
Background New Work

Relative Definability of Higher-order Functions in
Simply Typed Lambda Calculus

Evan Marzion

1 / 22



Background New Work

Background

New Work

2 / 22



Background New Work

Challenge

Write a program P : (B→ B)→ B→ B
with the following behavior1 using only 0, 1, and
If : B→ B→ B→ B:

f Pf

λx .0 λx .x
λx .x λx .0
¬ λx .1
λx .1 λx .x

Just using If, 0? If, 1?

1extensional behavior, so for instance λx .0 and λx .If x 0 0 are identified.
3 / 22



Background New Work

Challenge

Write a program P : (B→ B)→ B→ B
with the following behavior1 using only 0, 1, and
If : B→ B→ B→ B:

f Pf

λx .0 λx .x
λx .x λx .0
¬ λx .1
λx .1 λx .x

Just using If, 0? If, 1?

1extensional behavior, so for instance λx .0 and λx .If x 0 0 are identified.
3 / 22



Background New Work

We want to study relative definability of boolean
constants/functions/functionals in the context of STLC: Given
M1, . . . ,Mn, can I express N? Why or why not?

Previous work:

1. Post’s work on clones of boolean connectives (Bk → B)

2. Pure lambda-definability in the finite type hierarchy (Plotkin,
others)

4 / 22



Background New Work

We want to study relative definability of boolean
constants/functions/functionals in the context of STLC: Given
M1, . . . ,Mn, can I express N? Why or why not?

Previous work:

1. Post’s work on clones of boolean connectives (Bk → B)

2. Pure lambda-definability in the finite type hierarchy (Plotkin,
others)

4 / 22



Background New Work

We want to study relative definability of boolean
constants/functions/functionals in the context of STLC: Given
M1, . . . ,Mn, can I express N? Why or why not?

Previous work:

1. Post’s work on clones of boolean connectives (Bk → B)

2. Pure lambda-definability in the finite type hierarchy (Plotkin,
others)

4 / 22



Background New Work

Clones

Fix a set X .

A clone over X is a set C of operations X k → X containing
projections and closed under generalized composition:

f , g1, . . . , gk ∈ C ⇒ x 7→ f (g1(x), . . . , gk(x)) ∈ C

Emil Post (1941) gives a complete
characterization of clones over B
along with bases.

5 / 22



Background New Work

Five maximal classes:

(i) False-preserving (P0)
f (0, . . . , 0) = 0

(ii) True-preserving (P1)
f (1, . . . , 1) = 1

(iii) Monotone (M)
x ≤ y⇒ f (x) ≤ f (y)

(iv) Self-dual (D)
f (¬x) = ¬f (x)

(v) Affine (A)
f (x) = v · x⊕ b

6 / 22



Background New Work

Five maximal classes:

(i) False-preserving (P0)
f (0, . . . , 0) = 0

(ii) True-preserving (P1)
f (1, . . . , 1) = 1

(iii) Monotone (M)
x ≤ y⇒ f (x) ≤ f (y)

(iv) Self-dual (D)
f (¬x) = ¬f (x)

(v) Affine (A)
f (x) = v · x⊕ b

6 / 22



Background New Work

Five maximal classes:

(i) False-preserving (P0)
f (0, . . . , 0) = 0

(ii) True-preserving (P1)
f (1, . . . , 1) = 1

(iii) Monotone (M)
x ≤ y⇒ f (x) ≤ f (y)

(iv) Self-dual (D)
f (¬x) = ¬f (x)

(v) Affine (A)
f (x) = v · x⊕ b

6 / 22



Background New Work

Five maximal classes:

(i) False-preserving (P0)
f (0, . . . , 0) = 0

(ii) True-preserving (P1)
f (1, . . . , 1) = 1

(iii) Monotone (M)
x ≤ y⇒ f (x) ≤ f (y)

(iv) Self-dual (D)
f (¬x) = ¬f (x)

(v) Affine (A)
f (x) = v · x⊕ b

6 / 22



Background New Work

Five maximal classes:

(i) False-preserving (P0)
f (0, . . . , 0) = 0

(ii) True-preserving (P1)
f (1, . . . , 1) = 1

(iii) Monotone (M)
x ≤ y⇒ f (x) ≤ f (y)

(iv) Self-dual (D)
f (¬x) = ¬f (x)

(v) Affine (A)
f (x) = v · x⊕ b

6 / 22



Background New Work

Five maximal classes:

(i) False-preserving (P0)
f (0, . . . , 0) = 0

(ii) True-preserving (P1)
f (1, . . . , 1) = 1

(iii) Monotone (M)
x ≤ y⇒ f (x) ≤ f (y)

(iv) Self-dual (D)
f (¬x) = ¬f (x)

(v) Affine (A)
f (x) = v · x⊕ b

6 / 22



Background New Work

Clones in a higher order setting

Fix a set X . Types: T := 0 | σ → τ

X0 := X

Xσ→τ := XXσ
τ

A combinatory clone over X is a set of operations in Xσ
containing all S and K combinators and closed under application.

By combinatory completeness, we just use lambda notation.

ex. ∨ is in the combinatory clone generated by ∧,¬ since
∨ = λxy .¬((¬x) ∧ (¬y)).

7 / 22



Background New Work

Clones in a higher order setting

Fix a set X . Types: T := 0 | σ → τ

X0 := X

Xσ→τ := XXσ
τ

A combinatory clone over X is a set of operations in Xσ
containing all S and K combinators and closed under application.

By combinatory completeness, we just use lambda notation.

ex. ∨ is in the combinatory clone generated by ∧,¬ since
∨ = λxy .¬((¬x) ∧ (¬y)).

7 / 22



Background New Work

Clones and combinatory clones

First-order types: 0, 0→ 0, 0→ 0→ 0, etc.
All functions X k → X can be thought as having a first-order type
(currying).
Clone definability is preserved in combinatory clone setting. Thus,
the restriction of a comb. clone to first-order types yields a clone.

Theorem
Let g be comb. clone-definable from f1, . . . , fn, all first-order.
Then g is already clone-definable from f1, . . . , fn.

Proof.
Consider long normal forms.

Corollary

For every clone C, there is always a comb. clone G whose
restriction is C.

8 / 22



Background New Work

Clones and combinatory clones

First-order types: 0, 0→ 0, 0→ 0→ 0, etc.
All functions X k → X can be thought as having a first-order type
(currying).
Clone definability is preserved in combinatory clone setting. Thus,
the restriction of a comb. clone to first-order types yields a clone.

Theorem
Let g be comb. clone-definable from f1, . . . , fn, all first-order.
Then g is already clone-definable from f1, . . . , fn.

Proof.
Consider long normal forms.

Corollary

For every clone C, there is always a comb. clone G whose
restriction is C.

8 / 22



Background New Work

Clones and combinatory clones

First-order types: 0, 0→ 0, 0→ 0→ 0, etc.
All functions X k → X can be thought as having a first-order type
(currying).
Clone definability is preserved in combinatory clone setting. Thus,
the restriction of a comb. clone to first-order types yields a clone.

Theorem
Let g be comb. clone-definable from f1, . . . , fn, all first-order.
Then g is already clone-definable from f1, . . . , fn.

Proof.
Consider long normal forms.

Corollary

For every clone C, there is always a comb. clone G whose
restriction is C.

8 / 22



Background New Work

Clones and combinatory clones

First-order types: 0, 0→ 0, 0→ 0→ 0, etc.
All functions X k → X can be thought as having a first-order type
(currying).
Clone definability is preserved in combinatory clone setting. Thus,
the restriction of a comb. clone to first-order types yields a clone.

Theorem
Let g be comb. clone-definable from f1, . . . , fn, all first-order.
Then g is already clone-definable from f1, . . . , fn.

Proof.
Consider long normal forms.

Corollary

For every clone C, there is always a comb. clone G whose
restriction is C.

8 / 22



Background New Work

Counterexample

Let F : (B→ B)→ B→ B denote the following functional:

f Ff

λx .0 λx .0
λx .x λx .x
¬ λx .0
λx .1 λx .1

Lemma
F is not lambda definable.

Proof.
Lnf’s of (0→ 0)→ 0→ 0 are λfx .f kx , none
of which represent F .

Claim
The only first-order functions definable from F are projections.

Corollary

There are two distinct comb. clones with the same clone
restriction.

9 / 22



Background New Work

Counterexample

Let F : (B→ B)→ B→ B denote the following functional:

f Ff

λx .0 λx .0
λx .x λx .x
¬ λx .0
λx .1 λx .1

Lemma
F is not lambda definable.

Proof.
Lnf’s of (0→ 0)→ 0→ 0 are λfx .f kx , none
of which represent F .

Claim
The only first-order functions definable from F are projections.

Corollary

There are two distinct comb. clones with the same clone
restriction.

9 / 22



Background New Work

Counterexample

Let F : (B→ B)→ B→ B denote the following functional:

f Ff

λx .0 λx .0
λx .x λx .x
¬ λx .0
λx .1 λx .1

Lemma
F is not lambda definable.

Proof.
Lnf’s of (0→ 0)→ 0→ 0 are λfx .f kx , none
of which represent F .

Claim
The only first-order functions definable from F are projections.

Corollary

There are two distinct comb. clones with the same clone
restriction.

9 / 22



Background New Work

Counterexample

Let F : (B→ B)→ B→ B denote the following functional:

f Ff

λx .0 λx .0
λx .x λx .x
¬ λx .0
λx .1 λx .1

Lemma
F is not lambda definable.

Proof.
Lnf’s of (0→ 0)→ 0→ 0 are λfx .f kx , none
of which represent F .

Claim
The only first-order functions definable from F are projections.

Corollary

There are two distinct comb. clones with the same clone
restriction.

9 / 22



Background New Work

Counterexample

Let F : (B→ B)→ B→ B denote the following functional:

f Ff

λx .0 λx .0
λx .x λx .x
¬ λx .0
λx .1 λx .1

Lemma
F is not lambda definable.

Proof.
Lnf’s of (0→ 0)→ 0→ 0 are λfx .f kx , none
of which represent F .

Claim
The only first-order functions definable from F are projections.

Corollary

There are two distinct comb. clones with the same clone
restriction.

9 / 22



Background New Work

A brief nitpick

Post excludes constants (0-ary functions) from his classification.
Why? Because constants can never be defined from non-constants.

ex. Does the formula P ∧ ¬P really define 0? In Post’s framework
this is actually a unary function (P 7→ P ∧ ¬P) which represents a
constant function (λx .0).

Issue: X k → X is tautology (via C-H) iff k > 0.

We can create boring comb. clones from a deductively closed
theory in minimal int. logic.

Every type is logically equivalent to either 0 or 0→ 0 (in single
atom case) so there are only two in our case. (G(B) and Gtaut(B))

10 / 22



Background New Work

Theorem
G(B) is generated by the first-order elements ({If, 0, 1}).

x fx

s1 t1
s2 t2
...

...
sN−1 tN−1
sN tN

Proof.
Induction on type. Key ideas:

(i) Ifσ : B→ Bσ → Bσ → Bσ is definable
from If0 = If

(ii) Eqσ→τ ∈ B(σ→τ)→(σ→τ)→0 is definable
from the elements of Bσ, Eqτ , and ∧.

(iii) An arbitrary f ∈ Bσ→τ can be defined
from elements of Bσ, Bτ , Eqσ, and Ifτ
(“if x equals s1 then t1 else if x equals s2
then t2 else...”).

11 / 22



Background New Work

Theorem
G(B) is generated by the first-order elements ({If, 0, 1}).

x fx

s1 t1
s2 t2
...

...
sN−1 tN−1
sN tN

Proof.
Induction on type. Key ideas:

(i) Ifσ : B→ Bσ → Bσ → Bσ is definable
from If0 = If

(ii) Eqσ→τ ∈ B(σ→τ)→(σ→τ)→0 is definable
from the elements of Bσ, Eqτ , and ∧.

(iii) An arbitrary f ∈ Bσ→τ can be defined
from elements of Bσ, Bτ , Eqσ, and Ifτ
(“if x equals s1 then t1 else if x equals s2
then t2 else...”).

11 / 22



Background New Work

Theorem
G(B) is generated by the first-order elements ({If, 0, 1}).

x fx

s1 t1
s2 t2
...

...
sN−1 tN−1
sN tN

Proof.
Induction on type. Key ideas:

(i) Ifσ : B→ Bσ → Bσ → Bσ is definable
from If0 = If

(ii) Eqσ→τ ∈ B(σ→τ)→(σ→τ)→0 is definable
from the elements of Bσ, Eqτ , and ∧.

(iii) An arbitrary f ∈ Bσ→τ can be defined
from elements of Bσ, Bτ , Eqσ, and Ifτ
(“if x equals s1 then t1 else if x equals s2
then t2 else...”).

11 / 22



Background New Work

Theorem
G(B) is generated by the first-order elements ({If, 0, 1}).

x fx

s1 t1
s2 t2
...

...
sN−1 tN−1
sN tN

Proof.
Induction on type. Key ideas:

(i) Ifσ : B→ Bσ → Bσ → Bσ is definable
from If0 = If

(ii) Eqσ→τ ∈ B(σ→τ)→(σ→τ)→0 is definable
from the elements of Bσ, Eqτ , and ∧.

(iii) An arbitrary f ∈ Bσ→τ can be defined
from elements of Bσ, Bτ , Eqσ, and Ifτ
(“if x equals s1 then t1 else if x equals s2
then t2 else...”).

11 / 22



Background New Work

Theorem
G(B) is generated by the first-order elements ({If, 0, 1}).

x fx

s1 t1
s2 t2
...

...
sN−1 tN−1
sN tN

Proof.
Induction on type. Key ideas:

(i) Ifσ : B→ Bσ → Bσ → Bσ is definable
from If0 = If

(ii) Eqσ→τ ∈ B(σ→τ)→(σ→τ)→0 is definable
from the elements of Bσ, Eqτ , and ∧.

(iii) An arbitrary f ∈ Bσ→τ can be defined
from elements of Bσ, Bτ , Eqσ, and Ifτ
(“if x equals s1 then t1 else if x equals s2
then t2 else...”).

11 / 22



Background New Work

Generalizing true-preserving

Is there a maximal comb. clone which corresponds to
true-preserving functions? Yes!

TP0 := {1}
TPσ→τ := {f : Bσ → Bτ | ∀x ∈ TPσ.fx ∈ TPτ}

FPσ is similar defined in false-preserving manner.

Claim
TP is a maximal comb. clone and furthermore contains all
true-preserving (in the old sense) first-order functions.

Theorem
TP is generated by its first-order elements ({If, 1}).

12 / 22



Background New Work

Proof.

Idea: Mimic the proof for G(B). Two issues:

First, Eqσ is generally not in TP: consider s, s ′ distinct in TPσ,
then Eqσss

′ = 0.

Solution: Augment our domain of “truth values” from B to
B→ B, treating λx .1 as true and λx .0, λx .x as false (ignore ¬).
We can then define an equality operator which is correct w.r.t.
these truth values. We now need to modify our logical branching
operations, but it all works out.

Second, the induction hypothesis won’t give us all elements as
before. How do we test equality on some ui non-TP if we don’t
already have an expression for it?

13 / 22



Background New Work

Proof.

Idea: Mimic the proof for G(B). Two issues:

First, Eqσ is generally not in TP: consider s, s ′ distinct in TPσ,
then Eqσss

′ = 0.

Solution: Augment our domain of “truth values” from B to
B→ B, treating λx .1 as true and λx .0, λx .x as false (ignore ¬).
We can then define an equality operator which is correct w.r.t.
these truth values. We now need to modify our logical branching
operations, but it all works out.

Second, the induction hypothesis won’t give us all elements as
before. How do we test equality on some ui non-TP if we don’t
already have an expression for it?

13 / 22



Background New Work

Proof (con’t).

Solution: We almost have an expression for it. By virtue of
previous theorem, {If, 0, 1} is a basis for G(B).

For any s ∈ Bσ there is a Ts ∈ TP0→σ such that Ts0 = s
(abstract away all instances of 0 in the expression for s.

Can we guarantee that 0 can be recovered from a non-TP
element? Indicator function for TPσ: IsTPσ : Bσ → B.

IsTP0 = λx .x

IsTPσ→τ = λf .
N∧
i=1

IsTPτ (fsi ) (TPσ = {s1, . . . , sN})

14 / 22



Background New Work

Proof (con’t).

Solution: We almost have an expression for it. By virtue of
previous theorem, {If, 0, 1} is a basis for G(B).

For any s ∈ Bσ there is a Ts ∈ TP0→σ such that Ts0 = s
(abstract away all instances of 0 in the expression for s.

Can we guarantee that 0 can be recovered from a non-TP
element? Indicator function for TPσ: IsTPσ : Bσ → B.

IsTP0 = λx .x

IsTPσ→τ = λf .
N∧
i=1

IsTPτ (fsi ) (TPσ = {s1, . . . , sN})

14 / 22



Background New Work

Proof (con’t).

Solution: We almost have an expression for it. By virtue of
previous theorem, {If, 0, 1} is a basis for G(B).

For any s ∈ Bσ there is a Ts ∈ TP0→σ such that Ts0 = s
(abstract away all instances of 0 in the expression for s.

Can we guarantee that 0 can be recovered from a non-TP
element? Indicator function for TPσ: IsTPσ : Bσ → B.

IsTP0 = λx .x

IsTPσ→τ = λf .
N∧
i=1

IsTPτ (fsi ) (TPσ = {s1, . . . , sN})

14 / 22



Background New Work

Proof (con’t).

Solution: We almost have an expression for it. By virtue of
previous theorem, {If, 0, 1} is a basis for G(B).

For any s ∈ Bσ there is a Ts ∈ TP0→σ such that Ts0 = s
(abstract away all instances of 0 in the expression for s.

Can we guarantee that 0 can be recovered from a non-TP
element? Indicator function for TPσ: IsTPσ : Bσ → B.

IsTP0 = λx .x

IsTPσ→τ = λf .
N∧
i=1

IsTPτ (fsi ) (TPσ = {s1, . . . , sN})

14 / 22



Background New Work

Challenge revisited

From previous theorem, {If, 1} is a basis for TP and analogously
{If, 0} is a basis for FP.

Recall the following functional from beginning of talk:

f Pf

λx .0 λx .x
λx .x λx .0
¬ λx .1
λx .1 λx .x

Since P is false-preserving, you can define it using just If, 0.

Since P is not true-preserving, you cannot define it from If, 1
alone.

15 / 22



Background New Work

Challenge revisited

From previous theorem, {If, 1} is a basis for TP and analogously
{If, 0} is a basis for FP.

Recall the following functional from beginning of talk:

f Pf

λx .0 λx .x
λx .x λx .0
¬ λx .1
λx .1 λx .x

Since P is false-preserving, you can define it using just If, 0.

Since P is not true-preserving, you cannot define it from If, 1
alone.

15 / 22



Background New Work

Challenge revisited

From previous theorem, {If, 1} is a basis for TP and analogously
{If, 0} is a basis for FP.

Recall the following functional from beginning of talk:

f Pf

λx .0 λx .x
λx .x λx .0
¬ λx .1
λx .1 λx .x

Since P is false-preserving, you can define it using just If, 0.

Since P is not true-preserving, you cannot define it from If, 1
alone.

15 / 22



Background New Work

Challenge revisited

From previous theorem, {If, 1} is a basis for TP and analogously
{If, 0} is a basis for FP.

Recall the following functional from beginning of talk:

f Pf

λx .0 λx .x
λx .x λx .0
¬ λx .1
λx .1 λx .x

Since P is false-preserving, you can define it using just If, 0.

Since P is not true-preserving, you cannot define it from If, 1
alone.

15 / 22



Background New Work

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let
FTP := FP ∩ TP.

Lemma
Let s ∈ Bσ be false- and true-preserving. Then σ is a tautology.

Proof.
Suppose not. Then there is a lambda def. S : σ → 0, meaning
that Ss ∈ B is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements ({If}).

16 / 22



Background New Work

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let
FTP := FP ∩ TP.

Lemma
Let s ∈ Bσ be false- and true-preserving. Then σ is a tautology.

Proof.
Suppose not. Then there is a lambda def. S : σ → 0, meaning
that Ss ∈ B is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements ({If}).

16 / 22



Background New Work

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let
FTP := FP ∩ TP.

Lemma
Let s ∈ Bσ be false- and true-preserving. Then σ is a tautology.

Proof.
Suppose not. Then there is a lambda def. S : σ → 0, meaning
that Ss ∈ B is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements ({If}).

16 / 22



Background New Work

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let
FTP := FP ∩ TP.

Lemma
Let s ∈ Bσ be false- and true-preserving. Then σ is a tautology.

Proof.
Suppose not. Then there is a lambda def. S : σ → 0, meaning
that Ss ∈ B is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements ({If}).

16 / 22



Background New Work

Proof.
Let f ∈ FTPσ1→...→σN→0. By previous lemma there is some i and lambda
def. S : σi → 0.

Let f = MIf1 and f = NIf0 for lambda def. M,N. Claim:

f = λx1 . . . xN .If(Sxi )(MIf(Sxi )x̄)(NIf(Sxi )x̄).

For arbitrary s1, . . . , sN we have that

(λx̄ .If(Sxi )(MIf(Sxi )x̄)(NIf(Sxi )x̄))s̄ = If(Ssi )(MIf(Ssi )s̄)(NIf(Ssi )s̄)

=

{
MIf1s̄ Ssi = 1

NIf0s̄ Ssi = 0

=

{
f s̄ Ssi = 1

f s̄ Ssi = 0

= f s̄.

17 / 22



Background New Work

Generalizing self-duality
Intuition: dual of an element is that element with the roles of 0, 1
reversed.

d0x := ¬x
dσ→τ f := λx .dτ (f (dσx))

ex. Let f : B→ B→ B.

d0→0→0f = λx .d0→0(f (d0x))

= λxy .d0(f (d0x)(d0y))

= λxy .¬(f (¬x)(¬y))

Let SDσ := {x ∈ Bσ | dσx = x}.

Claim
SD is a maximal comb. clone w.r.t. Gtaut(B) and furthermore
contains all self-dual (in the old sense) first-order functions.

18 / 22



Background New Work

Claim
SD is generated by its first-order elements ({¬,Maj}).

Proof uses same ideas from TP proof (reinterpret logical branching
operations, use expressions that “almost” define terms) but
trickier.

Let DP := FTP ∩ SD.

Claim
DP is also generated by its first-order elements ({Maj,⊕3}).

19 / 22



Background New Work

Claim
SD is generated by its first-order elements ({¬,Maj}).

Proof uses same ideas from TP proof (reinterpret logical branching
operations, use expressions that “almost” define terms) but
trickier.

Let DP := FTP ∩ SD.

Claim
DP is also generated by its first-order elements ({Maj,⊕3}).

19 / 22



Background New Work

Summary

G(B)

Gtaut(B)FP TP

FPtaut TPtaut
SD

FTP

DP

(FPtaut := FP ∩ Gtaut(B) and TPtaut := TP ∩ Gtaut(B))
20 / 22



Background New Work

The not so nice stuff

The proper generalization of the monotone functions is tricky:

Mon0 := {0, 1}
≤0 :=≤

Monσ→τ := {f | ∀s ∈Monσ.fs ∈Monτ &

∀s, s ′ ∈Monσ, s ≤σ s ⇒ fs ≤τ fs ′}.
f ≤σ→τ g := ∀s ∈Monσ.fs ≤τ gs.

Claim
Mon is not generated by its first-order elements (isMon0→0 is a
counterexample).

Little is known about how to generalize the affine functions.

21 / 22



Background New Work

The not so nice stuff

The proper generalization of the monotone functions is tricky:

Mon0 := {0, 1}
≤0 :=≤

Monσ→τ := {f | ∀s ∈Monσ.fs ∈Monτ &

∀s, s ′ ∈Monσ, s ≤σ s ⇒ fs ≤τ fs ′}.
f ≤σ→τ g := ∀s ∈Monσ.fs ≤τ gs.

Claim
Mon is not generated by its first-order elements (isMon0→0 is a
counterexample).

Little is known about how to generalize the affine functions.

21 / 22



Background New Work

The not so nice stuff

The proper generalization of the monotone functions is tricky:

Mon0 := {0, 1}
≤0 :=≤

Monσ→τ := {f | ∀s ∈Monσ.fs ∈Monτ &

∀s, s ′ ∈Monσ, s ≤σ s ⇒ fs ≤τ fs ′}.
f ≤σ→τ g := ∀s ∈Monσ.fs ≤τ gs.

Claim
Mon is not generated by its first-order elements (isMon0→0 is a
counterexample).

Little is known about how to generalize the affine functions.

21 / 22



Background New Work

The not so nice stuff

The proper generalization of the monotone functions is tricky:

Mon0 := {0, 1}
≤0 :=≤

Monσ→τ := {f | ∀s ∈Monσ.fs ∈Monτ &

∀s, s ′ ∈Monσ, s ≤σ s ⇒ fs ≤τ fs ′}.
f ≤σ→τ g := ∀s ∈Monσ.fs ≤τ gs.

Claim
Mon is not generated by its first-order elements (isMon0→0 is a
counterexample).

Little is known about how to generalize the affine functions.

21 / 22



Background New Work

Thank you for your attention.

22 / 22


	Background
	New Work

