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Motivation

Parallel programming is hard

I and load distribution and balancing

I data migration costs are often not taken into account, but are
relevant on hardware or in a distributed setting

I desirable: automatic parallelization and load distribution

Interaction nets as candidate computation model

I parallel and asynchronous reduction

I interaction automata as refinement for hardware-like execution

I proof-of-concept implementation: ia2d
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Interaction Nets

I computation model based on graph-rewriting

I an interaction net is a graph,
vertices are called agents

I agents are labeled with symbols

I edges are called wires

I each node has a principal port as well as a
number of auxiliary ports that is fixed for a given
symbol

I when two agents are connected on their principal
ports they are called an active pair

I unconnected ports are called free

I the set of free ports is called the interface

α

β

· · ·

· · ·



Example: Interaction Net

cons

zero

succ cons

zero nil

Σ

r

I list constructors: cons/2, nil/1

I nat constructors: succ/1, zero/0

I sum operation: sum/1



Interaction Net System

An interaction net system is a pair (S ,R)

I S set of symbols (with fixed arity)

I R set of rewrite rules

Agents and rules are used to encode data and operations



Rules

β

α

x1. . .xm

y1 . . . yn

⇒ N(α, β)

y1 . . . yn

xn . . . x1

I left-hand side is an active pair of agents

I right-hand must preserve interface

I at most one rule per active pair

I if α = β the right-hand side must be top-down symmetric



Example: Rules

Rules for adding numbers in unary encoding:
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Rules for summing up lists of numbers:

Σ

nil

⇒
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Σ
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⇒
+ Σ



Typed Interaction Nets

zero
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+
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I typing ports avoids ill-formed nets

I clearly distinguishes constructors from destructors



Example IN Computation
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Example IN Computation

sum

nil

cons

zero

succ

succ

succ

succ

zero

cons



Example IN Computation
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Example IN Computation
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Example IN Computation
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Example IN Computation
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Example IN Computation
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Properties

zero
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I linearity: preserves interface

I binary interaction

I no ambiguity

I → parallel/asynchronous reduction



Drawbacks

Some algorithms cannot be represented in interaction net systems

Example: parallel or

por(True, y)→ True

por(x ,True)→ True

por(False,False)→ False

Solution:

I introduce special amb agent

I interaction nets with multiple principal ports

I → non-determinism



Overview

Motivation

Interaction Nets

Interaction Automata

Related Systems

Conclusion



Interaction Automata

An interaction automaton A is a quadruple

A = (L, ν,S ,→)

where

L set of locations

ν neighborhood

S set of symbols

→ abstract transition
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A neighborhood ν(li ) is associated to each location
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Each location may contain 0, 1 or 2 nodes
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A node is either s(l1, . . . , lk), s ∈ S where k is the arity of s, or ω
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Abstract transition (→) between configurations
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Interaction Automata

Properties

I reduction is performed locally

I allocated cells can be placed freely within the neighborhood

I the allocation strategy is unspecified in the model

ia2d interpreter

I proof-of-concept implementation with simple local allocation
strategy

I the locations are layed out in a 2-dimensional grid
→ in some sense close to hardware



Demo



Memory Topologies

grid cube nested



Simple Input Language

I takes care of non-linear functions, i.e. erasure and duplication

I supports anonymous and higher-order functions

I implemented as source-to-source compiler



Example

Haskell

foldr f z Nil = z
foldr f z (Cons x xs) = f x (foldr f z xs)

Simple input language

foldr(Nil(), f,z) = z;
foldr(Cons(x,xs),f,z) = f(x,foldr(xs,f,z));



Practical Considerations

I limit number of rules
→ interaction combinators: 3 symbols and 6 rules suffice to
encode arbitrary interaction net systems

I standard arithmetic
→ special agents that reference value or computation

I input and output
→ singleton IO agent and corresponding operations
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Related Systems: Cellular Automata

I interaction automata share some similarities with cellular
automata (CA)

I σi (t) state of cell at position i at time t

I transition function Φ

σi (t + 1) = Φ(σi−r (t), σi−r+1(t), . . . , σi+r−1(t), σi+r (t))

depends on state of neighbors

I CA are synchronous parallel computational model

I Turing-complete: Rule 110



Example: Rule 90

___ __# _#_ _## #__ #_# ##_ ###
_ # _ # # _ # _

0 1 2 3 4 5 6 7



Related Systems

Open Multi-Processing (OpenMP)

I shared memory

I parallelization by adding annotations (pragmas)

Message Passing Interface (MPI)

I distributed memory

I complete restructuring of program

Open Compute Language (OpenCL)

I run small kernels on many CPUs (GPUs)

I program-in-program



Related Systems: Data-Flow Graph

Fresh Breeze

I data-flow processor

I graph of tasks

Parallel Haskell

I Par monad
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Conclusion

Proof-of-concept implementation

I parallel computation model with localized reduction on top of
memory scheme with limited connectivity and locally bounded
storage

I functional programs can be run on this model

I the implementation shows that reasonable memory
management strategies can be implemented locally

Limits

I grid layout is limiting

I nested layout scheme seems more promising
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