by �gr where σ is irreducible w.r.t. R .

I RUP(L) denotes the set of all UP-redundant closures in L.
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Unit Paramodulation Satuaration

UP-Saturation

The UP-saturation process for L is a sequence {Li}∞i=0 where

I L0 = L

I Li+1 =



Li\L · σ if R ∪ irredR(Li ,L·σ�̀ ) � Lσ

Li ∪ � if
{

(s 6≈ t) · τ ∈ Li
sτ = tτ, µ = mgu(s, t)

Li ∪ L[r ]θ · ρ if


(` ≈ r) · σ, L[`′] · σ′ ∈ Li
`σ �gr rσ, θ = mgu(`, `′),
`′ /∈ V, `σ = `′σ′ = `′θρ,

Li otherwise

Let L∞ be the set of persistent closures, i.e. the lower limit of Li .
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Unit Paramodulation Fairness

UP-Fairness

The UP-saturation process is UP-fair if for every UP-inference with
premises in L∞ the conclusion is UP-redundant w.r.t. Lj for some j .
For a set of literals L we define the saturated set of literal closures
Lsat = L∞\RUP(L∞) for some UP-saturation process {Li}∞i=0
with L0 = L.

Lemma 3
The set Lsat is unique because for any two UP-fair saturation
processes {Li}∞i=0 and {L′i}∞i=0 with L0 = L′0 we have

L∞\RUP(L∞) = L′∞\RUP(L′∞)
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Instantiation Redundancy

Inst-Redundancy

Let S be a set of clauses.

I A ground closure C is Inst-redundant in S if for some k
I C ′

i ∈ S , Ci = C ′
i · σ′

i , C �cl Ci for i ∈ 1 . . . k
I such that C1, . . . ,Ck |= C

I A (possible non-ground) clause C is called Inst-redundant in S
if each ground closure C · σ is Inst-redundant in S .

I RInst(S) denotes the set of all Inst-redundant clauses in S .

Example 4
S = { f(x) ≈ x , f(a) ≈ a, f(f(x)) ≈ f(x) }
RInst(S) = { f(f(x)) ≈ f(x) }
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Instantiation Selection

Selection

Let S be a set of clauses S , let I⊥ be a model of S⊥.

I A selection function sel maps clauses to literals such that

sel(C ) ∈ C I⊥ |= sel(C )⊥

I The set of S-relevant literal closures

LS =

{
L · σ | L ∨ C ∈ S , L = sel(L ∨ C )

(L ∨ C ) · σ is not Inst-redundant in S,

}
I LsatS denotes the saturation process of LS .
I A set of clauses S is Inst-saturated w.r.t. a selection function,

if LsatS does not contain the empty clause.
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Completeness Theorem

Completeness

Theorem 5
If a set of clauses S is Inst-saturated, and S⊥ is satisfiable,
then S is also satisfiable.

Proof.

1. Construction of a candidate model
2. Assumption that candidate is not a model �
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Completeness Model Construction

Construction

Let S be an Inst-saturated set of clauses, i.e. � 6∈ LsatS , SAT(S⊥).

Let L = L′ · σ ∈ LsatS . We define inductively:

I IL = { εM | L �̀ M } IH: εM is defined for any M | L �̀ M

I RL = {s → t | s ≈ t ∈ IL, s �gr t}

I εL =


∅ if L′σ reducible by RL

∅ if IL � L′σ or IL � L′σ (defined)
{L′σ} otherwise (productive)

I RS =
⋃

L∈LsatS
RL RS is convergent and interreduced

I IS =
⋃

L∈LsatS
εL IS is consistent, Lσ ∈ IS is irreducible by RS

Let I be an arbitrary consistent extension of IS
in all the following lemmata.
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Completeness Lemma 6

Lemma 6
If any L · σ ∈ LS , irreducible by RS exists with I 6|= Lσ
then there is a L′ · σ′ ∈ irredRS

(LsatS ) with I 6|= L′σ′.

Proof.
We have two cases

I If L · σ is not UP-redundant in LsatS , then L′ · σ′ = L · σ. X

I If L · σ is UP-redundant in LsatS . By construction σ is
irreducible by RS . Then we have

RS ∪ irredRS
({L′ · σ′ ∈ LsatS | L · σ �̀ L′ · σ′}) |= Lσ

At least one L′ · σ′ ∈ irredRS
(LsatS ) with I 6|= L′σ′. X
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Completeness Lemma 7

Lemma 7
Whenever

M · τ = min
�̀

{
L′ · τ ′ | L′ · σ′ ∈ irredRS

(LsatS ), L′σ′ false in I
}

is defined, then M · τ is irreducible by RS .

Proof
Assume M · τ is reducible by (`→ r) ∈ RS

and (`→ r) is produced by (`′ ≈ r ′) · ρ ∈ LsatS .

Now UP-inference is applicable because τ is irreducible by RS ,

(`′ ≈ r ′) · ρ M[`′′] · τ
M[r ′]θ · µ UP

µ is irreducible by RS , and M[r ′]θµ is false in I. . . .

A`M (UIBK) Completeness of Inst-Saturation 15/20



Completeness Lemma 7

We have two cases

I If M[r ′]θ ·µ is not UP-redundant in LsatS then M[r ′]θ ·µ ∈ LsatS .

Now M · τ �̀ M[r ′]θ · µ ∈ irredRS
(LsatS )

contradicts minimality of M · τ . �

I If M[r ′]θ · µ is UP-redundant in LsatS then

RS ∪ irredRS
({M ′ · τ ′ ∈ LsatS | M[r ′]θ · µ �̀ M ′τ ′} |= M[r ′]θµ

Hence there is M ′ · τ ′ ∈ LsatS false in I such that
M · τ �̀ M[r ′]θ · µ �̀ M ′ · τ ′,
M ′ · τ ′ contradicts minimality of M · τ . �

Hence M · τ is irreducible by RS .
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Completeness Lemma 8

Lemma 8
Let M · τ ∈ LsatS , irreducible by RS , and defined (not productive).
From I 6|= Mτ follows that M is not an equation (s ≈ t).

Proof.
Assume M = (s ≈ t). Then we have
I IM·τ |= (s 6≈ t)τ

I All literals in IM·τ are irreducible by RM·τ
I sτ and tτ are irreducible by RM·τ
I RM·τ is a convergent term rewrite system

Hence (s 6≈ t)τ ∈ IM·τ is produced to IM·τ by some (s ′ 6≈ t ′) · τ ′,
but (s ′ 6≈ t ′)τ ′ �gr (s ≈ t)τ and (s ′ 6≈ t ′) · τ ′ �̀ M · τ . �
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Completeness Lemma 9

Lemma 9
Let M · τ ∈ LsatS , irreducible by RS , and defined (not productive).
From I 6|= Mτ follows that M is not an inequation (s 6≈ t).

Proof.
Assume M · τ is inequation (s 6≈ t) · τ . We have
I IM·τ |= (s ≈ t)τ

I sτ and tτ are irreducible by RM·τ

Hence sτ = tτ and equality resolution is applicable.
Contradiction to � 6∈ LsatS . �
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Completeness Model

Lemma 10
I is a model for all ground instances of S

Proof.
Assume D = min�cl{C ′ · σ | C ′ ∈ S , C ′σ false in I } exists, then

I D = D ′ · σ is not Inst-redundant.
Otherwise there are D1, . . . ,Dn |= D, D �cl Di for all i ,
and Dj false in I for one j , which contradicts minimality. �

I xσ irreducible by RS for every variable x in D ′.
Otherwise let (`→ r)τ ∈ RL and xσ = xσ[lτ ]p for some
variable x in D’. We define substitution σ′ with xσ′ = xσ[rτ ]p
and yσ′ = yσ for y 6= x . D ′σ′ is false in I and D �cl D ′ · σ′,
which contradicts minimality. �

A`M (UIBK) Completeness of Inst-Saturation 19/20



Completeness Model

Since D is not Inst-redundant in S , we have for some literal L,
that D ′ = L ∨ D ′′, sel(D ′) = L, L · σ ∈ LS , Lσ is false in I

Hence the following literal closure

M · τ = min
�̀

{
L′ · τ ′ | L′ · σ′ ∈ irredRS

(LsatS ), L′ · σ′ false in I
}

exists by Lemma 6, is irreducible by Lemma 7, and not productive.

I M is not an equation by lemma 8
I M is not an inequation by lemma 9

This is a contradiction. �

Our assumption was false and
I is a model for all instances of S .
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