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Quiz – How many unifiers?

f(x, y) ≈ f(z, z)

#unifiers: ?
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Quiz – How many unifiers?

f(x, y) ≈ f(z, z)

#unifiers: 1

{x 7→ z, y 7→ z}
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Quiz – How many AC unifiers?

x · y ≈ z · z

#unifiers: ?
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Quiz – How many AC unifiers?

x · y ≈ z · z

#unifiers: 5
minimal complete set of AC unifiers:

{x 7→ z3 , y 7→ z3 , z 7→ z3}
{x 7→ z1 · z1 , y 7→ z2 · z2 , z 7→ z1 · z2}
{x 7→ z1 · z1 · z3 , y 7→ z3 , z 7→ z1 · z3}
{x 7→ z3 , y 7→ z2 · z2 · z3 , z 7→ z2 · z3}
{x 7→ z1 · z1 · z3 , y 7→ z2 · z2 · z3 , z 7→ z1 · z2 · z3}
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Quiz – How many AC unifiers?

x · y ≈ z · z · z

#unifiers: ?
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Quiz – How many AC unifiers?

x · y ≈ z · z · z

#unifiers: 13
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Quiz – How many AC unifiers?

v · x · y ≈ z · z · z

#unifiers: ?
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Quiz – How many AC unifiers?

v · x · y ≈ z · z · z

#unifiers: 981
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Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

Example

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])
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Homogeneous Linear Diophantine Equations (HLDEs)

a1 x1 + a2 x2 + · · ·+ amxm = b1y1 + b2y2 + · · ·+ bnyn

Example

x1 + x2 = 2y1

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])
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Homogeneous Linear Diophantine Equations (HLDEs)

a • x = b • y

Example
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Homogeneous Linear Diophantine Equations (HLDEs)

a • x = b • y

Example

[1, 1] • [x1 , x2 ] = [2] • [y1 ]

Remark
we represent HLDEs by lists of coefficients, e.g., ([1,1],[2])
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Solutions of HLDEs

• given lists of non-zero coefficients a and b (of lengths m and n)

• set of solutions S = {(x, y) | a • x = b • y, |x| = m, |y| = n}
• set of (pointwise) minimal solutions
M = {(x, y) ∈ S | x 6= 0,@(u, v) ∈ S. u 6= 0 ∧ u ++ v <v x ++ y}

Searching for Solutions

• given x1 + x2 = 2y1 , represented by [1,1] and [2]

• consider potential solutions
x1 x2 y1
[0,0], [0]

4 (trivial solution, not minimal)
[0,0], [1] 8

...
[1,1], [1] 4

...
[2,0], [1] 4

...
[3,1], [2] 4 (but not minimal)
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Bounding Minimal Solutions

Lemma (Huet)
if (x, y) ∈M(a, b) then xi ≤ max(b) and yj ≤ max(a)

Example

• for a = [1,1] and b = [2]

• 18 potential solutions (32 · 21)

[([0,0],[0]), ([1,0],[0]), ([2,0],[0]), ([0,1],[0]),

([1,1],[0]), ([2,1],[0]), ([0,2],[0]), ([1,2],[0]),

([2,2],[0]), ([0,0],[1]), ([1,0],[1]), ([2,0],[1]),

([0,1],[1]), ([1,1],[1]), ([2,1],[1]), ([0,2],[1]),

([1,2],[1]), ([2,2],[1])]

• containing 4 actual solutions (a • x = b • y)
[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]

• of which 3 are minimal (w.r.t. <v)

[([2,0],[1]), ([0,2],[1]), ([1,1],[1])]
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Computing Minimal Complete Sets of Solutions

1. generate potential solutions (crude overapproximation)

2. check for actual solutions
3. minimize remaining set of candidates
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Phase 1 – Generate

• given bound b and coefficients cs

• compute all vectors of length equal to length cs within bound

gen b [] = [[]]

gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]

• given bounds a, b and coefficients as, bs

• compute all potential solutions within bounds

generate a b as bs =

tail [(x, y) | y <- gen b bs, x <- gen a as]

• (solutions are generated in reverse lexicographic order <rlex)

Example

• equation x1 + x2 = 2y1 , a = 2, b = 1, as = [1,1], bs = [2]

[0,0],

[0]

[1,0],

[0]

[2,0],

[0]

[0,1],

[0]

[1,1],

[0]

[2,1],

[0]

[0,2],

[0]

[1,2],

[0]

[2,2],

[0]

[0,0],

[1]

[1,0],

[1]

[2,0],

[1]

[0,1],

[1]

[1,1],

[1]

[2,1],

[1]

[0,2],

[1]

[1,2],

[1]

[2,2],

[1]
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Phase 2 – Check

• drop non-solutions

check as bs = filter (isSolution as bs)

Phase 3 – Minimize

• minimize [] = []

minimize ((x,y):xs) =

(x,y) : filter (x ++ y 6<v ) (minimize xs)

Remark
if x <v y then x <rlex y
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A Simple Algorithm
solutions as bs =

minimize (check as bs (generate a b as bs))

where

a = maximum bs

b = maximum as

Lemma
algorithm is sound and complete, that is, solutions a b =M(a, b)

Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.2
[1,1,1,2,3] [1,1,2,2] 44 0.2
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)
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Special Solutions

• given i and j , unique special solution is

0 · · · lcm(ai , bj )/ai · · · 0, 0 · · · lcm(ai , bj )/bj · · · 0

• only 1 non-zero xi and yj

• all special solutions are minimal

• it remains to compute non-special solutions (that is, those minimal
solutions that are not special)

Example

• equation x1 + x2 = 2y1

• special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]
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Non-Special Solutions

Lemma (Huet)
if (x, y) is non-special minimal solution then

• yj ≤ maxy x j

• take a k • take x k ≤ b • y
• take b l • take y l ≤ a • map (maxx (take y l)) [0..m − 1]

where

maxx y i = if i < m ∧Di y 6= 0 then min(Di y) else max(b)

maxy x j = if j < n ∧ Ej x 6= 0 then min(Ej x) else max(a)

Di y = {lcm(ai , bj )/ai − 1 | j < |y| ∧ yj ≥ lcm(ai , bj )/bj }
Ej x = {lcm(ai , bj )/bj − 1 | i < |x| ∧ xi ≥ lcm(ai , bj )/ai}

Improved Bounds on Minimal Solutions

(Clausen and Fortenbacher)
if (x, y) is minimal solution then xi ≤ max6=0 y b and yj ≤ max 6=0 x a
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Merging Generate and Check

• compute all vectors of length equal to length cs whose elements
and “partial sums” satisfy p

incs p c i (xs,s) =

if p (i:xs) t then (i:xs,t) : incs p c (i+1) (xs,s)

else []

where

t = s + c*i

genCheck p [] = [([],0)]

genCheck p (c:cs) =

concat (map (incs p c 0) (genCheck p cs))

• compute potential solutions within bounds
generateCheck as bs =

tail [(x, y) | (y, _) <- genCheck q bs,

(x, _) <- genCheck (p y) as]

where

p ys (x:_) s = s <= bs `dp` ys && x <= maxne0 ys bs

...

FM,JP,JS,CS (MS1) 13/17



Merging Generate and Check

• compute all vectors of length equal to length cs whose elements
and “partial sums” satisfy p

incs p c i (xs,s) =

if p (i:xs) t then (i:xs,t) : incs p c (i+1) (xs,s)

else []

where

t = s + c*i

genCheck p [] = [([],0)]

genCheck p (c:cs) =

concat (map (incs p c 0) (genCheck p cs))
• compute potential solutions within bounds
generateCheck as bs =

tail [(x, y) | (y, _) <- genCheck q bs,

(x, _) <- genCheck (p y) as]

where

p ys (x:_) s = s <= bs `dp` ys && x <= maxne0 ys bs

...
FM,JP,JS,CS (MS1) 13/17



An Improved Algorithm

• additional check phase
check' as bs = filter (\(xs, ys) ->

all (<= maxne0 xs as) ys &&

isSolution as bs xs ys &&

all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])

• computing non-special solutions
nonSpecialSolutions as bs =

minimize (check' as bs (generateCheck as bs))

• the algorithm
solutions' as bs =

specialSolutions as bs ++ nonSpecialSolutions as bs

Lemma
solutions' and solutions compute the same results
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Example

generateCheck [1,1] [2]

= tail [(x,y) | y <- genCheck q [2],

x <- genCheck (p y) [1,1]]

= tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1]) | ...])

= tail ([(x,[0]) | x <- [[0,0]]] ++ [(x,[1]) | ...])

= tail (([0,0],[0]) : [(x,[1]) | ...])

= [(x,[1]) | x <- genCheck (p [1]) [1,1]]

= [(x,[1]) | x <- [[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]] ]

= [([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]),

([1,1],[1]),([0,2],[1])]

nonSpecialSolutions [1,1] [2]

= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))

= minimize [([1,1],[1])]

= [([1,1],[1])]

solutions' [1,1] [2]

= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

= [([2,0],[1]),([0,2],[1])] ++ [([1,1],[1])]
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Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.1
[1,1,1,2,3] [1,1,2,2] 44 0.1
[2,5,9] [1,2,3,7,8] 119 85.5
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 125.4
[1,2,2,5,9] [1,2,3,7,8] timeout (after 20 min)

[1,4,4,8,12] [3,6,9,12,20] 232 67.4
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Examples

a b #solutions time (s)
[1,1] [2] 3 0.001
[1,1] [3] 4 0.001
[1,1,1] [3] 10 0.001
[1,2,5] [1,2,3,4] 39 0.05
[1,1,1,2,3] [1,1,2,2] 44 0.01
[2,5,9] [1,2,3,7,8] 119 8.6
[2,2,2,3,3,3] [2,2,2,3,3,3] 138 0.06
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Summary

• first formalization of HLDEs (we used Isabelle/HOL)

• and of simple solver computing minimal complete sets of solutions

• clear separation of 3 phases: generate, check, and minimize

• which greatly simplifies proofs

• basis for computing minimal complete sets of AC unifiers

• improved efficiency by partially merging generate and check phases
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