
A Formally Verified Solver for
Homogeneous Linear Diophantine Equations?

Florian Meßner Julian Parsert Jonas Schöpf Christian Sternagel

Master Seminar 1

November 29, 2017

? Supported by the Austrian Science Fund (FWF): project P27502

http://cl-informatik.uibk.ac.at

Quiz – How many unifiers?

f(x, y) ≈ f(z, z)

#unifiers: ?

FM,JP,JS,CS (MS1) 2/17

Quiz – How many unifiers?

f(x, y) ≈ f(z, z)

#unifiers: 1

{x 7→ z, y 7→ z}

FM,JP,JS,CS (MS1) 2/17

Quiz – How many AC unifiers?

x · y ≈ z · z

#unifiers: ?

FM,JP,JS,CS (MS1) 2/17

Quiz – How many AC unifiers?

x · y ≈ z · z

#unifiers: 5
minimal complete set of AC unifiers:

{x 7→ z3 , y 7→ z3 , z 7→ z3}
{x 7→ z1 · z1 , y 7→ z2 · z2 , z 7→ z1 · z2}
{x 7→ z1 · z1 · z3 , y 7→ z3 , z 7→ z1 · z3}
{x 7→ z3 , y 7→ z2 · z2 · z3 , z 7→ z2 · z3}
{x 7→ z1 · z1 · z3 , y 7→ z2 · z2 · z3 , z 7→ z1 · z2 · z3}

FM,JP,JS,CS (MS1) 2/17

Quiz – How many AC unifiers?

x · y ≈ z · z · z

#unifiers: ?

FM,JP,JS,CS (MS1) 2/17

Quiz – How many AC unifiers?

x · y ≈ z · z · z

#unifiers: 13

FM,JP,JS,CS (MS1) 2/17

Quiz – How many AC unifiers?

v · x · y ≈ z · z · z

#unifiers: ?

FM,JP,JS,CS (MS1) 2/17

Quiz – How many AC unifiers?

v · x · y ≈ z · z · z

#unifiers: 981

FM,JP,JS,CS (MS1) 2/17

Bibliography

Michael Clausen and Albrecht Fortenbacher.
Efficient solution of linear diophantine equations.
Journal of Symbolic Computation, 8(1):201–216, 1989.
doi:10.1016/S0747-7171(89)80025-2.

Gérard Huet.
An algorithm to generate the basis of solutions to homogeneous linear
diophantine equations.
Information Processing Letters, 7(3):144–147, 1978.
doi:10.1016/0020-0190(78)90078-9.

Florian Meßner, Julian Parsert, Jonas Schöpf, and Christian
Sternagel.
Homogeneous Linear Diophantine Equations.
The Archive of Formal Proofs, October 2017.
https://www.isa-afp.org/entries/Diophantine_Eqns_Lin_

Hom.shtml, Formal proof development.

FM,JP,JS,CS (MS1) 3/17

http://dx.doi.org/10.1016/S0747-7171(89)80025-2
http://dx.doi.org/10.1016/0020-0190(78)90078-9
https://www.isa-afp.org/entries/Diophantine_Eqns_Lin_Hom.shtml
https://www.isa-afp.org/entries/Diophantine_Eqns_Lin_Hom.shtml

Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

Example

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

left-hand side coefficientsleft-hand side coefficientsleft-hand side coefficients

Example

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

left-hand side variablesleft-hand side variablesleft-hand side variables

Example

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

right-hand side coefficientsright-hand side coefficientsright-hand side coefficients

Example

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

right-hand side variablesright-hand side variablesright-hand side variables

Example

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

Example

x1 + x2 = 2y1

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a • x = b • y

Example

x1 + x2 = 2y1

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a • x = b • y

Example

[1, 1] • [x1 , x2] = [2] • [y1]

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Homogeneous Linear Diophantine Equations (HLDEs)

a • x = b • y

Example

[1, 1] • [x1 , x2] = [2] • [y1]
Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])

FM,JP,JS,CS (MS1) 4/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)

• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0]

4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}

• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0]

4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0]

4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

x <v y iff xi ≤ yi and x 6= y

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0]

4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0]

4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] ?

4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)

[0,0], [1] 8
...

[1,1], [1] 4
...

[2,0], [1] 4
...

[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] ?

8
...

[1,1], [1] 4
...

[2,0], [1] 4
...

[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] ?

4
...

[2,0], [1] 4
...

[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] ?

4
...

[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] ?

4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)
• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0] 4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)

FM,JP,JS,CS (MS1) 5/17

Bounding Minimal Solutions

Lemma (Huet)
if (x, y) ∈M(a, b) then xi ≤ max(b) and yj ≤ max(a)

Example

• for a = [1,1] and b = [2]

• 18 potential solutions (32 · 21)

[([0,0],[0]), ([1,0],[0]), ([2,0],[0]), ([0,1],[0]),

([1,1],[0]), ([2,1],[0]), ([0,2],[0]), ([1,2],[0]),

([2,2],[0]), ([0,0],[1]), ([1,0],[1]), ([2,0],[1]),

([0,1],[1]), ([1,1],[1]), ([2,1],[1]), ([0,2],[1]),

([1,2],[1]), ([2,2],[1])]

• containing 4 actual solutions (a • x = b • y)
[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]

• of which 3 are minimal (w.r.t. <v)

[([2,0],[1]), ([0,2],[1]), ([1,1],[1])]

FM,JP,JS,CS (MS1) 6/17

Bounding Minimal Solutions

Lemma (Huet)
if (x, y) ∈M(a, b) then xi ≤ max(b) and yj ≤ max(a)

Example

• for a = [1,1] and b = [2]

• 18 potential solutions (32 · 21)

[([0,0],[0]), ([1,0],[0]), ([2,0],[0]), ([0,1],[0]),

([1,1],[0]), ([2,1],[0]), ([0,2],[0]), ([1,2],[0]),

([2,2],[0]), ([0,0],[1]), ([1,0],[1]), ([2,0],[1]),

([0,1],[1]), ([1,1],[1]), ([2,1],[1]), ([0,2],[1]),

([1,2],[1]), ([2,2],[1])]

• containing 4 actual solutions (a • x = b • y)
[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]

• of which 3 are minimal (w.r.t. <v)

[([2,0],[1]), ([0,2],[1]), ([1,1],[1])]

FM,JP,JS,CS (MS1) 6/17

Bounding Minimal Solutions

Lemma (Huet)
if (x, y) ∈M(a, b) then xi ≤ max(b) and yj ≤ max(a)

Example

• for a = [1,1] and b = [2]

• 18 potential solutions (32 · 21)

[([0,0],[0]), ([1,0],[0]), ([2,0],[0]), ([0,1],[0]),

([1,1],[0]), ([2,1],[0]), ([0,2],[0]), ([1,2],[0]),

([2,2],[0]), ([0,0],[1]), ([1,0],[1]), ([2,0],[1]),

([0,1],[1]), ([1,1],[1]), ([2,1],[1]), ([0,2],[1]),

([1,2],[1]), ([2,2],[1])]

• containing 4 actual solutions (a • x = b • y)
[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]

• of which 3 are minimal (w.r.t. <v)

[([2,0],[1]), ([0,2],[1]), ([1,1],[1])]

FM,JP,JS,CS (MS1) 6/17

Bounding Minimal Solutions

Lemma (Huet)
if (x, y) ∈M(a, b) then xi ≤ max(b) and yj ≤ max(a)

Example

• for a = [1,1] and b = [2]

• 18 potential solutions (32 · 21)

[([0,0],[0]), ([1,0],[0]), ([2,0],[0]), ([0,1],[0]),

([1,1],[0]), ([2,1],[0]), ([0,2],[0]), ([1,2],[0]),

([2,2],[0]), ([0,0],[1]), ([1,0],[1]), ([2,0],[1]),

([0,1],[1]), ([1,1],[1]), ([2,1],[1]), ([0,2],[1]),

([1,2],[1]), ([2,2],[1])]

• containing 4 actual solutions (a • x = b • y)
[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]

• of which 3 are minimal (w.r.t. <v)

[([2,0],[1]), ([0,2],[1]), ([1,1],[1])]

FM,JP,JS,CS (MS1) 6/17

Bounding Minimal Solutions

Lemma (Huet)
if (x, y) ∈M(a, b) then xi ≤ max(b) and yj ≤ max(a)

Example

• for a = [1,1] and b = [2]

• 18 potential solutions (32 · 21)

[([0,0],[0]), ([1,0],[0]), ([2,0],[0]), ([0,1],[0]),

([1,1],[0]), ([2,1],[0]), ([0,2],[0]), ([1,2],[0]),

([2,2],[0]), ([0,0],[1]), ([1,0],[1]), ([2,0],[1]),

([0,1],[1]), ([1,1],[1]), ([2,1],[1]), ([0,2],[1]),

([1,2],[1]), ([2,2],[1])]

• containing 4 actual solutions (a • x = b • y)
[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]

• of which 3 are minimal (w.r.t. <v)

[([2,0],[1]), ([0,2],[1]), ([1,1],[1])]

FM,JP,JS,CS (MS1) 6/17

Computing Minimal Complete Sets of Solutions

1. generate potential solutions (crude overapproximation)

2. check for actual solutions
3. minimize remaining set of candidates

FM,JP,JS,CS (MS1) 7/17

Computing Minimal Complete Sets of Solutions

1. generate potential solutions (crude overapproximation)
2. check for actual solutions

3. minimize remaining set of candidates

FM,JP,JS,CS (MS1) 7/17

Computing Minimal Complete Sets of Solutions

1. generate potential solutions (crude overapproximation)
2. check for actual solutions
3. minimize remaining set of candidates

FM,JP,JS,CS (MS1) 7/17

Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0],

[0]

[1,0],

[0]

[2,0],

[0]

[0,1],

[0]

[1,1],

[0]

[2,1],

[0]

[0,2],

[0]

[1,2],

[0]

[2,2],

[0]

[0,0],

[1]

[1,0],

[1]

[2,0],

[1]

[0,1],

[1]

[1,1],

[1]

[2,1],

[1]

[0,2],

[1]

[1,2],

[1]

[2,2],

[1]

FM,JP,JS,CS (MS1) 9/17

Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0],

[0]

[1,0],

[0]

[2,0],

[0]

[0,1],

[0]

[1,1],

[0]

[2,1],

[0]

[0,2],

[0]

[1,2],

[0]

[2,2],

[0]

[0,0],

[1]

[1,0],

[1]

[2,0],

[1]

[0,1],

[1]

[1,1],

[1]

[2,1],

[1]

[0,2],

[1]

[1,2],

[1]

[2,2],

[1]

FM,JP,JS,CS (MS1) 9/17

Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0],

[0]

[1,0],

[0]

[2,0],

[0]

[0,1],

[0]

[1,1],

[0]

[2,1],

[0]

[0,2],

[0]

[1,2],

[0]

[2,2],

[0]

[0,0],

[1]

[1,0],

[1]

[2,0],

[1]

[0,1],

[1]

[1,1],

[1]

[2,1],

[1]

[0,2],

[1]

[1,2],

[1]

[2,2],

[1]

FM,JP,JS,CS (MS1) 9/17

Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0],

[0]

[1,0],

[0]

[2,0],

[0]

[0,1],

[0]

[1,1],

[0]

[2,1],

[0]

[0,2],

[0]

[1,2],

[0]

[2,2],

[0]

[0,0],

[1]

[1,0],

[1]

[2,0],

[1]

[0,1],

[1]

[1,1],

[1]

[2,1],

[1]

[0,2],

[1]

[1,2],

[1]

[2,2],

[1]

FM,JP,JS,CS (MS1) 9/17

Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0],

[0]

[1,0],

[0]

[2,0],

[0]

[0,1],

[0]

[1,1],

[0]

[2,1],

[0]

[0,2],

[0]

[1,2],

[0]

[2,2],

[0]

[0,0],

[1]

[1,0],

[1]

[2,0],

[1]

[0,1],

[1]

[1,1],

[1]

[2,1],

[1]

[0,2],

[1]

[1,2],

[1]

[2,2],

[1]

FM,JP,JS,CS (MS1) 9/17

Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0], [0] [1,0], [0] [2,0], [0] [0,1], [0] [1,1], [0]
[2,1], [0] [0,2], [0] [1,2], [0] [2,2], [0]
[0,0], [1] [1,0], [1] [2,0], [1] [0,1], [1] [1,1], [1]
[2,1], [1] [0,2], [1] [1,2], [1] [2,2], [1]

FM,JP,JS,CS (MS1) 9/17

Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0], [0]

[1,0], [0] [2,0], [0] [0,1], [0] [1,1], [0]
[2,1], [0] [0,2], [0] [1,2], [0] [2,2], [0]
[0,0], [1] [1,0], [1] [2,0], [1] [0,1], [1] [1,1], [1]
[2,1], [1] [0,2], [1] [1,2], [1] [2,2], [1]

x <rlex y iff ∃i . xi < yi ∧ ∀j > i . xj = yj

FM,JP,JS,CS (MS1) 9/17

Phase 2 – Check

• drop non-solutions

check as bs = filter (isSolution as bs)

Phase 3 – Minimize

• minimize [] = []

minimize ((x,y):xs) =

(x,y) : filter (x ++ y 6<v) (minimize xs)

Remark
if x <v y then x <rlex y

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0], [0]

[1,0], [0] [2,0], [0] [0,1], [0] [1,1], [0]
[2,1], [0] [0,2], [0] [1,2], [0] [2,2], [0]
[0,0], [1] [1,0], [1] [2,0], [1] [0,1], [1] [1,1], [1]
[2,1], [1] [0,2], [1] [1,2], [1] [2,2], [1]

FM,JP,JS,CS (MS1) 9/17

Phase 2 – Check

• drop non-solutions

check as bs = filter (isSolution as bs)

Phase 3 – Minimize

• minimize [] = []

minimize ((x,y):xs) =

(x,y) : filter (x ++ y 6<v) (minimize xs)

Remark
if x <v y then x <rlex y

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0], [0] [1,0], [0] [2,0], [0] [0,1], [0] [1,1], [0]
[2,1], [0] [0,2], [0] [1,2], [0] [2,2], [0]
[0,0], [1] [1,0], [1]

[2,0], [1]

[0,1], [1]

[1,1], [1]

[2,1], [1]

[0,2], [1]

[1,2], [1] [2,2], [1]

FM,JP,JS,CS (MS1) 9/17

Phase 2 – Check

• drop non-solutions

check as bs = filter (isSolution as bs)

Phase 3 – Minimize

• minimize [] = []

minimize ((x,y):xs) =

(x,y) : filter (x ++ y 6<v) (minimize xs)

Remark
if x <v y then x <rlex y

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0], [0] [1,0], [0] [2,0], [0] [0,1], [0] [1,1], [0]
[2,1], [0] [0,2], [0] [1,2], [0] [2,2], [0]
[0,0], [1] [1,0], [1]

[2,0], [1]

[0,1], [1]

[1,1], [1]

[2,1], [1]

[0,2], [1]

[1,2], [1] [2,2], [1]

FM,JP,JS,CS (MS1) 9/17

Phase 2 – Check

• drop non-solutions

check as bs = filter (isSolution as bs)

Phase 3 – Minimize

• minimize [] = []

minimize ((x,y):xs) =

(x,y) : filter (x ++ y 6<v) (minimize xs)

Remark
if x <v y then x <rlex y

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0], [0] [1,0], [0] [2,0], [0] [0,1], [0] [1,1], [0]
[2,1], [0] [0,2], [0] [1,2], [0] [2,2], [0]
[0,0], [1] [1,0], [1]

[2,0], [1]

[0,1], [1]

[1,1], [1]

[2,1], [1]

[0,2], [1]

[1,2], [1] [2,2], [1]

FM,JP,JS,CS (MS1) 9/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001

[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001

[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001

[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2

[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2

[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5

[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4

[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

FM,JP,JS,CS (MS1) 10/17

Special Solutions

• given i and j , unique special solution is

0 · · · lcm(ai , bj)/ai · · · 0, 0 · · · lcm(ai , bj)/bj · · · 0

• only 1 non-zero xi and yj

• all special solutions are minimal

• it remains to compute non-special solutions (that is, those minimal
solutions that are not special)

Example

• equation x1 + x2 = 2y1

• special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]

FM,JP,JS,CS (MS1) 11/17

Special Solutions

• given i and j , unique special solution is

0 · · · lcm(ai , bj)/ai · · · 0, 0 · · · lcm(ai , bj)/bj · · · 0

• only 1 non-zero xi and yj

• all special solutions are minimal

• it remains to compute non-special solutions (that is, those minimal
solutions that are not special)

Example

• equation x1 + x2 = 2y1

• special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]

FM,JP,JS,CS (MS1) 11/17

Special Solutions

• given i and j , unique special solution is

0 · · · lcm(ai , bj)/ai · · · 0, 0 · · · lcm(ai , bj)/bj · · · 0

• only 1 non-zero xi and yj

• all special solutions are minimal

• it remains to compute non-special solutions (that is, those minimal
solutions that are not special)

Example

• equation x1 + x2 = 2y1

• special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]

FM,JP,JS,CS (MS1) 11/17

Special Solutions

• given i and j , unique special solution is

0 · · · lcm(ai , bj)/ai · · · 0, 0 · · · lcm(ai , bj)/bj · · · 0

• only 1 non-zero xi and yj

• all special solutions are minimal

• it remains to compute non-special solutions (that is, those minimal
solutions that are not special)

Example

• equation x1 + x2 = 2y1

• special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]

FM,JP,JS,CS (MS1) 11/17

Special Solutions

• given i and j , unique special solution is

0 · · · lcm(ai , bj)/ai · · · 0, 0 · · · lcm(ai , bj)/bj · · · 0

• only 1 non-zero xi and yj

• all special solutions are minimal

• it remains to compute non-special solutions (that is, those minimal
solutions that are not special)

Example

• equation x1 + x2 = 2y1

• special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]

FM,JP,JS,CS (MS1) 11/17

Non-Special Solutions

Lemma (Huet)
if (x, y) is non-special minimal solution then

• yj ≤ maxy x j

• take a k • take x k ≤ b • y
• take b l • take y l ≤ a • map (maxx (take y l)) [0..m − 1]

where

maxx y i = if i < m ∧Di y 6= 0 then min(Di y) else max(b)

maxy x j = if j < n ∧ Ej x 6= 0 then min(Ej x) else max(a)

Di y = {lcm(ai , bj)/ai − 1 | j < |y| ∧ yj ≥ lcm(ai , bj)/bj }
Ej x = {lcm(ai , bj)/bj − 1 | i < |x| ∧ xi ≥ lcm(ai , bj)/ai}

Improved Bounds on Minimal Solutions

(Clausen and Fortenbacher)
if (x, y) is minimal solution then xi ≤ max6=0 y b and yj ≤ max 6=0 x a

FM,JP,JS,CS (MS1) 12/17

Non-Special Solutions

Lemma (Huet)
if (x, y) is non-special minimal solution then

• yj ≤ maxy x j

• take a k • take x k ≤ b • y
• take b l • take y l ≤ a • map (maxx (take y l)) [0..m − 1]

where

maxx y i = if i < m ∧Di y 6= 0 then min(Di y) else max(b)

maxy x j = if j < n ∧ Ej x 6= 0 then min(Ej x) else max(a)

Di y = {lcm(ai , bj)/ai − 1 | j < |y| ∧ yj ≥ lcm(ai , bj)/bj }
Ej x = {lcm(ai , bj)/bj − 1 | i < |x| ∧ xi ≥ lcm(ai , bj)/ai}

Improved Bounds on Minimal Solutions

(Clausen and Fortenbacher)
if (x, y) is minimal solution then xi ≤ max6=0 y b and yj ≤ max 6=0 x a

FM,JP,JS,CS (MS1) 12/17

Merging Generate and Check

• compute all vectors of length equal to length cs whose elements
and “partial sums” satisfy p

incs p c i (xs,s) =

if p (i:xs) t then (i:xs,t) : incs p c (i+1) (xs,s)

else []

where

t = s + c*i

genCheck p [] = [([],0)]

genCheck p (c:cs) =

concat (map (incs p c 0) (genCheck p cs))

• compute potential solutions within bounds
generateCheck as bs =

tail [(x, y) | (y, _) <- genCheck q bs,

(x, _) <- genCheck (p y) as]

where

p ys (x:_) s = s <= bs `dp` ys && x <= maxne0 ys bs

...

FM,JP,JS,CS (MS1) 13/17

Merging Generate and Check

• compute all vectors of length equal to length cs whose elements
and “partial sums” satisfy p

incs p c i (xs,s) =

if p (i:xs) t then (i:xs,t) : incs p c (i+1) (xs,s)

else []

where

t = s + c*i

genCheck p [] = [([],0)]

genCheck p (c:cs) =

concat (map (incs p c 0) (genCheck p cs))
• compute potential solutions within bounds
generateCheck as bs =

tail [(x, y) | (y, _) <- genCheck q bs,

(x, _) <- genCheck (p y) as]

where

p ys (x:_) s = s <= bs `dp` ys && x <= maxne0 ys bs

...
FM,JP,JS,CS (MS1) 13/17

An Improved Algorithm

• additional check phase
check' as bs = filter (\(xs, ys) ->

all (<= maxne0 xs as) ys &&

isSolution as bs xs ys &&

all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])

• computing non-special solutions
nonSpecialSolutions as bs =

minimize (check' as bs (generateCheck as bs))

• the algorithm
solutions' as bs =

specialSolutions as bs ++ nonSpecialSolutions as bs

Lemma
solutions' and solutions compute the same results

FM,JP,JS,CS (MS1) 14/17

An Improved Algorithm

• additional check phase
check' as bs = filter (\(xs, ys) ->

all (<= maxne0 xs as) ys &&

isSolution as bs xs ys &&

all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])

• computing non-special solutions
nonSpecialSolutions as bs =

minimize (check' as bs (generateCheck as bs))

• the algorithm
solutions' as bs =

specialSolutions as bs ++ nonSpecialSolutions as bs

Lemma
solutions' and solutions compute the same results

FM,JP,JS,CS (MS1) 14/17

An Improved Algorithm

• additional check phase
check' as bs = filter (\(xs, ys) ->

all (<= maxne0 xs as) ys &&

isSolution as bs xs ys &&

all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])

• computing non-special solutions
nonSpecialSolutions as bs =

minimize (check' as bs (generateCheck as bs))

• the algorithm
solutions' as bs =

specialSolutions as bs ++ nonSpecialSolutions as bs

Lemma
solutions' and solutions compute the same results

FM,JP,JS,CS (MS1) 14/17

An Improved Algorithm

• additional check phase
check' as bs = filter (\(xs, ys) ->

all (<= maxne0 xs as) ys &&

isSolution as bs xs ys &&

all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])

• computing non-special solutions
nonSpecialSolutions as bs =

minimize (check' as bs (generateCheck as bs))

• the algorithm
solutions' as bs =

specialSolutions as bs ++ nonSpecialSolutions as bs

Lemma
solutions' and solutions compute the same results

FM,JP,JS,CS (MS1) 14/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]

FM,JP,JS,CS (MS1) 15/17

Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]
FM,JP,JS,CS (MS1) 15/17

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.1
[1,1,1,2,3] [1,1,2,2] 44 0.1
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

[1,4,4,8,12] [3,6,9,12,20] 232 67.4

FM,JP,JS,CS (MS1) 16/17

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.05
[1,1,1,2,3] [1,1,2,2] 44 0.01
[2,5,9] [1,2,3,7,8] 119 8.6
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 0.06
[1,2,2,5,9] [1,2,3,7,8] 345 517.4
[1,4,4,8,12] [3,6,9,12,20] 232 67.4

FM,JP,JS,CS (MS1) 16/17

Summary

• first formalization of HLDEs (we used Isabelle/HOL)

• and of simple solver computing minimal complete sets of solutions

• clear separation of 3 phases: generate, check, and minimize

• which greatly simplifies proofs

• basis for computing minimal complete sets of AC unifiers

• improved efficiency by partially merging generate and check phases

FM,JP,JS,CS (MS1) 17/17

Summary

• first formalization of HLDEs (we used Isabelle/HOL)

• and of simple solver computing minimal complete sets of solutions

• clear separation of 3 phases: generate, check, and minimize

• which greatly simplifies proofs

• basis for computing minimal complete sets of AC unifiers

• improved efficiency by partially merging generate and check phases

FM,JP,JS,CS (MS1) 17/17

Summary

• first formalization of HLDEs (we used Isabelle/HOL)

• and of simple solver computing minimal complete sets of solutions

• clear separation of 3 phases: generate, check, and minimize

• which greatly simplifies proofs

• basis for computing minimal complete sets of AC unifiers

• improved efficiency by partially merging generate and check phases

FM,JP,JS,CS (MS1) 17/17

Summary

• first formalization of HLDEs (we used Isabelle/HOL)

• and of simple solver computing minimal complete sets of solutions

• clear separation of 3 phases: generate, check, and minimize

• which greatly simplifies proofs

• basis for computing minimal complete sets of AC unifiers

• improved efficiency by partially merging generate and check phases

FM,JP,JS,CS (MS1) 17/17

Summary

• first formalization of HLDEs (we used Isabelle/HOL)

• and of simple solver computing minimal complete sets of solutions

• clear separation of 3 phases: generate, check, and minimize

• which greatly simplifies proofs

• basis for computing minimal complete sets of AC unifiers

• improved efficiency by partially merging generate and check phases

FM,JP,JS,CS (MS1) 17/17

Summary

• first formalization of HLDEs (we used Isabelle/HOL)

• and of simple solver computing minimal complete sets of solutions

• clear separation of 3 phases: generate, check, and minimize

• which greatly simplifies proofs

• basis for computing minimal complete sets of AC unifiers

• improved efficiency by partially merging generate and check phases

FM,JP,JS,CS (MS1) 17/17

