Towards a Hardware-Parallel Implementation of
Interaction Nets

David Obwaller

Institute of Computer Science, University of Innsbruck

January 24, 2018



Overview

Motivation



Motivation

Parallel programming is hard
» and load distribution and balancing

> data migration costs are often not taken into account, but are
relevant on hardware or in a distributed setting

» desirable: automatic parallelization and load distribution

Interaction nets as candidate computation model
» parallel and asynchronous reduction
» interaction automata as refinement for hardware-like execution

» proof-of-concept implementation: ia2d
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Interaction Nets

» computation model based on graph-rewriting

> an interaction net is a graph,
vertices are called agents

> agents are labeled with symbols
> edges are called wires

» each node has a principal port as well as a
number of auxiliary ports that is fixed for a given
symbol

» when two agents are connected on their principal
ports they are called an active pair

» unconnected ports are called free

> the set of free ports is called the interface



Example: Interaction Net
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» list constructors: cons/2, nil/1
» nat constructors: succ/1, zero/0

» sum operation: sum/1



Interaction Net System

An interaction net system is a pair (S, R)
» S set of symbols (with fixed arity)
> R set of rewrite rules

Agents and rules are used to encode data and operations



Rules
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left-hand side is an active pair of agents
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right-hand must preserve interface
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at most one rule per active pair
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if @« = 3 the right-hand side must be top-down symmetric



Example: Rules

Rules for adding numbers in unary encoding:
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Rules for summing up lists of numbers:



Typed Interaction Nets
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> typing ports avoids ill-formed nets

» clearly distinguishes constructors from destructors
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linearity: preserves interface

v

binary interaction

v

no ambiguity
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— parallel/asynchronous reduction



Drawbacks

Some algorithms cannot be represented in interaction net systems

Example: parallel or

por(True,y) — True
por(x, True) — True
por(False, False) — False

Solution:
> introduce special amb agent
> interaction nets with multiple principal ports

» — non-determinism
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Interaction Automata

An interaction automaton A is a quadruple
A = (L? V’ 5’ _>)

where
L set of locations
v neighborhood
S set of symbols

— abstract transition
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A neighborhood v/(/;) is associated to each location



A neighborhood v/(/;) is associated to each location
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Each location may contain 0, 1 or 2 nodes



Each location may contain 0, 1 or 2 nodes
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A node is either s(h,...,lk), s € S where k is the arity of s, or w
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Interaction Automata

Properties
» reduction is performed locally
> allocated cells can be placed freely within the neighborhood

> the allocation strategy is unspecified in the model

ia2d interpreter

» proof-of-concept implementation with simple local allocation
strategy

> the locations are layed out in a 2-dimensional grid
— in some sense close to hardware



Demo



Memory Topologies
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Simple Input Language

> takes care of non-linear functions, i.e. erasure and duplication
» supports anonymous and higher-order functions

» implemented as source-to-source compiler



Example

Haskell

foldr f z Nil =z
foldr f z (Cons x xs) = f x (foldr f z xs)

Simple input language

foldr (Nil (), f,z) = z;
foldr(Cons(x,xs),f,z) f(x,foldr(xs,f,z));



Practical Considerations

> limit number of rules
— interaction combinators: 3 symbols and 6 rules suffice to
encode arbitrary interaction net systems

> standard arithmetic
— special agents that reference value or computation

> input and output
— singleton 1O agent and corresponding operations
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Related Systems: Cellular Automata

> interaction automata share some similarities with cellular
automata (CA)

» o;(t) state of cell at position i at time t

» transition function ¢
oi(t+1) = ®(oi-r(t), 0i—r+1(t), - - -, Oigr—1(t), oitr(t))

depends on state of neighbors
» CA are synchronous parallel computational model

» Turing-complete: Rule 110



Example: Rule 90
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Related Systems

Open Multi-Processing (OpenMP)
» shared memory

» parallelization by adding annotations (pragmas)

Message Passing Interface (MPI)
» distributed memory

» complete restructuring of program

Open Compute Language (OpenCL)
» run small kernels on many CPUs (GPUs)

> program-in-program



Related Systems: Data-Flow Graph

Fresh Breeze
» data-flow processor

» graph of tasks

Parallel Haskell

» Par monad
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Conclusion

Proof-of-concept implementation

» parallel computation model with localized reduction on top of
memory scheme with limited connectivity and locally bounded

storage
» functional programs can be run on this model

> the implementation shows that reasonable memory
management strategies can be implemented locally

Limits
» grid layout is limiting

» nested layout scheme seems more promising
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