Relative Definability of Higher-order Functions in Simply Typed Lambda Calculus

Evan Marzion

Background

New Work

Challenge

Write a program $P : (\mathbf{B} \to \mathbf{B}) \to \mathbf{B} \to \mathbf{B}$ with the following behavior¹ using only $\mathbf{0}, \mathbf{1}$, and If : $\mathbf{B} \to \mathbf{B} \to \mathbf{B} \to \mathbf{B}$:

f	Pf
$\lambda x.0$	$\lambda x.x$
$\lambda x.x$	λx. 0
	$\lambda x.1$
$\lambda x.1$	$\lambda x.x$

Just using **If**, **0**? **If**, **1**?

¹extensional behavior, so for instance $\lambda x.\mathbf{0}$ and $\lambda x.\mathbf{If} \times \mathbf{0} \mathbf{0}$ are identified.

Challenge

Write a program $P : (\mathbf{B} \to \mathbf{B}) \to \mathbf{B} \to \mathbf{B}$ with the following behavior¹ using only $\mathbf{0}, \mathbf{1}$, and If : $\mathbf{B} \to \mathbf{B} \to \mathbf{B} \to \mathbf{B}$:

f	Pf
$\lambda x.0$	$\lambda x.x$
$\lambda x.x$	λx. 0
_	$\lambda x.1$
$\lambda x.1$	$\lambda x.x$

Just using **If**, **0**? **If**, **1**?

¹extensional behavior, so for instance $\lambda x.\mathbf{0}$ and $\lambda x.\mathbf{If} \times \mathbf{0} \mathbf{0}$ are identified.

We want to study relative definability of boolean constants/functions/functionals in the context of STLC: Given M_1, \ldots, M_n , can I express N? Why or why not?

Previous work:

1. Post's work on clones of boolean connectives $({f B}^k o {f B})$

2. Pure lambda-definability in the finite type hierarchy (Plotkin, others)

We want to study relative definability of boolean constants/functions/functionals in the context of STLC: Given M_1, \ldots, M_n , can I express N? Why or why not?

Previous work:

1. Post's work on clones of boolean connectives $(\mathbf{B}^k o \mathbf{B})$

2. Pure lambda-definability in the finite type hierarchy (Plotkin, others)

We want to study relative definability of boolean constants/functions/functionals in the context of STLC: Given M_1, \ldots, M_n , can I express N? Why or why not?

Previous work:

1. Post's work on clones of boolean connectives $(\mathbf{B}^k o \mathbf{B})$

2. Pure lambda-definability in the finite type hierarchy (Plotkin, others)

Clones

Fix a set X.

A clone over X is a set C of operations $X^k \to X$ containing projections and closed under generalized composition:

$$f, g_1, \ldots, g_k \in \mathcal{C} \Rightarrow \mathbf{x} \mapsto f(g_1(\mathbf{x}), \ldots, g_k(\mathbf{x})) \in \mathcal{C}$$

Emil Post (1941) gives a complete characterization of clones over **B** along with bases.

- (i) False-preserving (P_0) $f(\mathbf{0}, \dots, \mathbf{0}) = \mathbf{0}$
- (ii) True-preserving (P_1) f(1, ..., 1) = 1
- (iii) Monotone (*M*) $\mathbf{x} \le \mathbf{y} \Rightarrow f(\mathbf{x}) \le f(\mathbf{y})$
- (iv) Self-dual (D) $f(\neg \mathbf{x}) = \neg f(\mathbf{x})$
- (v) Affine (A) $f(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x} \oplus b$

- (i) False-preserving (P_0) $f(\mathbf{0}, \dots, \mathbf{0}) = \mathbf{0}$
- (ii) True-preserving (P₁) f(1, ..., 1) = 1
- (iii) Monotone (*M*) $\mathbf{x} \le \mathbf{y} \Rightarrow f(\mathbf{x}) \le f(\mathbf{y})$
- (iv) Self-dual (D) $f(\neg \mathbf{x}) = \neg f(\mathbf{x})$
- (v) Affine (A) $f(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x} \oplus b$

- (i) False-preserving (P_0) $f(\mathbf{0}, \dots, \mathbf{0}) = \mathbf{0}$
- (ii) True-preserving (P_1) f(1, ..., 1) = 1
- (iii) Monotone (*M*) $\mathbf{x} \le \mathbf{y} \Rightarrow f(\mathbf{x}) \le f(\mathbf{y})$
- (iv) Self-dual (D) $f(\neg \mathbf{x}) = \neg f(\mathbf{x})$

(v) Affine (A) $f(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x} \oplus b$

- (i) False-preserving (P_0) $f(\mathbf{0}, \dots, \mathbf{0}) = \mathbf{0}$
- (ii) True-preserving (P_1) $f(1, \dots, 1) = 1$
- (iii) Monotone (*M*) $\mathbf{x} \le \mathbf{y} \Rightarrow f(\mathbf{x}) \le f(\mathbf{y})$

(iv) Self-dual (D) $f(\neg \mathbf{x}) = \neg f(\mathbf{x})$ (v) Affine (A) $f(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x} \oplus b$

- (i) False-preserving (P_0) $f(\mathbf{0}, \dots, \mathbf{0}) = \mathbf{0}$
- (ii) True-preserving (P_1) $f(1, \dots, 1) = 1$
- (iii) Monotone (*M*) $\mathbf{x} \leq \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathbf{y})$

(iv) Self-dual (D)
$$f(\neg \mathbf{x}) = \neg f(\mathbf{x})$$

(v) Affine (A) $f(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x} \oplus b$

- (i) False-preserving (P_0) $f(\mathbf{0}, \dots, \mathbf{0}) = \mathbf{0}$
- (ii) True-preserving (P_1) $f(1, \dots, 1) = 1$
- (iii) Monotone (*M*) $\mathbf{x} \leq \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathbf{y})$

(iv) Self-dual (D)
$$f(\neg x) = \neg f(x)$$

(v) Affine (A) $f(\mathbf{x}) = \mathbf{v} \cdot \mathbf{x} \oplus b$

Clones in a higher order setting

Fix a set X. Types: $\mathcal{T} := \mathbf{0} \mid \sigma \to \tau$

$$X_0 := X$$

 $X_{\sigma o au} := X_{ au}^{X_o}$

A combinatory clone over X is a set of operations in X_{σ} containing all **S** and **K** combinators and closed under application.

By combinatory completeness, we just use lambda notation.

ex. \lor is in the combinatory clone generated by \land, \neg since $\lor = \lambda xy. \neg ((\neg x) \land (\neg y)).$

Clones in a higher order setting

Fix a set X. Types: $\mathcal{T} := \mathbf{0} \mid \sigma \to \tau$

$$X_0 := X$$

 $X_{\sigma o au} := X_{ au}^{X_{\sigma}}$

A combinatory clone over X is a set of operations in X_{σ} containing all **S** and **K** combinators and closed under application.

By combinatory completeness, we just use lambda notation.

ex. \lor is in the combinatory clone generated by \land, \neg since $\lor = \lambda xy. \neg((\neg x) \land (\neg y)).$

First-order types: 0, $0 \rightarrow 0$, $0 \rightarrow 0 \rightarrow 0$, etc. All functions $X^k \rightarrow X$ can be thought as having a first-order type (currying).

Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.

Theorem

Let g be comb. clone-definable from f_1, \ldots, f_n , all first-order. Then g is already clone-definable from f_1, \ldots, f_n .

Proof.

Consider long normal forms.

Corollary

First-order types: 0, $0 \rightarrow 0$, $0 \rightarrow 0 \rightarrow 0$, etc. All functions $X^k \rightarrow X$ can be thought as having a first-order type (currying).

Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.

Theorem

Let g be comb. clone-definable from f_1, \ldots, f_n , all first-order. Then g is already clone-definable from f_1, \ldots, f_n .

Proof.

Consider long normal forms.

Corollary

First-order types: 0, $0 \rightarrow 0$, $0 \rightarrow 0 \rightarrow 0$, etc. All functions $X^k \rightarrow X$ can be thought as having a first-order type (currying).

Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.

Theorem

Let g be comb. clone-definable from f_1, \ldots, f_n , all first-order. Then g is already clone-definable from f_1, \ldots, f_n .

Proof.

Consider long normal forms.

Corollary

First-order types: 0, $0 \rightarrow 0$, $0 \rightarrow 0 \rightarrow 0$, etc. All functions $X^k \rightarrow X$ can be thought as having a first-order type (currying).

Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.

Theorem

Let g be comb. clone-definable from f_1, \ldots, f_n , all first-order. Then g is already clone-definable from f_1, \ldots, f_n .

Proof.

Consider long normal forms.

Corollary

Let $F:(\textbf{B}\rightarrow\textbf{B})\rightarrow\textbf{B}\rightarrow\textbf{B}$ denote the following functional:

f	Ff	Lemma
$\lambda x.0$	$\lambda x.0$	F is not lambda definable.
$\lambda x.x$	$\lambda x.x$	Proof
_	$\lambda x.0$	$lnf's of (0, > 0) > 0 > 0 or o) fx f^k x none$
$\lambda x.1$	$\lambda x.1$	of which represent F .

Claim

The only first-order functions definable from F are projections.

Corollary

Let $F : (\mathbf{B} \to \mathbf{B}) \to \mathbf{B} \to \mathbf{B}$ denote the following functional:

f	Ff	Lemma
$\lambda x.0$	$\lambda x.0$	F is not lambda definable.
$\lambda x.x$	$\lambda x.x$	Proof.
_	$\lambda x.0$	$\ln f' \circ of (0 \rightarrow 0) \rightarrow 0 \rightarrow 0$ are $\lambda f x f^k x$ none
$\lambda x.1$	$\lambda x.1$	of which represent <i>F</i> .

Claim

The only first-order functions definable from F are projections.

Corollary

Let $F : (\mathbf{B} \to \mathbf{B}) \to \mathbf{B} \to \mathbf{B}$ denote the following functional:

f	Ff	Lemma
$\lambda x.0$	$\lambda x.0$	F is not lambda definable.
$\lambda x.x$	$\lambda x.x$	Proof
–	$\lambda x.0$	$I nf's of (0 \rightarrow 0) \rightarrow 0 \rightarrow 0 \text{ are } fx f^k x \text{ none}$
$\lambda x.1$	$\lambda x.1$	of which represent F .

Claim

The only first-order functions definable from F are projections.

Corollary

Let $F : (\mathbf{B} \to \mathbf{B}) \to \mathbf{B} \to \mathbf{B}$ denote the following functional:

f	Ff	Lemma
$\lambda x.0$	$\lambda x.0$	F is not lambda definable.
$\lambda x.x$	$\lambda x.x$	Proof.
	$\lambda x.0$	Lnf's of $(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$ are $\lambda f x. f^k x$, none
$\lambda x.1$	$\lambda x.1$	of which represent F .

Claim

The only first-order functions definable from F are projections.

Corollary

Let $F : (\mathbf{B} \to \mathbf{B}) \to \mathbf{B} \to \mathbf{B}$ denote the following functional:

f	Ff	Lemma
$\lambda x.0$	$\lambda x.0$	F is not lambda definable.
$\lambda x.x$	$\lambda x.x$	Proof
	$\lambda x.0$	$I nf's of (0 \rightarrow 0) \rightarrow 0 \rightarrow 0 \text{ are } fx f^k x \text{ none}$
$\lambda x.1$	$\lambda x.1$	of which represent F .

Claim

The only first-order functions definable from F are projections.

Corollary

A brief nitpick

Post excludes constants (0-ary functions) from his classification. Why? Because constants can never be defined from non-constants.

ex. Does the formula $P \land \neg P$ really define **0**? In Post's framework this is actually a unary function $(P \mapsto P \land \neg P)$ which represents a constant function $(\lambda x. \mathbf{0})$.

Issue: $X^k \to X$ is tautology (via C-H) iff k > 0.

We can create boring comb. clones from a deductively closed theory in minimal int. logic.

Every type is logically equivalent to either 0 or $0 \rightarrow 0$ (in single atom case) so there are only two in our case. ($\mathcal{G}(\mathbf{B})$ and $\mathcal{G}^{taut}(\mathbf{B})$)

Theorem $\mathcal{G}(B)$ is generated by the first-order elements ({If, 0, 1}).

Proof.

X	fx
s_1	t_1
<i>s</i> ₂	t_2
÷	÷
s_{N-1}	t_{N-1}
s _N	t _N

- (i) $\mathbf{If}_{\sigma}: \mathbf{B} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma}$ is definable from $\mathbf{If}_0 = \mathbf{If}$
- (ii) $\mathbf{Eq}_{\sigma \to \tau} \in \mathbf{B}_{(\sigma \to \tau) \to (\sigma \to \tau) \to 0}$ is definable from the elements of \mathbf{B}_{σ} , \mathbf{Eq}_{τ} , and \wedge .
- iii) An arbitrary $f \in \mathbf{B}_{\sigma \to \tau}$ can be defined from elements of \mathbf{B}_{σ} , \mathbf{B}_{τ} , \mathbf{Eq}_{σ} , and \mathbf{If}_{τ} ("if x equals s_1 then t_1 else if x equals s_2 then t_2 else...").

Theorem $\mathcal{G}(B)$ is generated by the first-order elements ({If, 0, 1}).

Proof. Induction on type. Key ideas:

X	fx
s_1	t_1
<i>s</i> ₂	t_2
÷	÷
s_{N-1}	t_{N-1}
s _N	t _N

(i) $\mathbf{If}_{\sigma}: \mathbf{B} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma}$ is definable from $\mathbf{If}_0 = \mathbf{If}$

- (ii) $\mathbf{Eq}_{\sigma \to \tau} \in \mathbf{B}_{(\sigma \to \tau) \to (\sigma \to \tau) \to 0}$ is definable from the elements of \mathbf{B}_{σ} , \mathbf{Eq}_{τ} , and \wedge .
- iii) An arbitrary $f \in \mathbf{B}_{\sigma \to \tau}$ can be defined from elements of \mathbf{B}_{σ} , \mathbf{B}_{τ} , \mathbf{Eq}_{σ} , and \mathbf{If}_{τ} ("if x equals s_1 then t_1 else if x equals s_2 then t_2 else...").

Theorem $\mathcal{G}(\mathbf{B})$ is generated by the first-order elements ({If, 0, 1}).

Proof.

X	fx
s_1	t_1
<i>s</i> ₂	t_2
÷	÷
s_{N-1}	t_{N-1}
s _N	t _N

- (i) $If_{\sigma}: B \to B_{\sigma} \to B_{\sigma} \to B_{\sigma}$ is definable from $If_0 = If$
- (ii) $\mathbf{Eq}_{\sigma \to \tau} \in \mathbf{B}_{(\sigma \to \tau) \to (\sigma \to \tau) \to 0}$ is definable from the elements of \mathbf{B}_{σ} , \mathbf{Eq}_{τ} , and \wedge .
- (iii) An arbitrary $f \in \mathbf{B}_{\sigma \to \tau}$ can be defined from elements of \mathbf{B}_{σ} , \mathbf{B}_{τ} , \mathbf{Eq}_{σ} , and \mathbf{If}_{τ} ("if x equals s_1 then t_1 else if x equals s_2 then t_2 else...").

Theorem $\mathcal{G}(\mathbf{B})$ is generated by the first-order elements ({If, 0, 1}).

Proof.

X	fx
s_1	t_1
<i>s</i> ₂	t_2
÷	÷
s_{N-1}	t_{N-1}
s _N	t _N

- (i) $\mathbf{If}_{\sigma}: \mathbf{B} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma}$ is definable from $\mathbf{If}_0 = \mathbf{If}$
- (ii) $\mathbf{Eq}_{\sigma \to \tau} \in \mathbf{B}_{(\sigma \to \tau) \to (\sigma \to \tau) \to 0}$ is definable from the elements of \mathbf{B}_{σ} , \mathbf{Eq}_{τ} , and \wedge .
- iii) An arbitrary $f \in \mathbf{B}_{\sigma \to \tau}$ can be defined from elements of \mathbf{B}_{σ} , \mathbf{B}_{τ} , \mathbf{Eq}_{σ} , and \mathbf{If}_{τ} ("if x equals s_1 then t_1 else if x equals s_2 then t_2 else...").

Theorem $\mathcal{G}(\mathbf{B})$ is generated by the first-order elements ({If, 0, 1}).

Proof.

X	fx
s_1	t_1
<i>s</i> ₂	t_2
÷	÷
s_{N-1}	t_{N-1}
s _N	t _N

- (i) $\mathbf{If}_{\sigma}: \mathbf{B} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma} \to \mathbf{B}_{\sigma}$ is definable from $\mathbf{If}_0 = \mathbf{If}$
- (ii) $\mathbf{Eq}_{\sigma \to \tau} \in \mathbf{B}_{(\sigma \to \tau) \to (\sigma \to \tau) \to 0}$ is definable from the elements of \mathbf{B}_{σ} , \mathbf{Eq}_{τ} , and \wedge .
- (iii) An arbitrary $f \in \mathbf{B}_{\sigma \to \tau}$ can be defined from elements of \mathbf{B}_{σ} , \mathbf{B}_{τ} , \mathbf{Eq}_{σ} , and \mathbf{If}_{τ} ("if x equals s_1 then t_1 else if x equals s_2 then t_2 else...").

Generalizing true-preserving

Is there a maximal comb. clone which corresponds to true-preserving functions? Yes!

 $\begin{aligned} \mathbf{TP}_0 &:= \{\mathbf{1}\} \\ \mathbf{TP}_{\sigma \to \tau} &:= \{f : \mathbf{B}_\sigma \to \mathbf{B}_\tau \mid \forall x \in \mathbf{TP}_\sigma. fx \in \mathbf{TP}_\tau \} \end{aligned}$

 \mathbf{FP}_{σ} is similar defined in false-preserving manner.

Claim

TP is a maximal comb. clone and furthermore contains all true-preserving (in the old sense) first-order functions.

Theorem

Proof.

Idea: Mimic the proof for $\mathcal{G}(\mathbf{B})$. Two issues:

First, \mathbf{Eq}_{σ} is generally not in \mathbf{TP} : consider s, s' distinct in \mathbf{TP}_{σ} , then $\mathbf{Eq}_{\sigma}ss' = \mathbf{0}$.

Solution: Augment our domain of "truth values" from **B** to $\mathbf{B} \rightarrow \mathbf{B}$, treating $\lambda x.\mathbf{1}$ as true and $\lambda x.\mathbf{0}, \lambda x.x$ as false (ignore \neg). We can then define an equality operator which is correct w.r.t. these truth values. We now need to modify our logical branching operations, but it all works out.

Second, the induction hypothesis won't give us all elements as before. How do we test equality on some u_i non-**TP** if we don't already have an expression for it?

Proof.

Idea: Mimic the proof for $\mathcal{G}(\mathbf{B})$. Two issues:

First, \mathbf{Eq}_{σ} is generally not in **TP**: consider s, s' distinct in **TP**_{σ}, then $\mathbf{Eq}_{\sigma}ss' = \mathbf{0}$.

Solution: Augment our domain of "truth values" from **B** to $\mathbf{B} \rightarrow \mathbf{B}$, treating $\lambda x.\mathbf{1}$ as true and $\lambda x.\mathbf{0}, \lambda x.x$ as false (ignore \neg). We can then define an equality operator which is correct w.r.t. these truth values. We now need to modify our logical branching operations, but it all works out.

Second, the induction hypothesis won't give us all elements as before. How do we test equality on some u_i non-**TP** if we don't already have an expression for it?

Solution: We *almost* have an expression for it. By virtue of previous theorem, $\{If, 0, 1\}$ is a basis for $\mathcal{G}(B)$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_s \in \mathbf{TP}_{0 \to \sigma}$ such that $T_s \mathbf{0} = s$ (abstract away all instances of **0** in the expression for *s*.

Can we guarantee that **0** can be recovered from a non-**TP** element? Indicator function for **TP**_{σ}: **IsTP**_{σ} : **B**_{σ} \rightarrow **B**.

$$\mathbf{IsTP}_{\sigma \to \tau} = \lambda f. \bigwedge_{i=1}^{N} \mathbf{IsTP}_{\tau}(fs_i) \quad (\mathbf{TP}_{\sigma} = \{s_1, \dots, s_N\})$$

Solution: We *almost* have an expression for it. By virtue of previous theorem, $\{If, 0, 1\}$ is a basis for $\mathcal{G}(B)$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_s \in \mathbf{TP}_{0 \to \sigma}$ such that $T_s \mathbf{0} = s$ (abstract away all instances of **0** in the expression for *s*.

Can we guarantee that **0** can be recovered from a non-**TP** element? Indicator function for TP_{σ} : IsTP $_{\sigma}$: B $_{\sigma} \rightarrow$ B.

$$\mathbf{IsTP}_{\sigma \to \tau} = \lambda f \cdot \bigwedge_{i=1}^{N} \mathbf{IsTP}_{\tau}(fs_i) \quad (\mathbf{TP}_{\sigma} = \{s_1, \dots, s_N\})$$

Solution: We *almost* have an expression for it. By virtue of previous theorem, $\{If, 0, 1\}$ is a basis for $\mathcal{G}(B)$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_s \in \mathbf{TP}_{0 \to \sigma}$ such that $T_s \mathbf{0} = s$ (abstract away all instances of **0** in the expression for *s*.

Can we guarantee that **0** can be recovered from a non-**TP** element? Indicator function for **TP**_{σ}: **IsTP**_{σ} : **B**_{σ} \rightarrow **B**.

$$\mathbf{IsTP}_{\sigma \to \tau} = \lambda f. \bigwedge_{i=1}^{N} \mathbf{IsTP}_{\tau}(fs_i) \quad (\mathbf{TP}_{\sigma} = \{s_1, \dots, s_N\})$$

Solution: We *almost* have an expression for it. By virtue of previous theorem, $\{If, 0, 1\}$ is a basis for $\mathcal{G}(B)$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_s \in \mathbf{TP}_{0 \to \sigma}$ such that $T_s \mathbf{0} = s$ (abstract away all instances of **0** in the expression for *s*.

Can we guarantee that **0** can be recovered from a non-**TP** element? Indicator function for **TP**_{σ}: **IsTP**_{σ} : **B**_{σ} \rightarrow **B**.

$$\mathbf{IsTP}_{\sigma \to \tau} = \lambda f. \bigwedge_{i=1}^{N} \mathbf{IsTP}_{\tau}(fs_i) \quad (\mathbf{TP}_{\sigma} = \{s_1, \dots, s_N\})$$

From previous theorem, $\{If,1\}$ is a basis for TP and analogously $\{If,0\}$ is a basis for FP.

Recall the following functional from beginning of talk:

f	Pf
$\lambda x.0$	$\lambda x.x$
$\lambda x.x$	$\lambda x.0$
	$\lambda x.1$
$\lambda x.1$	$\lambda x.x$

Since *P* is false-preserving, you **can** define it using just **If**, **0**.

From previous theorem, $\{If,1\}$ is a basis for TP and analogously $\{If,0\}$ is a basis for FP.

Recall the following functional from beginning of talk:

f	Pf
$\lambda x.0$	$\lambda x.x$
$\lambda x.x$	λx. 0
-	$\lambda x.1$
$\lambda x.1$	$\lambda x.x$

Since P is false-preserving, you **can** define it using just **lf**, **0**.

From previous theorem, $\{If, 1\}$ is a basis for **TP** and analogously $\{If, 0\}$ is a basis for **FP**.

Recall the following functional from beginning of talk:

f	Pf
$\lambda x.0$	$\lambda x.x$
$\lambda x.x$	$\lambda x.0$
_	$\lambda x.1$
$\lambda x.1$	$\lambda x.x$

Since P is false-preserving, you **can** define it using just **If**, **0**.

From previous theorem, $\{If,1\}$ is a basis for TP and analogously $\{If,0\}$ is a basis for FP.

Recall the following functional from beginning of talk:

f	Pf
$\lambda x.0$	$\lambda x.x$
$\lambda x.x$	λx. 0
-	$\lambda x.1$
$\lambda x.1$	$\lambda x.x$

Since P is false-preserving, you **can** define it using just **If**, **0**.

Comb. clones are closed under intersections. Thus, let $FTP := FP \cap TP$.

Lemma

Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.

Proof.

Suppose not. Then there is a lambda def. $S : \sigma \to 0$, meaning that $Ss \in \mathbf{B}$ is both false- and true-preserving.

Theorem

Comb. clones are closed under intersections. Thus, let $FTP := FP \cap TP$.

Lemma

Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.

Proof.

Suppose not. Then there is a lambda def. $S : \sigma \to 0$, meaning that $Ss \in \mathbf{B}$ is both false- and true-preserving.

Theorem

Comb. clones are closed under intersections. Thus, let $FTP := FP \cap TP$.

Lemma

Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.

Proof.

Suppose not. Then there is a lambda def. $S : \sigma \to 0$, meaning that $Ss \in \mathbf{B}$ is both false- and true-preserving.

Theorem

Comb. clones are closed under intersections. Thus, let $FTP := FP \cap TP$.

Lemma

Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.

Proof.

Suppose not. Then there is a lambda def. $S : \sigma \to 0$, meaning that $Ss \in \mathbf{B}$ is both false- and true-preserving.

Theorem

Proof.

Let $f \in \mathbf{FTP}_{\sigma_1 \to \dots \to \sigma_N \to 0}$. By previous lemma there is some *i* and lambda def. $S : \sigma_i \to 0$.

Let f = MIf1 and f = NIf0 for lambda def. M, N. Claim:

 $f = \lambda x_1 \dots x_N \cdot \mathbf{lf}(Sx_i) (M\mathbf{lf}(Sx_i)\bar{x}) (N\mathbf{lf}(Sx_i)\bar{x}).$

For arbitrary s_1, \ldots, s_N we have that

 $(\lambda \bar{x}.\mathbf{lf}(Sx_i)(M\mathbf{lf}(Sx_i)\bar{x})(N\mathbf{lf}(Sx_i)\bar{x}))\bar{s} = \mathbf{lf}(Ss_i)(M\mathbf{lf}(Ss_i)\bar{s})(N\mathbf{lf}(Ss_i)\bar{s})$ $= \begin{cases} M\mathbf{lf}\mathbf{1}\bar{s} & Ss_i = \mathbf{1} \\ N\mathbf{lf}\mathbf{0}\bar{s} & Ss_i = \mathbf{0} \end{cases}$ $= \begin{cases} f\bar{s} & Ss_i = \mathbf{1} \\ f\bar{s} & Ss_i = \mathbf{0} \end{cases}$ $= f\bar{s}.$

Generalizing self-duality

Intuition: dual of an element is that element with the roles of $\mathbf{0}, \mathbf{1}$ reversed.

$$d_0 x := \neg x$$

 $d_{\sigma \to \tau} f := \lambda x. d_{\tau}(f(d_{\sigma} x))$

ex. Let $f : \mathbf{B} \to \mathbf{B} \to \mathbf{B}$.

$$d_{0\to0\to0}f = \lambda x.d_{0\to0}(f(d_0x))$$

= $\lambda xy.d_0(f(d_0x)(d_0y))$
= $\lambda xy.\neg(f(\neg x)(\neg y))$

Let $\mathbf{SD}_{\sigma} := \{ x \in \mathbf{B}_{\sigma} \mid d_{\sigma}x = x \}.$

Claim

SD is a maximal comb. clone w.r.t. $\mathcal{G}^{taut}(\mathbf{B})$ and furthermore contains all self-dual (in the old sense) first-order functions.

Claim

SD is generated by its first-order elements $(\{\neg, Maj\})$.

Proof uses same ideas from ${\bf TP}$ proof (reinterpret logical branching operations, use expressions that "almost" define terms) but trickier.

Let $DP := FTP \cap SD$.

Claim

DP is also generated by its first-order elements $({Maj, \oplus_3})$.

Claim

SD is generated by its first-order elements $(\{\neg, Maj\})$.

Proof uses same ideas from ${\bf TP}$ proof (reinterpret logical branching operations, use expressions that "almost" define terms) but trickier.

Let $\mathbf{DP} := \mathbf{FTP} \cap \mathbf{SD}$.

Claim

DP is also generated by its first-order elements ({ Maj, \oplus_3 }).

Summary

 $(\mathbf{FP}^{taut} := \mathbf{FP} \cap \mathcal{G}^{taut}(\mathbf{B}) \text{ and } \mathbf{TP}^{taut} := \mathbf{TP} \cap \mathcal{G}^{taut}(\mathbf{B}))$

The proper generalization of the monotone functions is tricky:

$$\begin{split} \mathsf{Mon}_0 &:= \{\mathbf{0}, \mathbf{1}\} \\ &\leq_0 := \leq \\ \mathsf{Mon}_{\sigma \to \tau} &:= \{f \mid \forall s \in \mathsf{Mon}_{\sigma}. fs \in \mathsf{Mon}_{\tau} \& \\ &\forall s, s' \in \mathsf{Mon}_{\sigma}, s \leq_{\sigma} s \Rightarrow fs \leq_{\tau} fs'\}. \\ f &\leq_{\sigma \to \tau} g := \forall s \in \mathsf{Mon}_{\sigma}. fs \leq_{\tau} gs. \end{split}$$

Claim

Mon is not generated by its first-order elements ($isMon_{0\rightarrow0}$ is a counterexample).

The proper generalization of the monotone functions is tricky:

$$\begin{split} \mathsf{Mon}_0 &:= \{\mathbf{0}, \mathbf{1}\} \\ &\leq_0 := \leq \\ \mathsf{Mon}_{\sigma \to \tau} &:= \{f \mid \forall s \in \mathsf{Mon}_{\sigma}. fs \in \mathsf{Mon}_{\tau} \& \\ &\forall s, s' \in \mathsf{Mon}_{\sigma}, s \leq_{\sigma} s \implies fs \leq_{\tau} fs'\}. \\ f &\leq_{\sigma \to \tau} g := \forall s \in \mathsf{Mon}_{\sigma}. fs \leq_{\tau} gs. \end{split}$$

Claim

Mon is not generated by its first-order elements ($isMon_{0\rightarrow0}$ is a counterexample).

The proper generalization of the monotone functions is tricky:

$$\begin{split} \mathsf{Mon}_0 &:= \{\mathbf{0}, \mathbf{1}\} \\ &\leq_0 := \leq \\ \mathsf{Mon}_{\sigma \to \tau} &:= \{f \mid \forall s \in \mathsf{Mon}_{\sigma}. fs \in \mathsf{Mon}_{\tau} \& \\ &\forall s, s' \in \mathsf{Mon}_{\sigma}, s \leq_{\sigma} s \Rightarrow fs \leq_{\tau} fs'\}. \\ f &\leq_{\sigma \to \tau} g := \forall s \in \mathsf{Mon}_{\sigma}. fs \leq_{\tau} gs. \end{split}$$

Claim

Mon is not generated by its first-order elements ($isMon_{0\rightarrow 0}$ is a counterexample).

The proper generalization of the monotone functions is tricky:

$$\begin{split} \mathsf{Mon}_0 &:= \{\mathbf{0}, \mathbf{1}\} \\ &\leq_0 := \leq \\ \mathsf{Mon}_{\sigma \to \tau} &:= \{f \mid \forall s \in \mathsf{Mon}_{\sigma}. fs \in \mathsf{Mon}_{\tau} \& \\ &\forall s, s' \in \mathsf{Mon}_{\sigma}, s \leq_{\sigma} s \implies fs \leq_{\tau} fs'\}. \\ f &\leq_{\sigma \to \tau} g := \forall s \in \mathsf{Mon}_{\sigma}. fs \leq_{\tau} gs. \end{split}$$

Claim

Mon is not generated by its first-order elements ($isMon_{0\rightarrow 0}$ is a counterexample).

Thank you for your attention.