
Towards a Hardware-Parallel Implementation of
Interaction Nets

David Obwaller

Institute of Computer Science, University of Innsbruck

January 24, 2018



Overview

Motivation

Interaction Nets

Interaction Automata

Related Systems

Conclusion



Motivation

Parallel programming is hard

I and load distribution and balancing

I data migration costs are often not taken into account, but are
relevant on hardware or in a distributed setting

I desirable: automatic parallelization and load distribution

Interaction nets as candidate computation model

I parallel and asynchronous reduction

I interaction automata as refinement for hardware-like execution

I proof-of-concept implementation: ia2d



Overview

Motivation

Interaction Nets

Interaction Automata

Related Systems

Conclusion



Interaction Nets

I computation model based on graph-rewriting

I an interaction net is a graph,
vertices are called agents

I agents are labeled with symbols

I edges are called wires

I each node has a principal port as well as a
number of auxiliary ports that is fixed for a given
symbol

I when two agents are connected on their principal
ports they are called an active pair

I unconnected ports are called free

I the set of free ports is called the interface

α

β

· · ·

· · ·



Example: Interaction Net

cons

zero

succ cons

zero nil

Σ

r

I list constructors: cons/2, nil/1

I nat constructors: succ/1, zero/0

I sum operation: sum/1



Interaction Net System

An interaction net system is a pair (S ,R)

I S set of symbols (with fixed arity)

I R set of rewrite rules

Agents and rules are used to encode data and operations



Rules

β

α

x1. . .xm

y1 . . . yn

⇒ N(α, β)

y1 . . . yn

xn . . . x1

I left-hand side is an active pair of agents

I right-hand must preserve interface

I at most one rule per active pair

I if α = β the right-hand side must be top-down symmetric



Example: Rules

Rules for adding numbers in unary encoding:

+

yr

zero

⇒

yr

+

yr

succ

x

⇒
+

succ

x

y

r

Rules for summing up lists of numbers:

Σ

nil

⇒
zero

Σ

cons

⇒
+ Σ



Typed Interaction Nets

zero

nat+

succ

nat+

nat−

+

nat−

nat−nat+

I typing ports avoids ill-formed nets

I clearly distinguishes constructors from destructors



Example IN Computation

nil

succ

succ

zero

cons

sum

succ

zero

succ

cons



Example IN Computation

sum

nil

cons

zero

succ

succ

succ

succ

zero

cons



Example IN Computation

succ

sum

add

succ

succ

nil

cons

succ

zero

zero



Example IN Computation

nil

succ

succ

zero

add

add

succ

succ

zero

sum



Example IN Computation

add

succ

succ

succ

zero

add

zero

succ

zero



Example IN Computation

succ

succ

succ

succ

add

zero

zero



Example IN Computation

succ

succ

zero

succ

succ



Properties

zero

+

nil

Σ

r
zero

+

zero

r

nil

Σ

r
zero

r

I linearity: preserves interface

I binary interaction

I no ambiguity

I → parallel/asynchronous reduction



Drawbacks

Some algorithms cannot be represented in interaction net systems

Example: parallel or

por(True, y)→ True

por(x ,True)→ True

por(False,False)→ False

Solution:

I introduce special amb agent

I interaction nets with multiple principal ports

I → non-determinism



Overview

Motivation

Interaction Nets

Interaction Automata

Related Systems

Conclusion



Interaction Automata

An interaction automaton A is a quadruple

A = (L, ν,S ,→)

where

L set of locations

ν neighborhood

S set of symbols

→ abstract transition



ν(l2) ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ωsucc

zero
add

ω
ω

Set of locations L



ν(l2)

ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ωsucc

zero
add

ω
ω

A neighborhood ν(li ) is associated to each location



ν(l2)

ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ωsucc

zero
add

ω
ω

A neighborhood ν(li ) is associated to each location



ν(l2) ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ωsucc

zero
add

ω
ω

Each location may contain 0, 1 or 2 nodes



ν(l2) ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ωsucc

zero
add

ω
ω

Each location may contain 0, 1 or 2 nodes



ν(l2) ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ω

succ

zero
add

ω
ω

A node is either s(l1, . . . , lk), s ∈ S where k is the arity of s, or ω



ν(l2) ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ω

succ

zero
add

ω
ω

Abstract transition (→) between configurations



ν(l2) ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ω

succ

zero
add

ω
ω

Abstract transition (→) between configurations



ν(l2) ν(l9)

l1

l2

l3

l4

l5

l6

l7

l8

l9

ω
zero

succ
add

zero
ω

ω

succ

zero
add

ω
ω

Abstract transition (→) between configurations



Interaction Automata

Properties

I reduction is performed locally

I allocated cells can be placed freely within the neighborhood

I the allocation strategy is unspecified in the model

ia2d interpreter

I proof-of-concept implementation with simple local allocation
strategy

I the locations are layed out in a 2-dimensional grid
→ in some sense close to hardware



Demo



Memory Topologies

grid cube nested



Simple Input Language

I takes care of non-linear functions, i.e. erasure and duplication

I supports anonymous and higher-order functions

I implemented as source-to-source compiler



Example

Haskell

foldr f z Nil = z
foldr f z (Cons x xs) = f x (foldr f z xs)

Simple input language

foldr(Nil(), f,z) = z;
foldr(Cons(x,xs),f,z) = f(x,foldr(xs,f,z));



Practical Considerations

I limit number of rules
→ interaction combinators: 3 symbols and 6 rules suffice to
encode arbitrary interaction net systems

I standard arithmetic
→ special agents that reference value or computation

I input and output
→ singleton IO agent and corresponding operations



Overview

Motivation

Interaction Nets

Interaction Automata

Related Systems

Conclusion



Related Systems: Cellular Automata

I interaction automata share some similarities with cellular
automata (CA)

I σi (t) state of cell at position i at time t

I transition function Φ

σi (t + 1) = Φ(σi−r (t), σi−r+1(t), . . . , σi+r−1(t), σi+r (t))

depends on state of neighbors

I CA are synchronous parallel computational model

I Turing-complete: Rule 110



Example: Rule 90

___ __# _#_ _## #__ #_# ##_ ###
_ # _ # # _ # _

0 1 2 3 4 5 6 7



Related Systems

Open Multi-Processing (OpenMP)

I shared memory

I parallelization by adding annotations (pragmas)

Message Passing Interface (MPI)

I distributed memory

I complete restructuring of program

Open Compute Language (OpenCL)

I run small kernels on many CPUs (GPUs)

I program-in-program



Related Systems: Data-Flow Graph

Fresh Breeze

I data-flow processor

I graph of tasks

Parallel Haskell

I Par monad



Overview

Motivation

Interaction Nets

Interaction Automata

Related Systems

Conclusion



Conclusion

Proof-of-concept implementation

I parallel computation model with localized reduction on top of
memory scheme with limited connectivity and locally bounded
storage

I functional programs can be run on this model

I the implementation shows that reasonable memory
management strategies can be implemented locally

Limits

I grid layout is limiting

I nested layout scheme seems more promising


	Motivation
	Interaction Nets
	Interaction Automata
	Related Systems
	Conclusion

