
Machine Learning Problems
in Automated Theorem Proving

Cezary Kaliszyk

CL Seminar

October 18, 2017

Mathematicians and Proof Assistants

Plenty of Improvements in the last decade

But same complaint: Mathematicians do not use PAs

Finally huge success stories

But we can count them on our fingers

C. Kaliszyk ML in ATP 2 / 20

Issues

Lack of Libraries
what if we just assume properties?

Automation
with incomplete proofs?

Many Foundations and Systems

Wiedijk’s “QED Revised” (2007)
“none of the [. . .] systems can express all four statements in a good way”

But many domains work in any foundation

Communication
The prover does not get what I mean

C. Kaliszyk ML in ATP 3 / 20

Fast progress in machine learning

Tasks involving logical inference

Natural language question answering [Sukhbaatar+2015]

Knowledge base completion [Socher+2013]

Automated translation [Wu+2016]

Games

AlphaGo problems similar to proving [Silver+2016]

Node evaluation

Policy decisions

C. Kaliszyk ML in ATP 4 / 20

Outline

TP ML Problems

State Evaluation

Learning in ATPs

C. Kaliszyk ML in ATP 5 / 20

AI theorem proving techniques

High-level AI guidance

premise selection: select the right lemmas to prove a new fact

based on suitable features (characterizations) of the formulas

and on learning lemma-relevance from many related proofs

tactic selection

Mid-level AI guidance

learn good ATP strategies/tactics/heuristics for classes of problems

learning lemma and concept re-use

learn conjecturing

Low-level AI guidance

guide (almost) every inference step by previous knowledge

good proof-state characterization and fast relevance

C. Kaliszyk ML in ATP 6 / 20

Problems for Machine Learning

Is a statement is useful?

For a conjecture

What are the dependencies of statement? (premise selection)

Is a statement important? (named)

What should the next proof step be?

Tactic? Instantiation?

How to name a statement?

What new problem is likely to be true?

Intermediate statement for a conjecture

C. Kaliszyk ML in ATP 7 / 20

Premise Selection

Syntactic methods

Neighbours using various metrics
Recursive: SInE, MePo

Naive Bayes, k-Nearest Neighbours

Regression

Needs feature and theorem space reduction
Kernel-based multi-output ranking

Decision Trees (Random Forests)

Neural Networks

Winnow, Perceptron (SNoW)
DeepMath

C. Kaliszyk ML in ATP 8 / 20

Outline

TP ML Problems

State Evaluation

Learning in ATPs

C. Kaliszyk ML in ATP 9 / 20

Intermediate lemmas

Size of inference graphs

HOL Light graph Flyspeck graph

nodes edges nodes edges

kernel inferences 8,919,976 10,331,922 1,728,861,441 1,953,406,411
reduced trace 2,076,682 3,002,990 159,102,636 233,488,673

tactical inferences 148,514 594,056 11,824,052 42,296,208
tactical trace 22,284 89,981 1,067,107 4,268,428

Why not use these lemmas?
The graphs are already computed outsize of HOL

Feature extraction, prediction, translation do not scale...

Pre-select heuristically interesting lemmas

C. Kaliszyk ML in ATP 10 / 20

Metric based lemmas

Definition (Recursive dependencies and uses)

D(i) =







1 if i ∈ Named ∨ i ∈ Axioms,
∑

j∈d(i)
D(j) otherwise.

Definition (Lemma quality)

Q1(i) =
U(i) ∗ D(i)

S(i)

Q2(i) =
U(i) ∗ D(i)

S(i)2

Qr
1(i) =

U(i)r ∗ D(i)2−r

S(i)

Q3(i) =
U(i) ∗ D(i)

1.1S(i)

EpclLemma (longest chain), AGIntRater, ...

C. Kaliszyk ML in ATP 11 / 20

PageRank and Cut

Pagerank: Fast, non-iterative, usable on whole Flyspeck

Dominant eigenvector of:

PR1(i) =
1− f

N
+ f
∑

i∈d(j)

PR1(j)
|d(j)|

Size normalized

PR2(i) =
PR1(i)
S(i)

Maximum Graph Cut
Gray nodes correspond to named theorems:

C. Kaliszyk ML in ATP 12 / 20

PageRank and Cut

Pagerank: Fast, non-iterative, usable on whole Flyspeck

Dominant eigenvector of:

PR1(i) =
1− f

N
+ f
∑

i∈d(j)

PR1(j)
|d(j)|

Size normalized

PR2(i) =
PR1(i)
S(i)

Maximum Graph Cut
Gray nodes correspond to named theorems:

C. Kaliszyk ML in ATP 12 / 20

Deep Learning

C. Kaliszyk ML in ATP 13 / 20

Outline

TP ML Problems

State Evaluation

Learning in ATPs

C. Kaliszyk ML in ATP 14 / 20

leanCoP: Lean Connection Prover (Jens Otten)

Connected tableaux calculus
Goal oriented, good for large theories

Regularly beats Metis and Prover9 in CASC
despite their much larger implementation
very good performance on some ITP challenges

Compact Prolog implementation, easy to modify
Variants for other foundations: iLeanCoP, mLeanCoP
First experiments with machine learning: MaLeCoP

Easy to imitate
leanCoP tactic in HOL Light

C. Kaliszyk ML in ATP 15 / 20

FEMaLeCoP: Advice Overview and Used Features

Advise the:
selection of clause for every tableau extension step

Proof state: weighted vector of symbols (or terms)
extracted from all the literals on the active path
Frequency-based weighting (IDF)
Simple decay factor (using maximum)

Consistent clausification
formula ?[X]: p(X) becomes p(’skolem(?[A]:p(A),1)’)

Advice using custom sparse naive Bayes
association of the features of the proof states
with contrapositives used for the successful extension steps

Data Collection and Indexing

C. Kaliszyk ML in ATP 16 / 20

XGBoost Forests (1/2)

C. Kaliszyk ML in ATP 17 / 20

XGBoost Forests (2/2)

C. Kaliszyk ML in ATP 18 / 20

Number of proved theorems

OCaml leanCoP: 680 theorems

leanCoP with Naive Bayes guidance: 720 theorems (can be improved)

leanCoP with XGBoost guidance trained on the top of 720 theorems: 777
theorems with some ensembling (can be improved)

Ongoing:

More Monte Carlo [MF+CADE’17]

Simple Reinforcement [Dagger]

Full Reinforcement Learning
Lots of issues

C. Kaliszyk ML in ATP 19 / 20

Summary

Many ITP/ATP problems could be interesting for AI

Stronger techniques often too slow to be practical for ITPs
Space reductions and approximations make algorithms weaker

Next step: Internal guidance for Automated Theorem Proving
Fast learning algorithm, indexing, approximate features

Finally: Generate interesting conjectures and proofs
“Replace mathematicians”

C. Kaliszyk ML in ATP 20 / 20

	TP ML Problems
	State Evaluation
	Learning in ATPs

