Towards a Hardware-Parallel Implementation of
Interaction Nets

David Obwaller

Institute of Computer Science, University of Innsbruck

January 24, 2018

Overview

Motivation

Motivation

Parallel programming is hard
» and load distribution and balancing

> data migration costs are often not taken into account, but are
relevant on hardware or in a distributed setting

» desirable: automatic parallelization and load distribution

Interaction nets as candidate computation model
» parallel and asynchronous reduction
» interaction automata as refinement for hardware-like execution

» proof-of-concept implementation: ia2d

Overview

Interaction Nets

Interaction Nets

» computation model based on graph-rewriting

> an interaction net is a graph,
vertices are called agents

> agents are labeled with symbols
> edges are called wires

» each node has a principal port as well as a
number of auxiliary ports that is fixed for a given
symbol

» when two agents are connected on their principal
ports they are called an active pair

» unconnected ports are called free

> the set of free ports is called the interface

Example: Interaction Net

XX NV
7 X
A4

/2\

r

» list constructors: cons/2, nil/1
» nat constructors: succ/1, zero/0

» sum operation: sum/1

Interaction Net System

An interaction net system is a pair (S, R)
» S set of symbols (with fixed arity)
> R set of rewrite rules

Agents and rules are used to encode data and operations

Rules

Y1 - Yn
Y1 Yn
| |
= N(«, 8)
I I
{L‘m oo {E]_

v

left-hand side is an active pair of agents

v

right-hand must preserve interface

v

at most one rule per active pair

v

if @« = 3 the right-hand side must be top-down symmetric

Example: Rules

Rules for adding numbers in unary encoding:

T, Ié

r Yy r Y

Rules for summing up lists of numbers:

Typed Interaction Nets

nat™ nat™

natt nat™ nat™ nat~

> typing ports avoids ill-formed nets

» clearly distinguishes constructors from destructors

Example IN Computation

g
TvY
SV
V4
AN

Example IN Computation

g
ol
AV
V4
2N

Example IN Computatio

>
vav <

PI—3

Example IN Computation

Example IN Computation

IR
i

Example IN Computation

S

|

Example IN Computation

NN

Properties
AV
v RSN g

/N + /N
r\/r

r

4

v

linearity: preserves interface

v

binary interaction

v

no ambiguity

v

— parallel/asynchronous reduction

Drawbacks

Some algorithms cannot be represented in interaction net systems

Example: parallel or

por(True,y) — True
por(x, True) — True
por(False, False) — False

Solution:
> introduce special amb agent
> interaction nets with multiple principal ports

» — non-determinism

Overview

Interaction Automata

Interaction Automata

An interaction automaton A is a quadruple
A = (L? V’ 5’ _>)

where
L set of locations
v neighborhood
S set of symbols

— abstract transition

R
®
Iy
®
le
®
o lo
h
® ®
I Is
® ®
I Is

Set of locations L

o
Iy
o
I
o
lo
o
lg
o
Is

A neighborhood v/(/;) is associated to each location

A neighborhood v/(/;) is associated to each location

o
Iy P
I
o
® lo
b
o o
5 . lg
h Is

Each location may contain 0, 1 or 2 nodes

Each location may contain 0, 1 or 2 nodes

Zero

w
A
\ o

add
succ

)

ZEero

A node is either s(h,...,lk), s € S where k is the arity of s, or w

Zero

w
A

\ E
add
succ

)

ZEero

Abstract transition (—) between configurations

Zero

=

succ

et |

ZEero

Abstract transition (—) between configurations

Zero

succ

i
- o
\(W

ZEero

Abstract transition (—) between configurations

Interaction Automata

Properties
» reduction is performed locally
> allocated cells can be placed freely within the neighborhood

> the allocation strategy is unspecified in the model

ia2d interpreter

» proof-of-concept implementation with simple local allocation
strategy

> the locations are layed out in a 2-dimensional grid
— in some sense close to hardware

Demo

Memory Topologies

!

grid cube

T N N

= 5

s

ol ()

sl ()

nested

0 O M O

Simple Input Language

> takes care of non-linear functions, i.e. erasure and duplication
» supports anonymous and higher-order functions

» implemented as source-to-source compiler

Example

Haskell

foldr f z Nil =z
foldr f z (Cons x xs) = f x (foldr f z xs)

Simple input language

foldr (Nil (), f,z) = z;
foldr(Cons(x,xs),f,z) f(x,foldr(xs,f,z));

Practical Considerations

> limit number of rules
— interaction combinators: 3 symbols and 6 rules suffice to
encode arbitrary interaction net systems

> standard arithmetic
— special agents that reference value or computation

> input and output
— singleton 1O agent and corresponding operations

Overview

Related Systems

Related Systems: Cellular Automata

> interaction automata share some similarities with cellular
automata (CA)

» o;(t) state of cell at position i at time t

» transition function ¢
oi(t+1) = ®(oi-r(t), 0i—r+1(t), - - -, Oigr—1(t), oitr(t))

depends on state of neighbors
» CA are synchronous parallel computational model

» Turing-complete: Rule 110

Example: Rule 90

##t # ## O #H_ Hi#H

Related Systems

Open Multi-Processing (OpenMP)
» shared memory

» parallelization by adding annotations (pragmas)

Message Passing Interface (MPI)
» distributed memory

» complete restructuring of program

Open Compute Language (OpenCL)
» run small kernels on many CPUs (GPUs)

> program-in-program

Related Systems: Data-Flow Graph

Fresh Breeze
» data-flow processor

» graph of tasks

Parallel Haskell

» Par monad

Overview

Conclusion

Conclusion

Proof-of-concept implementation

» parallel computation model with localized reduction on top of
memory scheme with limited connectivity and locally bounded

storage
» functional programs can be run on this model

> the implementation shows that reasonable memory
management strategies can be implemented locally

Limits
» grid layout is limiting

» nested layout scheme seems more promising

	Motivation
	Interaction Nets
	Interaction Automata
	Related Systems
	Conclusion

