A Formally Verified Solver for Homogeneous Linear Diophantine Equations^

Florian Meßner Julian Parsert Jonas Schöpf Christian Sternagel

Master Seminar 1
November 29, 2017

* Supported by the Austrian Science Fund (FWF): project P27502

Quiz - How many unifiers?

$$
\mathrm{f}(x, y) \approx \mathrm{f}(z, z)
$$

\#unifiers: ?

Quiz - How many unifiers?

$$
\mathrm{f}(x, y) \approx \mathrm{f}(z, z)
$$

\#unifiers: 1

$$
\{x \mapsto z, y \mapsto z\}
$$

Quiz - How many AC unifiers?

$$
x \cdot y \approx z \cdot z
$$

\#unifiers: ?

Quiz - How many AC unifiers?

$$
x \cdot y \approx z \cdot z
$$

\#unifiers: 5
minimal complete set of $A C$ unifiers:

$$
\begin{array}{lll}
\left\{x \mapsto z_{3},\right. & y \mapsto z_{3}, & \left.z \mapsto z_{3}\right\} \\
\left\{x \mapsto z_{1} \cdot z_{1},\right. & y \mapsto z_{2} \cdot z_{2}, & \left.z \mapsto z_{1} \cdot z_{2}\right\} \\
\left\{x \mapsto z_{1} \cdot z_{1} \cdot z_{3},\right. & y \mapsto z_{3}, & \left.z \mapsto z_{1} \cdot z_{3}\right\} \\
\left\{x \mapsto z_{3},\right. & \left.y \mapsto z_{2} \cdot z_{2} \cdot z_{3}, z \mapsto z_{2} \cdot z_{3}\right\} \\
\left\{x \mapsto z_{1} \cdot z_{1} \cdot z_{3},\right. & \left.y \mapsto z_{2} \cdot z_{2} \cdot z_{3}, z \mapsto z_{1} \cdot z_{2} \cdot z_{3}\right\}
\end{array}
$$

Quiz - How many AC unifiers?

$$
x \cdot y \approx z \cdot z \cdot z
$$

\#unifiers: ?

Quiz - How many AC unifiers?

$$
x \cdot y \approx z \cdot z \cdot z
$$

\#unifiers: 13

Quiz - How many AC unifiers?

$$
v \cdot x \cdot y \approx z \cdot z \cdot z
$$

\#unifiers: ?

Quiz - How many AC unifiers?

$$
v \cdot x \cdot y \approx z \cdot z \cdot z
$$

\#unifiers: 981

Bibliography

目 Michael Clausen and Albrecht Fortenbacher．
Efficient solution of linear diophantine equations．
Journal of Symbolic Computation，8（1）：201－216， 1989.
doi：10．1016／S0747－7171（89）80025－2．
國 Gérard Huet．
An algorithm to generate the basis of solutions to homogeneous linear diophantine equations．
Information Processing Letters，7（3）：144－147， 1978.
doi：10．1016／0020－0190（78）90078－9．
图 Florian Meßner，Julian Parsert，Jonas Schöpf，and Christian
Sternagel．
Homogeneous Linear Diophantine Equations．
The Archive of Formal Proofs，October 2017.
https：／／www．isa－afp．org／entries／Diophantine＿Eqns＿Lin＿
Hom．shtml，Formal proof development．

Homogeneous Linear Diophantine Equations (HLDEs)

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{m} x_{m}=b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{n} y_{n}
$$

Homogeneous Linear Diophantine Equations (HLDEs)

Homogeneous Linear Diophantine Equations (HLDEs)

Homogeneous Linear Diophantine Equations (HLDEs)

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{m} x_{m}=\underbrace{b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{n} y_{n}}_{\text {right-hand side coefficients }}
$$

Homogeneous Linear Diophantine Equations (HLDEs)

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{m} x_{m}=b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{n} y_{n}
$$

right-hand side variables

Homogeneous Linear Diophantine Equations (HLDEs)

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{m} x_{m}=b_{1} y_{1}+b_{2} y_{2}+\cdots+b_{n} y_{n}
$$

Example

$$
x_{1}+x_{2}=2 y_{1}
$$

Homogeneous Linear Diophantine Equations (HLDEs)

$$
a \bullet x=b \bullet y
$$

Example

$$
x_{1}+x_{2}=2 y_{1}
$$

Homogeneous Linear Diophantine Equations (HLDEs)

$$
a \bullet x=b \bullet y
$$

Example

$$
[1,1] \bullet\left[x_{1}, x_{2}\right]=[2] \bullet\left[y_{1}\right]
$$

Homogeneous Linear Diophantine Equations (HLDEs)

$$
a \bullet x=b \bullet y
$$

Example

$$
[1,1] \bullet\left[x_{1}, x_{2}\right]=[2] \bullet\left[y_{1}\right]
$$

Remark
we represent HLDEs by lists of coefficients, e.g., ([1, 1] , [2])

- given lists of non-zero coefficients a and b (of lengths m and n)

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions

$$
\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}
$$

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions

$$
\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}
$$

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions

$$
\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}
$$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0,0], [0] ?

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] ?

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] X

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] X
[1,1], [1] ?

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] X
$[1,1],[1] \checkmark$

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] X
[1,1], [1]
[2,0], [1] ?

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] X
$[1,1],[1] \cup$
$[2,0],[1] \checkmark$

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] X
[1,1], [1]
[2,0], [1]
[3,1], [2]

Solutions of HLDEs

- given lists of non-zero coefficients a and b (of lengths m and n)
- set of solutions $\mathcal{S}=\{(x, y)|a \bullet x=b \bullet y,|x|=m,|y|=n\}$
- set of (pointwise) minimal solutions
$\mathcal{M}=\left\{(x, y) \in \mathcal{S} \mid x \neq 0, \nexists(u, v) \in \mathcal{S} . u \neq 0 \wedge u++v<_{v} x++y\right\}$

Searching for Solutions

- given $x_{1}+x_{2}=2 y_{1}$, represented by [1,1] and [2]
- consider potential solutions
$x_{1} x_{2} \quad y_{1}$
[0, 0], [0] \checkmark (trivial solution, not minimal)
[0,0], [1] X
[1,1], [1]
[2,0], [1]
$[3,1], \quad[2] \checkmark$ (but not minimal)

Bounding Minimal Solutions

Lemma (Huet)
if $(x, y) \in \mathcal{M}(a, b)$ then $x_{i} \leq \max (b)$ and $y_{j} \leq \max (a)$

Bounding Minimal Solutions

Lemma (Huet)
if $(x, y) \in \mathcal{M}(a, b)$ then $x_{i} \leq \max (b)$ and $y_{j} \leq \max (a)$

Example

- for $a=[1,1]$ and $b=[2]$

Lemma (Huet)

if $(x, y) \in \mathcal{M}(a, b)$ then $x_{i} \leq \max (b)$ and $y_{j} \leq \max (a)$

Example

- for $a=[1,1]$ and $b=[2]$
- 18 potential solutions $\left(3^{2} \cdot 2^{1}\right)$
$[([0,0],[0]),([1,0],[0]),([2,0],[0]),([0,1],[0])$, $([1,1],[0]),([2,1],[0]),([0,2],[0]),([1,2],[0])$, $([2,2],[0]),([0,0],[1]),([1,0],[1]),([2,0],[1])$, $([0,1],[1]),([1,1],[1]),([2,1],[1]),([0,2],[1])$, $([1,2],[1]),([2,2],[1])]$

Bounding Minimal Solutions

Lemma (Huet)

if $(x, y) \in \mathcal{M}(a, b)$ then $x_{i} \leq \max (b)$ and $y_{j} \leq \max (a)$

Example

- for $a=[1,1]$ and $b=[2]$
- 18 potential solutions $\left(3^{2} \cdot 2^{1}\right)$
$[([0,0],[0]),([1,0],[0]),([2,0],[0]),([0,1],[0])$, $([1,1],[0]),([2,1],[0]),([0,2],[0]),([1,2],[0])$, $([2,2],[0]),([0,0],[1]),([1,0],[1]),([2,0],[1])$, $([0,1],[1]),([1,1],[1]),([2,1],[1]),([0,2],[1])$, $([1,2],[1]),([2,2],[1])]$
- containing 4 actual solutions $(a \bullet x=b \bullet y)$
$[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]$

Bounding Minimal Solutions

Lemma (Huet)

if $(x, y) \in \mathcal{M}(a, b)$ then $x_{i} \leq \max (b)$ and $y_{j} \leq \max (a)$

Example

- for $a=[1,1]$ and $b=[2]$
- 18 potential solutions $\left(3^{2} \cdot 2^{1}\right)$
$[([0,0],[0]),([1,0],[0]),([2,0],[0]),([0,1],[0])$, $([1,1],[0]),([2,1],[0]),([0,2],[0]),([1,2],[0])$, $([2,2],[0]),([0,0],[1]),([1,0],[1]),([2,0],[1])$, $([0,1],[1]),([1,1],[1]),([2,1],[1]),([0,2],[1])$, $([1,2],[1]),([2,2],[1])]$
- containing 4 actual solutions $(a \bullet x=b \bullet y)$ $[([0,0],[0]),([2,0],[1]),([1,1],[1]),([0,2],[1])]$
- of which 3 are minimal (w.r.t. $<_{v}$) $[([2,0],[1]),([0,2],[1]),([1,1],[1])]$

Computing Minimal Complete Sets of Solutions

1. generate potential solutions (crude overapproximation)

Computing Minimal Complete Sets of Solutions

1. generate potential solutions (crude overapproximation)
2. check for actual solutions

Computing Minimal Complete Sets of Solutions

1. generate potential solutions (crude overapproximation)
2. check for actual solutions
3. minimize remaining set of candidates

Phase 1 - Generate

- given bound b and coefficients cs
- given bound b and coefficients cs
- compute all vectors of length equal to length cs within bound

```
gen b [] = [[]]
gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]
```

- given bound b and coefficients cs
- compute all vectors of length equal to length cs within bound gen b [] = [[]] gen b (c:cs) $=[x: x s$ | xs <- gen $b c s, x<-[0$.. b]]
- given bounds a, b and coefficients as, bs

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$
- given bound b and coefficients cs
- compute all vectors of length equal to length cs within bound gen b [] = [[]]
gen b (c:cs) $=[x: x s$ | xs <- gen $b c s, x<-[0$.. b]]
- given bounds a, b and coefficients as, bs
- compute all potential solutions within bounds generate a b as bs = tail [(x, y) | y <- gen b bs, x <- gen a as]

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$
- given bound b and coefficients cs
- compute all vectors of length equal to length cs within bound gen b [] = [[]] gen b (c:cs) $=[x: x s$ | xs <- gen $b c s, x<-[0$.. b]]
- given bounds a, b and coefficients as, bs
- compute all potential solutions within bounds
 tail [(x, y) | y <- gen b bs, $\mathrm{x}<-$ gen a as]

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$
[0,0],
$[1,0]$,
$[2,0]$,
$[0,1]$,
$[1,1]$,
$[2,1]$,
$[0,2]$,
$[1,2]$,
[2,2],

Phase 1 - Generate

- given bound b and coefficients cs
- compute all vectors of length equal to length cs within bound gen b [] = [[]] gen b (c:cs) $=[x: x s \mid x s<-$ gen $b c s, x<-[0$.. b]]
- given bounds a, b and coefficients as, bs
- compute all potential solutions within bounds
 tail [(x, y) | y <- gen b bs, x <- gen a as]
- (solutions are generated in reverse lexicographic order $<_{\text {rlex }}$)

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$

$[0,0],[0]$	$[1,0],[0]$	$[2,0],[0]$	$[0,1],[0]$	$[1,1],[0]$
$[2,1],[0]$	$[0,2],[0]$	$[1,2],[0]$	$[2,2],[0]$	
$[0,0],[1]$	$[1,0],[1]$	$[2,0],[1]$	$[0,1],[1]$	$[1,1],[1]$
$[2,1],[1]$	$[0,2],[1]$	$[1,2],[1]$	$[2,2],[1]$	

Phase 1 - Generate

- given bound b and coefficients cs
- compute all vectors of length equal to length cs within bound gen b [] = [[]]
gen b (c:cs) = [x:xs | xs <- gen b cs, x <- [0 .. b]]
- given bounds a, b and coefficients as, bs
- compute all potential solutions within bounds
generate a b as bs = tail [(x, y) | y <- gen b bs, x <- gen a as]
- (solutions are generated in reverse lexicographic order $<_{\text {rlex }}$)

Example

```
x<<rlex }y\mathrm{ iff }\existsi.\mp@subsup{x}{i}{}<\mp@subsup{y}{i}{}\wedge\forallj>i. \mp@subsup{x}{j}{}=\mp@subsup{y}{j}{
```

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$
$[1,0],[0] \quad[2,0],[0] \quad[0,1],[0] \quad[1,1],[0]$
$[2,1],[0] \quad[0,2],[0] \quad[1,2],[0] \quad[2,2],[0]$
$[0,0],[1] \quad[1,0],[1] \quad[2,0],[1] \quad[0,1],[1] \quad[1,1],[1]$
$[2,1],[1] \quad[0,2],[1] \quad[1,2],[1] \quad[2,2],[1]$
- drop non-solutions
check as bs = filter (isSolution as bs)

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1$, $\mathrm{as}=[1,1], \mathrm{bs}=[2]$
$[1,0],[0] \quad[2,0],[0] \quad[0,1],[0] \quad[1,1],[0]$
$[2,1],[0] \quad[0,2],[0] \quad[1,2],[0] \quad[2,2],[0]$
$[0,0],[1] \quad[1,0],[1] \quad[2,0],[1] \quad[0,1],[1] \quad[1,1],[1]$
$[2,1],[1] \quad[0,2],[1] \quad[1,2],[1] \quad[2,2],[1]$

Phase 2 - Check

- drop non-solutions
check as bs = filter (isSolution as bs)

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$
[2,0], [1]
[1,1], [1]
[0,2], [1]

Phase 2 - Check

- drop non-solutions
check as bs = filter (isSolution as bs)
Phase 3 - Minimize
- minimize [] = []
minimize ($(x, y): x s)=$
(x, y) : filter ($\mathrm{x}++\mathrm{y} \nless \mathrm{v}$) (minimize xs$)$

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$
[2,0], [1]
[1,1], [1]
[0,2], [1]
- drop non-solutions
check as bs = filter (isSolution as bs)
Phase 3 - Minimize
- minimize [] = []
minimize $((x, y): x s)=$
(x, y) : filter ($\mathrm{x}++\mathrm{y} \nless \mathrm{v}$) (minimize xs)

Remark

if $x<_{v} y$ then $x<_{\text {rlex }} y$

Example

- equation $x_{1}+x_{2}=2 y_{1}, \mathrm{a}=2, \mathrm{~b}=1, \mathrm{as}=[1,1], \mathrm{bs}=[2]$
[2,0], [1]
$[1,1],[1]$
[0,2], [1]

A Simple Algorithm

solutions as bs =
minimize (check as bs (generate a b as bs)) where

$$
\begin{aligned}
& \mathrm{a}=\text { maximum } \mathrm{bs} \\
& \mathrm{~b}=\text { maximum } \mathrm{as}
\end{aligned}
$$

A Simple Algorithm

solutions as bs = minimize (check as bs (generate a b as bs))
where
$\mathrm{a}=$ maximum bs
$\mathrm{b}=$ maximum as

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

A Simple Algorithm

solutions as bs = minimize (check as bs (generate a b as bs))
where

$$
\begin{aligned}
& \mathrm{a}=\text { maximum } \mathrm{bs} \\
& \mathrm{~b}=\operatorname{maximum} \mathrm{as}
\end{aligned}
$$

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	b	\#solutions	time (s)
$[1,1]$	$[2]$	3	0.001

A Simple Algorithm

solutions as bs = minimize (check as bs (generate a b as bs))
where
$\mathrm{a}=$ maximum bs
$\mathrm{b}=$ maximum as

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	b
$[1,1]$	$[2]$
$[1,1]$	$[3]$

\#solutions
3
40.001

A Simple Algorithm

solutions as bs =
minimize (check as bs (generate a b as bs))
where

$$
\begin{aligned}
& \mathrm{a}=\operatorname{maximum} \mathrm{bs} \\
& \mathrm{~b}=\operatorname{maximum} \mathrm{as}
\end{aligned}
$$

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	b	\#solutions	time (s)
$[1,1]$	$[2]$	3	0.001
$[1,1]$	$[3]$	4	0.001
$[1,1,1]$	$[3]$	10	0.001

A Simple Algorithm

solutions as bs =
minimize (check as bs (generate a b as bs))
where

$$
\begin{aligned}
& \mathrm{a}=\text { maximum } \mathrm{bs} \\
& \mathrm{~b}=\operatorname{maximum} \mathrm{as}
\end{aligned}
$$

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	b	\#solutions	time (s)
$[1,1]$	$[2]$	3	0.001
$[1,1]$	$[3]$	4	0.001
$[1,1,1]$	$[3]$	10	0.001
$[1,2,5]$	$[1,2,3,4]$	39	0.2

A Simple Algorithm

solutions as bs =
minimize (check as bs (generate a b as bs))
where

$$
\begin{aligned}
& \mathrm{a}=\text { maximum } \mathrm{bs} \\
& \mathrm{~b}=\operatorname{maximum} \mathrm{as}
\end{aligned}
$$

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	b	\#solutions	time (s)
$[1,1]$	$[2]$	3	0.001
$[1,1]$	$[3]$	4	0.001
$[1,1,1]$	$[3]$	10	0.001
$[1,2,5]$	$[1,2,3,4]$	39	0.2
$[1,1,1,2,3]$	$[1,1,2,2]$	44	0.2

A Simple Algorithm

solutions as bs =
minimize (check as bs (generate a b as bs))
where

$$
\begin{aligned}
& \mathrm{a}=\text { maximum } \mathrm{bs} \\
& \mathrm{~b}=\operatorname{maximum} \mathrm{as}
\end{aligned}
$$

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	b	\#solutions	time (s)
$[1,1]$	$[2]$	3	0.001
$[1,1]$	$[3]$	4	0.001
$[1,1,1]$	$[3]$	10	0.001
$[1,2,5]$	$[1,2,3,4]$	39	0.2
$[1,1,1,2,3]$	$[1,1,2,2]$	44	0.2
$[2,5,9]$	$[1,2,3,7,8]$	119	85.5

A Simple Algorithm

solutions as bs =
minimize (check as bs (generate a b as bs))
where

$$
\begin{aligned}
& \mathrm{a}=\operatorname{maximum} \mathrm{bs} \\
& \mathrm{~b}=\operatorname{maximum} \mathrm{as}
\end{aligned}
$$

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	b	\#solutions	time (s)
$[1,1]$	$[2]$	3	0.001
$[1,1]$	$[3]$	4	0.001
$[1,1,1]$	$[3]$	10	0.001
$[1,2,5]$	$[1,2,3,4]$	39	0.2
$[1,1,1,2,3]$	$[1,1,2,2]$	44	0.2
$[2,5,9]$	$[1,2,3,7,8]$	119	85.5
$[2,2,2,3,3,3]$	$[2,2,2,3,3,3]$	138	125.4

A Simple Algorithm

solutions as bs =
minimize (check as bs (generate a b as bs))
where

$$
\begin{aligned}
& \mathrm{a}=\operatorname{maximum} \mathrm{bs} \\
& \mathrm{~b}=\operatorname{maximum} \mathrm{as}
\end{aligned}
$$

Lemma

algorithm is sound and complete, that is, solutions $a b=\mathcal{M}(a, b)$

Examples

a	\#solutions	time (s)	
$[1,1]$	$[2]$	3	0.001
$[1,1]$	$[3]$	4	0.001
$[1,1,1]$	$[3]$	10	0.001
$[1,2,5]$	$[1,2,3,4]$	39	0.2
$[1,1,1,2,3]$	$[1,1,2,2]$	44	0.2
$[2,5,9]$	$[1,2,3,7,8]$	119	85.5
$[2,2,2,3,3,3]$	$[2,2,2,3,3,3]$	138	125.4
$[1,2,2,5,9]$	$[1,2,3,7,8]$	timeout (after 20 min)	

Special Solutions

- given i and j, unique special solution is

$$
0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / a_{i} \cdots 0,0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / b_{j} \cdots 0
$$

Special Solutions

- given i and j, unique special solution is

$$
0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / a_{i} \cdots 0,0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / b_{j} \cdots 0
$$

- only 1 non-zero x_{i} and y_{j}

Special Solutions

- given i and j, unique special solution is

$$
0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / a_{i} \cdots 0,0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / b_{j} \cdots 0
$$

- only 1 non-zero x_{i} and y_{j}
- all special solutions are minimal

Special Solutions

- given i and j, unique special solution is

$$
0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / a_{i} \cdots 0,0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / b_{j} \cdots 0
$$

- only 1 non-zero x_{i} and y_{j}
- all special solutions are minimal

Example

- equation $x_{1}+x_{2}=2 y_{1}$
- special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]

Special Solutions

- given i and j, unique special solution is

$$
0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / a_{i} \cdots 0,0 \cdots \operatorname{lcm}\left(a_{i}, b_{j}\right) / b_{j} \cdots 0
$$

- only 1 non-zero x_{i} and y_{j}
- all special solutions are minimal
- it remains to compute non-special solutions (that is, those minimal solutions that are not special)

Example

- equation $x_{1}+x_{2}=2 y_{1}$
- special solutions
specialSolutions [1,1] [2] = [([2,0],[1]),([0,2],[1])]

Non-Special Solutions

Lemma (Huet)

if (x, y) is non-special minimal solution then

- $y_{j} \leq \operatorname{maxy} x j$
- take $a k \bullet$ take $x k \leq b \bullet y$
- take $b l \bullet$ take $y l \leq a \bullet \operatorname{map}(\operatorname{maxx}($ take $y l))[0 . . m-1]$
where

$$
\begin{aligned}
\operatorname{maxx} y & =\text { if } i<m \wedge D_{i} y \neq 0 \text { then } \min \left(D_{i} y\right) \text { else } \max (b) \\
\operatorname{maxy} x j & =\text { if } j<n \wedge E_{j} x \neq 0 \text { then } \min \left(E_{j} x\right) \text { else } \max (a) \\
D_{i} y & =\left\{\operatorname{lcm}\left(a_{i}, b_{j}\right) / a_{i}-1\left|j<|y| \wedge y_{j} \geq \operatorname{lcm}\left(a_{i}, b_{j}\right) / b_{j}\right\}\right. \\
E_{j} x & =\left\{\operatorname{lcm}\left(a_{i}, b_{j}\right) / b_{j}-1\left|i<|x| \wedge x_{i} \geq \operatorname{lcm}\left(a_{i}, b_{j}\right) / a_{i}\right\}\right.
\end{aligned}
$$

Non-Special Solutions

Lemma (Huet)

if (x, y) is non-special minimal solution then

- $y_{j} \leq \operatorname{maxy} x j$
- take $a k$ • take $x k \leq b \bullet y$
- take $b l \bullet$ take $y l \leq a \bullet \operatorname{map}(\operatorname{maxx}($ take $y l))[0 . . m-1]$
where

$$
\begin{aligned}
\operatorname{maxx} y i & =\text { if } i<m \wedge D_{i} y \neq 0 \text { then } \min \left(D_{i} y\right) \text { else } \max (b) \\
\operatorname{maxy} x j & =\text { if } j<n \wedge E_{j} x \neq 0 \text { then } \min \left(E_{j} x\right) \text { else } \max (a) \\
D_{i} y & =\left\{\operatorname{Icm}\left(a_{i}, b_{j}\right) / a_{i}-1\left|j<|y| \wedge y_{j} \geq \operatorname{Icm}\left(a_{i}, b_{j}\right) / b_{j}\right\}\right. \\
E_{j} x & =\left\{\operatorname{Icm}\left(a_{i}, b_{j}\right) / b_{j}-1\left|i<|x| \wedge x_{i} \geq \operatorname{Icm}\left(a_{i}, b_{j}\right) / a_{i}\right\}\right.
\end{aligned}
$$

Improved Bounds on Minimal Solutions

(Clausen and Fortenbacher)
if (x, y) is minimal solution then $x_{i} \leq \max ^{\neq 0}$ y b and $y_{j} \leq \max ^{\neq 0} x a$

Merging Generate and Check

- compute all vectors of length equal to length cs whose elements and "partial sums" satisfy p

```
incs p c i (xs,s) =
        if p (i:xs) t then (i:xs,t) : incs p c (i+1) (xs,s)
    else []
    where
\[
t=s+c * i
\]
```

genCheck p [] = [([],0)]
genCheck p (c:cs) =
concat (map (incs p c 0) (genCheck p cs))

Merging Generate and Check

- compute all vectors of length equal to length cs whose elements and "partial sums" satisfy p

```
incs p c i (xs,s) =
        if p (i:xs) t then (i:xs,t) : incs p c (i+1) (xs,s)
    else []
        where
\[
t=s+c * i
\]
```

genCheck p [] = [([],0)]
genCheck p (c:cs) =

```
concat (map (incs p c 0) (genCheck p cs))
```

- compute potential solutions within bounds generateCheck as bs = tail [(x, y) | (y, _) <- genCheck q bs,

$$
(x, \quad,)<- \text { genCheck (p y) as] }
$$

where
p is (x:_) s = s <= bs `dp` ys \&\& x <= maxne0 is bs

An Improved Algorithm

- additional check phase
check' as bs = filter (
(xs, ys) ->
all (<= maxne0 xs as) ys \&\&
isSolution as bs xs ys \&\&
all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])

An Improved Algorithm

- additional check phase

```
check' as bs = filter (\(xs, ys) ->
    all (<= maxneO xs as) ys &&
    isSolution as bs xs ys &&
    all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])
```

- computing non-special solutions nonSpecialSolutions as bs =
minimize (check' as bs (generateCheck as bs))

An Improved Algorithm

- additional check phase

```
check' as bs = filter (\(xs, ys) ->
    all (<= maxneO xs as) ys &&
    isSolution as bs xs ys &&
    all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])
```

- computing non-special solutions nonSpecialSolutions as bs =
minimize (check' as bs (generateCheck as bs))
- the algorithm
solutions' as bs =
specialSolutions as bs ++ nonSpecialSolutions as bs

An Improved Algorithm

- additional check phase

```
check' as bs = filter (\(xs, ys) ->
    all (<= maxne0 xs as) ys &&
    isSolution as bs xs ys &&
    all (\j -> ys !! j <= maxy xs j) [0..length bs - 1])
```

- computing non-special solutions
nonSpecialSolutions as bs = minimize (check' as bs (generateCheck as bs))
- the algorithm

```
solutions' as bs =
    specialSolutions as bs ++ nonSpecialSolutions as bs
```


Lemma

solutions' and solutions compute the same results

Example generateCheck [1,1] [2]
nonSpecialSolutions [1,1] [2]
solutions' [1,1] [2]

Example

 generateCheck [1,1] [2]nonSpecialSolutions [1,1] [2]
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

 generateCheck [1,1] [2]nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

```
generateCheck [1,1] [2]
    = tail [(x,y) | y <- genCheck q [2],
                                x <- genCheck (p y) [1,1]]
```

nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

```
generateCheck [1,1] [2]
    = tail [(x,y) | y <- genCheck q [2],
                            x <- genCheck (p y) [1,1]]
    = tail ([(x,[0]) | x <- genCheck (p [0]) [1,1]] ++ [(x,[1])
```

nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]
$=$ tail [(x,y) | y <- genCheck q [2],
x <- genCheck (p y) [1,1]]
$=$ tail ([(x, [0]) | $x<-$ genCheck (p [0]) [1,1]] ++ [(x, [1])
$=$ tail ([(x, [0]) | x <- [[0,0]]] ++ [(x, [1]) | ...])
nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]
$=$ tail [(x,y) | y <- genCheck q [2],
x <- genCheck (p y) [1,1]]
$=$ tail $([(x,[0]) \mid x<-\operatorname{genCheck}(p[0])[1,1]]++[(x,[1])$
$=$ tail ([(x, [0]) | $x<-[[0,0]]]++[(x,[1]) \mid \ldots .]$.
$=$ tail (([0,0],[0]) : [(x, [1]) | ...])
nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]
$=$ tail [(x,y) | y <- genCheck q [2],
x <- genCheck (p y) [1,1]]
$=$ tail $([(x,[0]) \mid x<-\operatorname{genCheck}(p[0])[1,1]]++[(x,[1])$
$=$ tail ([(x, [0]) | $x<-[[0,0]]]++[(x,[1]) \mid \ldots .]$.
$=$ tail (([0,0],[0]) : [(x, [1]) | ...])
$=[(x,[1]) \mid x<-\operatorname{genCheck}(p[1])[1,1]]$
nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]

$$
\begin{aligned}
& =\operatorname{tail}[(x, y) \mid y<- \text { genCheck q [2] } \\
& x<-\operatorname{genCheck}(p \mathrm{y})[1,1]] \\
& =\operatorname{tail}([(x,[0]) \mid x<-\operatorname{genCheck}(p[0])[1,1]]++[(x,[1]) \\
& =\operatorname{tail}([(x,[0]) \mid x<-[[0,0]]]++[(x,[1]) \mid \ldots]) \\
& =\operatorname{tail}(([0,0],[0]):[(x,[1]) \mid \ldots]) \\
& =[(x,[1]) \mid x<-\operatorname{genCheck}(p[1])[1,1]] \\
& =[(x,[1]) \mid x<-[[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]
\end{aligned}
$$

nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]

$$
\begin{aligned}
& =\text { tail [(x,y) | y <- genCheck q [2], } \\
& \mathrm{x} \text { <- genCheck (p y) [1,1]] } \\
& =\text { tail }([(x,[0]) \mid x<-\operatorname{genCheck}(p[0])[1,1]]++[(x,[1]) \\
& =\text { tail ([(x, [0]) | x <- [[0,0]]] ++ [(x, [1]) | ...]) } \\
& =\text { tail (([0,0],[0]) : [(x, [1]) | ...]) } \\
& =[(x,[1]) \mid x<- \text { genCheck (p [1]) [1,1]] } \\
& =[(x,[1]) \mid x<-[[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]] \\
& =[([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]) \text {, } \\
& \text { ([1, 1], [1]), ([0, 2], [1])] }
\end{aligned}
$$

nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]

$$
\begin{aligned}
& =\text { tail [(x,y) | y <- genCheck q [2], } \\
& \mathrm{x} \text { <- genCheck (p y) [1,1]] } \\
& =\text { tail }([(x,[0]) \mid x<-\operatorname{genCheck}(p[0])[1,1]]++[(x,[1]) \\
& =\text { tail ([(x, [0]) | x <- [[0,0]]] ++ [(x, [1]) | ...]) } \\
& =\text { tail (([0,0],[0]) : [(x, [1]) | ...]) } \\
& =[(x,[1]) \mid x<- \text { genCheck (p [1]) [1,1]] } \\
& =[(x,[1]) \mid x<-[[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]] \\
& =[([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]) \text {, } \\
& \text { ([1, 1], [1]), ([0, 2], [1])] }
\end{aligned}
$$

nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
= minimize [([1,1], [1])]
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]

$$
\begin{aligned}
& =\text { tail [(x,y) | y <- genCheck q [2], } \\
& \mathrm{x} \text { <- genCheck (p y) [1,1]] } \\
& =\text { tail }([(x,[0]) \mid x<-\operatorname{genCheck}(p[0])[1,1]]++[(x,[1]) \\
& =\text { tail ([(x, [0]) | } x<-[[0,0]]]++[(x,[1]) \mid \ldots . .]) \\
& =\text { tail (([0,0],[0]) : [(x, [1]) | ...]) } \\
& =[(x,[1]) \mid x<- \text { genCheck (p [1]) [1,1]] } \\
& =[(x,[1]) \mid x<-[[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]] \\
& =[([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1]) \text {, } \\
& \text { ([1, 1], [1]), ([0, 2], [1])] }
\end{aligned}
$$

nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
= minimize [([1,1], [1])]
$=[([1,1],[1])]$
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...

Example

generateCheck [1,1] [2]

$$
\begin{aligned}
=\operatorname{tail}[(x, y) \quad \mid & y<- \text { genCheck q [2] , } \\
& x<- \text { genCheck (p y) [1, 1]] }
\end{aligned}
$$

$=$ tail $([(x,[0]) \mid x<-\operatorname{genCheck}(p[0])[1,1]]++[(x,[1])$
$=$ tail ([(x, [0]) | x <- [[0,0]]] ++ [(x, [1]) | ...])
$=$ tail ($[0,0],[0]):[(x,[1]) \mid \ldots])$
$=[(x,[1]) \mid x<-$ genCheck (p [1]) [1,1]]
$=[(x,[1]) \mid x<-[[0,0],[1,0],[2,0],[0,1],[1,1],[0,2]]]$
$=[([0,0],[1]),([1,0],[1]),([2,0],[1]),([0,1],[1])$, ([1, 1], [1]), ([0, 2], [1])]
nonSpecialSolutions [1,1] [2]
= minimize (check' [1,1] [2] (generateCheck [1,1] [2]))
$=$ minimize $[([1,1],[1])]$
$=[([1,1],[1])]$
solutions' [1,1] [2]
= specialSolutions [1,1] [2] ++ nonSpecialSolutions ...
$=[([2,0],[1]),([0,2],[1])]++[([1,1],[1])]$

Examples

$\quad a$
$[1,1]$
$[1,1]$
$[1,1,1]$
$[1,2,5]$
$[1,1,1,2,3]$
$[2,5,9]$
$[2,2,2,3,3,3]$
$[1,2,2,5,9]$
$[1,2,3,4]$
[1,1,2,2]
[1,2,3,7,8]
$[2,2,2,3,3,3]$
[1, 2, 3, 7, 8]
\#solutions time (s)
$\begin{array}{cc}\text { \#solutions } & \text { time }(s) \\ 3 & 0.001 \\ 4 & 0.001 \\ 10 & 0.001\end{array}$
$\begin{array}{cc}\text { \#solutions } & \text { time }(s) \\ 3 & 0.001 \\ 4 & 0.001 \\ 10 & 0.001\end{array}$
$\begin{array}{cc}\text { \#solutions } & \text { time }(s) \\ 3 & 0.001 \\ 4 & 0.001 \\ 10 & 0.001\end{array}$
$39 \quad 0.1$
$44 \quad 0.1$
$119 \quad 85.5$
$138 \quad 125.4$
timeout (after 20 min)

Examples

a	b	\#solutions	time (s)
$[1,1]$	$[2]$	3	0.001
$[1,1]$	$[3]$	4	0.001
$[1,1,1]$	$[3]$	10	0.001
$[1,2,5]$	$[1,2,3,4]$	39	0.05
$[1,1,1,2,3]$	$[1,1,2,2]$	44	0.01
$[2,5,9]$	$[1,2,3,7,8]$	119	8.6
$[2,2,2,3,3,3]$	$[2,2,2,3,3,3]$	138	0.06
$[1,2,2,5,9]$	$[1,2,3,7,8]$	345	517.4
$[1,4,4,8,12]$	$[3,6,9,12,20]$	232	67.4

Summary

- first formalization of HLDEs (we used Isabelle/HOL)

Summary

- first formalization of HLDEs (we used Isabelle/HOL)
- and of simple solver computing minimal complete sets of solutions

Summary

- first formalization of HLDEs (we used Isabelle/HOL)
- and of simple solver computing minimal complete sets of solutions
- clear separation of 3 phases: generate, check, and minimize

Summary

- first formalization of HLDEs (we used Isabelle/HOL)
- and of simple solver computing minimal complete sets of solutions
- clear separation of 3 phases: generate, check, and minimize
- which greatly simplifies proofs

Summary

- first formalization of HLDEs (we used Isabelle/HOL)
- and of simple solver computing minimal complete sets of solutions
- clear separation of 3 phases: generate, check, and minimize
- which greatly simplifies proofs
- basis for computing minimal complete sets of AC unifiers

Summary

- first formalization of HLDEs (we used Isabelle/HOL)
- and of simple solver computing minimal complete sets of solutions
- clear separation of 3 phases: generate, check, and minimize
- which greatly simplifies proofs
- basis for computing minimal complete sets of AC unifiers
- improved efficiency by partially merging generate and check phases

