Relative Definability of Higher-order Functions in Simply Typed Lambda Calculus

Evan Marzion

Background

New Work

Challenge

Write a program $P:(\mathbf{B} \rightarrow \mathbf{B}) \rightarrow \mathbf{B} \rightarrow \mathbf{B}$
with the following behavior ${ }^{1}$ using only $\mathbf{0}, \mathbf{1}$, and If : $\mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B}$:

f	$P f$
$\lambda x . \mathbf{0}$	$\lambda x . x$
$\lambda x . x$	$\lambda x . \mathbf{0}$
\neg	$\lambda x . \mathbf{1}$
$\lambda x . \mathbf{1}$	$\lambda x . x$

Just using If, 0? If, $\mathbf{1}$?
${ }^{1}$ extensional behavior, so for instance $\lambda x . \mathbf{0}$ and λx.If $\times \mathbf{0} \mathbf{0}$ are identified.

Challenge

Write a program $P:(\mathbf{B} \rightarrow \mathbf{B}) \rightarrow \mathbf{B} \rightarrow \mathbf{B}$
with the following behavior ${ }^{1}$ using only $\mathbf{0}, \mathbf{1}$, and If $: \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B}$:

f	$P f$
$\lambda x . \mathbf{0}$	$\lambda x . x$
$\lambda x . x$	$\lambda x . \mathbf{0}$
\neg	$\lambda x . \mathbf{1}$
$\lambda x . \mathbf{1}$	$\lambda x . x$

Just using If, 0? If, $\mathbf{1}$?
${ }^{1}$ extensional behavior, so for instance $\lambda x . \mathbf{0}$ and λx.If $\times \mathbf{0} \mathbf{0}$ are identified.

We want to study relative definability of boolean constants/functions/functionals in the context of STLC: Given M_{1}, \ldots, M_{n}, can I express N ? Why or why not?

Previous work:

1. Post's work on clones of boolean connectives $\left(\mathbf{B}^{k} \rightarrow \mathbf{B}\right)$
2. Pure lambda-definability in the finite type hierarchy (Plotkin, others)

We want to study relative definability of boolean constants/functions/functionals in the context of STLC: Given M_{1}, \ldots, M_{n}, can I express N ? Why or why not?

Previous work:

1. Post's work on clones of boolean connectives $\left(\mathbf{B}^{k} \rightarrow \mathbf{B}\right)$
2. Pure lambda-definability in the finite type hierarchy (Plotkin, others)

We want to study relative definability of boolean constants/functions/functionals in the context of STLC: Given M_{1}, \ldots, M_{n}, can I express N ? Why or why not?

Previous work:

1. Post's work on clones of boolean connectives $\left(\mathbf{B}^{k} \rightarrow \mathbf{B}\right)$
2. Pure lambda-definability in the finite type hierarchy (Plotkin, others)

Clones

Fix a set X.

A clone over X is a set \mathcal{C} of operations $X^{k} \rightarrow X$ containing projections and closed under generalized composition:

$$
f, g_{1}, \ldots, g_{k} \in \mathcal{C} \Rightarrow \mathbf{x} \mapsto f\left(g_{1}(\mathbf{x}), \ldots, g_{k}(\mathbf{x})\right) \in \mathcal{C}
$$

> Emil Post (1941) gives a complete characterization of clones over B along with bases.

Five maximal classes:
(i) False-preserving (P_{0}) $f(\mathbf{0}, \ldots, 0)=\mathbf{0}$
(ii) True-preserving (P_{1}) $f(1, \ldots, 1)=1$
(iii) Monotone (M) $\mathbf{x} \leq \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathrm{y})$
(iv) Self-dual (D)
$f(\neg \mathbf{x})=\neg f(\mathbf{x})$
(v) Affine (A)
$f(x)=v \cdot x \oplus b$

Five maximal classes:
(i) False-preserving (P_{0}) $f(\mathbf{0}, \ldots, \mathbf{0})=\mathbf{0}$
(ii) True-preserving (P_{1}) $f(1, \ldots, 1)=1$
(ii) Monotone (M) $x \leq y \Rightarrow f(x) \leq f(y)$
(iv) Self-dual (D)
$f(\neg \mathbf{x})=\neg f(\mathbf{x})$
(v) Affine (A)
$f(\mathbf{x})=\mathbf{v} \cdot \mathbf{x} \oplus b$

Five maximal classes:
(i) False-preserving (P_{0}) $f(0, \ldots, 0)=0$
(ii) True-preserving (P_{1}) $f(\mathbf{1}, \ldots, \mathbf{1})=\mathbf{1}$
(iii) Monotone (M) $\mathbf{x} \leq \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathbf{y})$
(iv) Self-dual (D) $f(\neg x)=\neg f(x)$
(v) Affine (A) $f(\mathbf{x})=\mathbf{v} \cdot \mathbf{x} \oplus b$

Five maximal classes:
(i) False-preserving (P_{0}) $f(0, \ldots, 0)=0$
(ii) True-preserving (P_{1}) $f(1, \ldots, 1)=1$
(iii) Monotone (M)

$$
\mathbf{x} \leq \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathbf{y})
$$

(v) Affine (A)

Five maximal classes:
(i) False-preserving (P_{0}) $f(0, \ldots, 0)=0$
(ii) True-preserving (P_{1}) $f(1, \ldots, 1)=1$
(iii) Monotone (M)
$\mathbf{x} \leq \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathbf{y})$
(iv) Self-dual (D)
$f(\neg \mathbf{x})=\neg f(\mathbf{x})$

Five maximal classes:
(i) False-preserving (P_{0}) $f(0, \ldots, 0)=0$
(ii) True-preserving (P_{1}) $f(1, \ldots, 1)=1$
(iii) Monotone (M)
$\mathbf{x} \leq \mathbf{y} \Rightarrow f(\mathbf{x}) \leq f(\mathbf{y})$
(iv) Self-dual (D)
$f(\neg \mathbf{x})=\neg f(\mathbf{x})$
(v) Affine (A)
$f(\mathbf{x})=\mathbf{v} \cdot \mathbf{x} \oplus b$

Clones in a higher order setting

Fix a set X. Types: $\mathcal{T}:=0 \mid \sigma \rightarrow \tau$

$$
\begin{aligned}
X_{0} & :=X \\
X_{\sigma \rightarrow \tau} & :=X_{\tau}^{X_{\sigma}}
\end{aligned}
$$

A combinatory clone over X is a set of operations in X_{σ} containing all \mathbf{S} and \mathbf{K} combinators and closed under application.

By combinatory completeness, we just use lambda notation.
ex. V is in the combinatory clone generated by \wedge, \neg since $\vee=\lambda x y \cdot \neg((\neg x) \wedge(\neg y))$

Clones in a higher order setting

Fix a set X. Types: $\mathcal{T}:=0 \mid \sigma \rightarrow \tau$

$$
\begin{aligned}
X_{0} & :=X \\
X_{\sigma \rightarrow \tau} & :=X_{\tau}^{X_{\sigma}}
\end{aligned}
$$

A combinatory clone over X is a set of operations in X_{σ} containing all \mathbf{S} and \mathbf{K} combinators and closed under application.

By combinatory completeness, we just use lambda notation.
ex. \vee is in the combinatory clone generated by \wedge, \neg since $\vee=\lambda x y . \neg((\neg x) \wedge(\neg y))$.

Clones and combinatory clones

First-order types: $0,0 \rightarrow 0,0 \rightarrow 0 \rightarrow 0$, etc.
All functions $X^{k} \rightarrow X$ can be thought as having a first-order type (currying).
Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.

> Theorem
> Let g be comb. clone-definable from f_{1}, \ldots, f_{n}, all first-order Then g is already clone-definable from f_{1}, \ldots, f_{n}.

Proof
Consider long normal forms.
Corollary
For every clone \mathcal{C}, there is always a comb. clone \mathcal{G} whose restriction is \mathcal{C}

Clones and combinatory clones

First-order types: $0,0 \rightarrow 0,0 \rightarrow 0 \rightarrow 0$, etc.
All functions $X^{k} \rightarrow X$ can be thought as having a first-order type (currying).
Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.

Theorem
Let g be comb. clone-definable from f_{1}, \ldots, f_{n}, all first-order.
Then g is already clone-definable from f_{1}, \ldots, f_{n}.
Proof.
Consider long normal forms
Corollary
For every clone \mathcal{C}, there is always a comb. clone \mathcal{G} whose restriction is \mathcal{C}

Clones and combinatory clones

First-order types: $0,0 \rightarrow 0,0 \rightarrow 0 \rightarrow 0$, etc.
All functions $X^{k} \rightarrow X$ can be thought as having a first-order type (currying).
Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.
Theorem
Let g be comb. clone-definable from f_{1}, \ldots, f_{n}, all first-order.
Then g is already clone-definable from f_{1}, \ldots, f_{n}.
Proof.
Consider long normal forms.
Corollary
For every clone \mathcal{C}, there is always a comb. clone \mathcal{G} whose restriction is \mathcal{C}.

Clones and combinatory clones

First-order types: $0,0 \rightarrow 0,0 \rightarrow 0 \rightarrow 0$, etc.
All functions $X^{k} \rightarrow X$ can be thought as having a first-order type (currying).
Clone definability is preserved in combinatory clone setting. Thus, the restriction of a comb. clone to first-order types yields a clone.

Theorem
Let g be comb. clone-definable from f_{1}, \ldots, f_{n}, all first-order.
Then g is already clone-definable from f_{1}, \ldots, f_{n}.
Proof.
Consider long normal forms.

Corollary

For every clone \mathcal{C}, there is always a comb. clone \mathcal{G} whose restriction is \mathcal{C}.

Counterexample

Let $F:(\mathbf{B} \rightarrow \mathbf{B}) \rightarrow \mathbf{B} \rightarrow \mathbf{B}$ denote the following functional:

f	$F f$
$\lambda x . \mathbf{0}$	$\lambda x . \mathbf{0}$
$\lambda x . x$	$\lambda x . x$
\neg	$\lambda x . \mathbf{0}$
$\lambda x . \mathbf{1}$	$\lambda x . \mathbf{1}$

Claim
The only first-order functions definable from F are projections.
Corollary
There are two distinct comb. clones with the same clone restriction.

Counterexample

Let $F:(\mathbf{B} \rightarrow \mathbf{B}) \rightarrow \mathbf{B} \rightarrow \mathbf{B}$ denote the following functional:

f	$F f$
$\lambda x . \mathbf{0}$	$\lambda x . \mathbf{0}$
$\lambda x . x$	$\lambda x . x$
\neg	$\lambda x . \mathbf{0}$
$\lambda x . \mathbf{1}$	$\lambda x . \mathbf{1}$

Lemma
F is not lambda definable.

Claim
The only first-order functions definable from F are projections.
Corollary
There are two distinct comb. clones with the same clone restriction.

Counterexample

Let $F:(\mathbf{B} \rightarrow \mathbf{B}) \rightarrow \mathbf{B} \rightarrow \mathbf{B}$ denote the following functional:

f	$F f$
$\lambda x . \mathbf{0}$	$\lambda x . \mathbf{0}$
$\lambda x . x$	$\lambda x . x$
\neg	$\lambda x . \mathbf{0}$
$\lambda x . \mathbf{1}$	$\lambda x . \mathbf{1}$

Lemma
F is not lambda definable.

Claim
The only first-order functions definable from F are projections.

There are two distinct comb. clones with the same clone restriction.

Counterexample

Let $F:(\mathbf{B} \rightarrow \mathbf{B}) \rightarrow \mathbf{B} \rightarrow \mathbf{B}$ denote the following functional:

f	$F f$
$\lambda x . \mathbf{0}$	$\lambda x . \mathbf{0}$
$\lambda x . x$	$\lambda x . x$
\neg	$\lambda x . \mathbf{0}$
$\lambda x . \mathbf{1}$	$\lambda x . \mathbf{1}$

Lemma
F is not lambda definable.
Proof.
Lnf's of $(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$ are $\lambda f x . f^{k} x$, none of which represent F.

Claim
The only first-order functions definable from F are projections.

There are two distinct comb. clones with the same clone restriction.

Counterexample

Let $F:(\mathbf{B} \rightarrow \mathbf{B}) \rightarrow \mathbf{B} \rightarrow \mathbf{B}$ denote the following functional:

f	$F f$
$\lambda x . \mathbf{0}$	$\lambda x . \mathbf{0}$
$\lambda x . x$	$\lambda x . x$
\neg	$\lambda x . \mathbf{0}$
$\lambda x . \mathbf{1}$	$\lambda x . \mathbf{1}$

Lemma
F is not lambda definable.
Proof.
Lnf's of $(0 \rightarrow 0) \rightarrow 0 \rightarrow 0$ are $\lambda f x . f^{k} x$, none of which represent F.

Claim
The only first-order functions definable from F are projections.
Corollary
There are two distinct comb. clones with the same clone restriction.

A brief nitpick

Post excludes constants (0-ary functions) from his classification. Why? Because constants can never be defined from non-constants.
ex. Does the formula $P \wedge \neg P$ really define $\mathbf{0}$? In Post's framework this is actually a unary function $(P \mapsto P \wedge \neg P)$ which represents a constant function ($\lambda x .0$).

Issue: $X^{k} \rightarrow X$ is tautology (via C-H) iff $k>0$.

We can create boring comb. clones from a deductively closed theory in minimal int. logic.

Every type is logically equivalent to either 0 or $0 \rightarrow 0$ (in single atom case) so there are only two in our case. ($\mathcal{G}(\mathbf{B})$ and $\left.\mathcal{G}^{\text {taut }}(\mathbf{B})\right)$

Theorem
$\mathcal{G}(\mathbf{B})$ is generated by the first-order elements ($\{\mathbf{I f}, \mathbf{0}, \mathbf{1}\}$).

Induction on type. Key ideas:

x	f_{X}
s_{1}	t_{1}
s_{2}	t_{2}
\vdots	\vdots
s_{N-1}	t_{N-1}
s_{N}	t_{N}

(i) $\mathbf{I f}_{\sigma}: \mathbf{B} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma}$ is definable from $\mathrm{If}_{0}=$ If
(ii) $\mathbf{E q}_{\sigma \rightarrow \tau} \in \mathbf{B}_{(\sigma \rightarrow \tau) \rightarrow(\sigma \rightarrow \tau) \rightarrow 0}$ is definable from the elements of $\mathbf{B}_{\sigma}, \mathbf{E q}_{\tau}$, and \wedge.
(iii) An arbitrary $f \in \mathbf{B}_{\sigma \rightarrow \tau}$ can be defined
from elements of $\mathbf{B}_{\sigma}, \mathbf{B}_{\tau}, \mathbf{E q}_{\sigma}$, and $\mathbf{I f}_{\tau}$
("if \times equals s_{1} then t_{1} else if \times equals s_{2}
then t_{2} else...")

Theorem
$\mathcal{G}(\mathbf{B})$ is generated by the first-order elements (\{If, $\mathbf{0}, \mathbf{1}\})$.
Proof.
Induction on type. Key ideas:

x	f_{x}
s_{1}	t_{1}
s_{2}	t_{2}
\vdots	\vdots
s_{N-1}	t_{N-1}
s_{N}	t_{N}

\square ("if x equals s_{1} then t_{1} else if x equals s_{2} then t_{2} else...")

Theorem
$\mathcal{G}(\mathbf{B})$ is generated by the first-order elements ($\{\mathbf{I f}, \mathbf{0}, \mathbf{1}\}$).
Proof.
Induction on type. Key ideas:

x	$f x$
s_{1}	t_{1}
s_{2}	t_{2}
\vdots	\vdots
s_{N-1}	t_{N-1}
s_{N}	t_{N}

(i) If $\boldsymbol{f}_{\sigma}: \mathbf{B} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma}$ is definable from $\mathbf{I f}_{0}=\mathbf{I f}$
(ii) $\mathrm{Eq}_{\sigma \rightarrow \tau} \in \mathrm{B}_{(\sigma \rightarrow \tau) \rightarrow(\sigma \rightarrow \tau) \rightarrow 0}$ is definable from the elements of $\mathbf{B}_{\sigma}, \mathbf{E q}_{\tau}$, and \wedge. An arbitrary $f \in \mathbf{B}_{\sigma \rightarrow \tau}$ can be defined from elements of $\mathbf{B}_{\sigma}, \mathbf{B}_{\tau}, \mathrm{Eq}_{\sigma}$, and $\mathbf{I f}_{\tau}$ ("if \times equals s_{1} then t_{1} else if \times equals s_{2} then t_{2} else...")

Theorem
$\mathcal{G}(\mathbf{B})$ is generated by the first-order elements (\{If, $\mathbf{0}, \mathbf{1}\})$.
Proof.
Induction on type. Key ideas:

x	$f x$
s_{1}	t_{1}
s_{2}	t_{2}
\vdots	\vdots
s_{N-1}	t_{N-1}
s_{N}	t_{N}

(i) If $\boldsymbol{f}_{\sigma}: \mathbf{B} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma}$ is definable from $\mathbf{I f}_{0}=\mathbf{I f}$
(ii) $\mathbf{E q}_{\sigma \rightarrow \tau} \in \mathbf{B}_{(\sigma \rightarrow \tau) \rightarrow(\sigma \rightarrow \tau) \rightarrow 0}$ is definable from the elements of $\mathbf{B}_{\sigma}, \mathbf{E q}_{\tau}$, and \wedge.

An arbitrary $f \in \mathbf{B}_{\sigma \rightarrow \tau}$ can be defined from elements of $\mathbf{B}_{\sigma}, \mathbf{B}_{\tau}, \mathbf{E q}_{\sigma}$, and $\mathbf{I f}_{\tau}$ ("if x equals s_{1} then t_{1} else if \times equals s_{2} then t_{2} else...")

Theorem
$\mathcal{G}(\mathbf{B})$ is generated by the first-order elements ($\{\mathbf{I f}, \mathbf{0}, \mathbf{1}\}$).
Proof.
Induction on type. Key ideas:

x	f_{X}
s_{1}	t_{1}
s_{2}	t_{2}
\vdots	\vdots
s_{N-1}	t_{N-1}
s_{N}	t_{N}

(i) If $\boldsymbol{f}_{\sigma}: \mathbf{B} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\sigma}$ is definable from $\mathbf{I f}_{0}=\mathbf{I f}$
(ii) $\mathbf{E q}_{\sigma \rightarrow \tau} \in \mathbf{B}_{(\sigma \rightarrow \tau) \rightarrow(\sigma \rightarrow \tau) \rightarrow 0}$ is definable from the elements of $\mathbf{B}_{\sigma}, \mathbf{E q}_{\tau}$, and \wedge.
(iii) An arbitrary $f \in \mathbf{B}_{\sigma \rightarrow \tau}$ can be defined from elements of $\mathbf{B}_{\sigma}, \mathbf{B}_{\tau}, \mathbf{E q}_{\sigma}$, and $\mathbf{I f}_{\tau}$ ("if \times equals s_{1} then t_{1} else if \times equals s_{2} then t_{2} else...").

Generalizing true-preserving

Is there a maximal comb. clone which corresponds to true-preserving functions? Yes!

$$
\begin{aligned}
\mathbf{T P}_{0} & :=\{\mathbf{1}\} \\
\mathbf{T P}_{\sigma \rightarrow \tau} & :=\left\{f: \mathbf{B}_{\sigma} \rightarrow \mathbf{B}_{\tau} \mid \forall x \in \mathbf{T P}_{\sigma} . f x \in \mathbf{T} \mathbf{P}_{\tau}\right\}
\end{aligned}
$$

$\mathbf{F} \mathbf{P}_{\sigma}$ is similar defined in false-preserving manner.
Claim
TP is a maximal comb. clone and furthermore contains all true-preserving (in the old sense) first-order functions.

Theorem
TP is generated by its first-order elements (\{If, $\mathbf{1}\}$).

Proof.

Idea: Mimic the proof for $\mathcal{G}(\mathbf{B})$. Two issues:

First, $\mathbf{E q}_{\sigma}$ is generally not in TP: consider s, s^{\prime} distinct in $\mathbf{T P}_{\sigma}$, then $\mathbf{E q}_{\sigma} s s^{\prime}=\mathbf{0}$.

Solution: Augment our domain of "truth values" from B to
$\mathbf{B} \rightarrow \mathbf{B}$, treating $\lambda x .1$ as true and $\lambda x .0, \lambda x . x$ as false (ignore -).
We can then define an equality operator which is correct w.r.t. these truth values. We now need to modify our logical branching operations, but it all works out.

Second, the induction hypothesis won't give us all elements as before. How do we test equality on some u_{i} non-TP if we don't already have an expression for it?

Proof.

Idea: Mimic the proof for $\mathcal{G}(\mathbf{B})$. Two issues:

First, $\mathbf{E q}_{\sigma}$ is generally not in TP: consider s, s^{\prime} distinct in $\mathbf{T P}_{\sigma}$, then $\mathbf{E q}_{\sigma} s s^{\prime}=\mathbf{0}$.

Solution: Augment our domain of "truth values" from B to $\mathbf{B} \rightarrow \mathbf{B}$, treating $\lambda x . \mathbf{1}$ as true and $\lambda x . \mathbf{0}, \lambda x . x$ as false (ignore \neg).
We can then define an equality operator which is correct w.r.t. these truth values. We now need to modify our logical branching operations, but it all works out.

Second, the induction hypothesis won't give us all elements as before. How do we test equality on some u_{i} non-TP if we don't already have an expression for it?

Proof (con't).

Solution: We almost have an expression for it. By virtue of previous theorem, $\{\mathbf{I f}, \mathbf{0}, \mathbf{1}\}$ is a basis for $\mathcal{G}(\mathbf{B})$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_{s} \in \mathbf{T} \mathbf{P}_{0 \rightarrow \sigma}$ such that $T_{s} \mathbf{0}=s$ (abstract away all instances of $\mathbf{0}$ in the expression for s.

Can we guarantee that $\mathbf{0}$ can be recovered from a non-TP element? Indicator function for $\mathbf{T P}_{\sigma}$: IsTP $\mathbf{F}_{\sigma}: \mathbf{B}_{\sigma} \rightarrow \mathbf{B}$.
$\mathbf{I s} \mathbf{T P} \mathbf{P}_{0}=\lambda x \cdot x$

Proof (con't).

Solution: We almost have an expression for it. By virtue of previous theorem, $\{\mathbf{I f}, \mathbf{0}, \mathbf{1}\}$ is a basis for $\mathcal{G}(\mathbf{B})$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_{s} \in \mathbf{T P}_{0 \rightarrow \sigma}$ such that $T_{s} \mathbf{0}=s$ (abstract away all instances of $\mathbf{0}$ in the expression for s.

Can we guarantee that $\mathbf{0}$ can be recovered from a non-TP element?
$\mathbf{I s T P}_{0}=\lambda x \cdot x$

Proof (con't).

Solution: We almost have an expression for it. By virtue of previous theorem, $\{\mathbf{I f}, \mathbf{0}, \mathbf{1}\}$ is a basis for $\mathcal{G}(\mathbf{B})$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_{s} \in \mathbf{T P}_{0 \rightarrow \sigma}$ such that $T_{s} \mathbf{0}=s$ (abstract away all instances of $\mathbf{0}$ in the expression for s.

Can we guarantee that $\mathbf{0}$ can be recovered from a non-TP element? Indicator function for $\mathbf{T P}_{\sigma}: \mathbf{I s T P}_{\sigma}: \mathbf{B}_{\sigma} \rightarrow \mathbf{B}$.
$\mathrm{IsTP}_{0}=\lambda x \cdot x$

Proof (con't).

Solution: We almost have an expression for it. By virtue of previous theorem, $\{\mathbf{I f}, \mathbf{0}, \mathbf{1}\}$ is a basis for $\mathcal{G}(\mathbf{B})$.

For any $s \in \mathbf{B}_{\sigma}$ there is a $T_{s} \in \mathbf{T P}_{0 \rightarrow \sigma}$ such that $T_{s} \mathbf{0}=s$ (abstract away all instances of $\mathbf{0}$ in the expression for s.

Can we guarantee that $\mathbf{0}$ can be recovered from a non-TP element? Indicator function for $\mathbf{T P}_{\sigma}: \mathbf{I s T P}_{\sigma}: \mathbf{B}_{\sigma} \rightarrow \mathbf{B}$.
$\mathbf{I s} \mathbf{T} \mathbf{P}_{0}=\lambda x \cdot x$

$$
\mathbf{I s T P}_{\sigma \rightarrow \tau}=\lambda f . \bigwedge_{i=1}^{N} \mathbf{I s T P}_{\tau}\left(f s_{i}\right) \quad\left(\mathbf{T P}_{\sigma}=\left\{s_{1}, \ldots, s_{N}\right\}\right)
$$

Challenge revisited

From previous theorem, $\{\mathbf{I f}, \mathbf{1}\}$ is a basis for TP and analogously $\{\mathbf{I f}, \mathbf{0}\}$ is a basis for $\mathbf{F P}$.

Recall the following functional from beginning of talk

Since P is false-preserving, you can define it using just If, $\mathbf{0}$.

Since P is not true-preserving, you cannot define it from If, $\mathbf{1}$
alone.

Challenge revisited

From previous theorem, $\{\mathbf{I f}, \mathbf{1}\}$ is a basis for TP and analogously $\{\mathbf{I f}, \mathbf{0}\}$ is a basis for $\mathbf{F P}$.

Recall the following functional from beginning of talk:

f	$P f$
$\lambda x . \mathbf{0}$	$\lambda x . x$
$\lambda x . x$	$\lambda x . \mathbf{0}$
\neg	$\lambda x . \mathbf{1}$
$\lambda x . \mathbf{1}$	$\lambda x . x$

Since P is false-preserving, you can define it using just If, 0
Since P is not true-preserving, you cannot define it from If, $\mathbf{1}$
alone.

Challenge revisited

From previous theorem, $\{\mathbf{I f}, \mathbf{1}\}$ is a basis for TP and analogously $\{\mathbf{I f}, \mathbf{0}\}$ is a basis for FP.

Recall the following functional from beginning of talk:

f	$P f$
$\lambda x . \mathbf{0}$	$\lambda x \cdot x$
$\lambda x \cdot x$	$\lambda x . \mathbf{0}$
\neg	$\lambda x . \mathbf{1}$
$\lambda x . \mathbf{1}$	$\lambda x \cdot x$

Since P is false-preserving, you can define it using just If, $\mathbf{0}$.

Since P is not true-preserving, you cannot define it from If, $\mathbf{1}$
alone.

Challenge revisited

From previous theorem, $\{\mathbf{I f}, \mathbf{1}\}$ is a basis for TP and analogously $\{$ If, $\mathbf{0}\}$ is a basis for FP.

Recall the following functional from beginning of talk:

f	$P f$
$\lambda x . \mathbf{0}$	$\lambda x \cdot x$
$\lambda x \cdot x$	$\lambda x . \mathbf{0}$
\neg	$\lambda x . \mathbf{1}$
$\lambda x . \mathbf{1}$	$\lambda x \cdot x$

Since P is false-preserving, you can define it using just If, $\mathbf{0}$.

Since P is not true-preserving, you cannot define it from If, $\mathbf{1}$ alone.

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let FTP := FP \cap TP.

Lemma
Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.
Proof.
Suppose not. Then there is a lambda def. $S: \sigma \rightarrow 0$, meaning that $S s \in \mathbf{B}$ is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements (\{If\}).

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let FTP := FP $\cap \mathbf{T P}$.

Lemma
Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.
Proof.
Suppose not. Then there is a lambda def. $S: \sigma \rightarrow 0$, meaning that $S s \in \mathbf{B}$ is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements (\{If\}).

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let FTP := FP \cap TP.

Lemma
Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.
Proof.
Suppose not. Then there is a lambda def. $S: \sigma \rightarrow 0$, meaning that $S s \in \mathbf{B}$ is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements (\{If\}).

An easy corollary for false- and true-preserving functions

Comb. clones are closed under intersections. Thus, let FTP := FP \cap TP.

Lemma
Let $s \in \mathbf{B}_{\sigma}$ be false- and true-preserving. Then σ is a tautology.
Proof.
Suppose not. Then there is a lambda def. $S: \sigma \rightarrow 0$, meaning that $S s \in \mathbf{B}$ is both false- and true-preserving.

Theorem
FTP is generated by its firstorder elements (\{If\}).

Proof.

Let $f \in \mathbf{F T P}_{\sigma_{1} \rightarrow \ldots \rightarrow \sigma_{N} \rightarrow 0}$. By previous lemma there is some i and lambda def. $S: \sigma_{i} \rightarrow 0$.

Let $f=$ MIf1 and $f=$ NIf0 for lambda def. M, N. Claim:

$$
f=\lambda x_{1} \ldots x_{N} \cdot \mathbf{I f}\left(S x_{i}\right)\left(M \operatorname{If}\left(S x_{i}\right) \bar{x}\right)\left(N \operatorname{If}\left(S x_{i}\right) \bar{x}\right) .
$$

For arbitrary s_{1}, \ldots, s_{N} we have that

$$
\begin{aligned}
\left(\lambda \bar{x} . \mathbf{I f}\left(S x_{i}\right)\left(M \mathbf{I f}\left(S x_{i}\right) \bar{x}\right)\left(N \mathbf{I f}\left(S x_{i}\right) \bar{x}\right)\right) \bar{s} & =\mathbf{I f}\left(S s_{i}\right)\left(M \mathbf{I f}\left(S s_{i}\right) \bar{s}\right)\left(N \mathbf{I f}\left(S s_{i}\right) \bar{s}\right) \\
& = \begin{cases}M \mathbf{I f} 1 \bar{s} & S s_{i}=\mathbf{1} \\
N \mathbf{I f} 0 \bar{s} & S s_{i}=\mathbf{0}\end{cases} \\
& = \begin{cases}f \bar{s} & S s_{i}=\mathbf{1} \\
f \bar{s} & S s_{i}=\mathbf{0}\end{cases} \\
& =f \bar{s} .
\end{aligned}
$$

Generalizing self-duality

Intuition: dual of an element is that element with the roles of $\mathbf{0 , 1}$ reversed.

$$
\begin{aligned}
d_{0} x & :=\neg x \\
d_{\sigma \rightarrow \tau} f & :=\lambda x \cdot d_{\tau}\left(f\left(d_{\sigma} x\right)\right)
\end{aligned}
$$

ex. Let $f: \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B}$.

$$
\begin{aligned}
d_{0 \rightarrow 0 \rightarrow 0} f & =\lambda x \cdot d_{0 \rightarrow 0}\left(f\left(d_{0} x\right)\right) \\
& =\lambda x y \cdot d_{0}\left(f\left(d_{0} x\right)\left(d_{0} y\right)\right) \\
& =\lambda x y \cdot \neg(f(\neg x)(\neg y))
\end{aligned}
$$

Let $\mathbf{S D}_{\sigma}:=\left\{x \in \mathbf{B}_{\sigma} \mid d_{\sigma} x=x\right\}$.
Claim
$\mathbf{S D}$ is a maximal comb. clone w.r.t. $\mathcal{G}^{\text {taut }}(\mathbf{B})$ and furthermore contains all self-dual (in the old sense) first-order functions.

Claim

SD is generated by its first-order elements ($\{\neg, \mathbf{M a j}\}$).
Proof uses same ideas from TP proof (reinterpret logical branching operations, use expressions that "almost" define terms) but trickier.

Let $D P:=F T P \cap S D$.
Claim
DP is also generated by its first-order elements ($\left\{\mathrm{Maj}, \oplus_{3}\right\}$).

Claim

SD is generated by its first-order elements ($\{\neg, \mathbf{M a j}\}$).
Proof uses same ideas from TP proof (reinterpret logical branching operations, use expressions that "almost" define terms) but trickier.

Let $\mathbf{D P}:=\mathbf{F T P} \cap \mathbf{S D}$.
Claim
DP is also generated by its first-order elements ($\left\{\mathbf{M a j}, \oplus_{3}\right\}$).

Summary

$\left(\mathbf{F P}^{\text {taut }}:=\mathbf{F P} \cap \mathcal{G}^{\text {taut }}(\mathbf{B})\right.$ and $\left.\mathbf{T P}^{\text {taut }}:=\mathbf{T P} \cap \mathcal{G}^{\text {taut }}(\mathbf{B})\right)$

The not so nice stuff

The proper generalization of the monotone functions is tricky:

```
            Mono:= {0,1}
            so:=\leq
Mon
    \foralls,\mp@subsup{s}{}{\prime}\in\mp@subsup{M}{Mon}{\sigma},s\mp@subsup{\leq}{\sigma}{}s=>fs\mp@subsup{\leq}{\tau}{}\mp@subsup{f}{s}{\prime}}
f}\mp@subsup{\leq}{\sigma->\tau}{}g:=\foralls\in\mp@subsup{\operatorname{Mon}}{\sigma}{}.fs\mp@subsup{\leq}{\tau}{}gs
Mon is not generated by its first-order elements (isMon}\mp@subsup{0}{0->0}{}\mathrm{ is a
Little is known about how to generalize the affine functions.
```

Claim
counterexample).

The not so nice stuff

The proper generalization of the monotone functions is tricky:
Mon $_{0}:=\{\mathbf{0}, \mathbf{1}\}$

$$
\leq_{0}:=\leq
$$

$\operatorname{Mon}_{\sigma \rightarrow \tau}:=\left\{f \mid \forall s \in \operatorname{Mon}_{\sigma} . f s \in \operatorname{Mon}_{\tau}\right.$ \& $\left.\forall s, s^{\prime} \in \operatorname{Mon}_{\sigma}, s \leq_{\sigma} s \Rightarrow f s \leq_{\tau} f^{\prime}\right\}$. $f \leq_{\sigma \rightarrow \tau} g:=\forall s \in \operatorname{Mon}_{\sigma} . f s \leq_{\tau} g s$.

Claim
Mon is not generated by its first-order elements (isMon $\rightarrow_{0 \rightarrow 0}$ is a counterexample).

Little is known about how to generalize the affine functions.

The not so nice stuff

The proper generalization of the monotone functions is tricky:

$$
\begin{aligned}
\operatorname{Mon}_{0}:= & \{\mathbf{0}, \mathbf{1}\} \\
\leq_{0}:= & \leq \\
\operatorname{Mon}_{\sigma \rightarrow \tau}:= & \left\{f \mid \forall s \in \operatorname{Mon}_{\sigma} . f s \in \operatorname{Mon}_{\tau} \&\right. \\
& \left.\forall s, s^{\prime} \in \operatorname{Mon}_{\sigma}, s \leq_{\sigma} s \Rightarrow f s \leq_{\tau} f s^{\prime}\right\} . \\
f \leq_{\sigma \rightarrow \tau} g:= & \forall s \in \operatorname{Mon}_{\sigma} . f s \leq_{\tau} g s .
\end{aligned}
$$

Claim
Mon is not generated by its first-order elements (isMon $_{0 \rightarrow 0}$ is a counterexample).

Little is known about how to generalize the affine functions.

The not so nice stuff

The proper generalization of the monotone functions is tricky:

$$
\begin{aligned}
\operatorname{Mon}_{0}:= & \{\mathbf{0}, \mathbf{1}\} \\
\leq_{0}:= & \leq \\
\operatorname{Mon}_{\sigma \rightarrow \tau}:= & \left\{f \mid \forall s \in \operatorname{Mon}_{\sigma} . f s \in \operatorname{Mon}_{\tau} \&\right. \\
& \left.\forall s, s^{\prime} \in \operatorname{Mon}_{\sigma}, s \leq_{\sigma} s \Rightarrow f s \leq_{\tau} f s^{\prime}\right\} . \\
f \leq_{\sigma \rightarrow \tau} g:= & \forall s \in \operatorname{Mon}_{\sigma} . f s \leq_{\tau} g s .
\end{aligned}
$$

Claim
Mon is not generated by its first-order elements (isMon $_{0 \rightarrow 0}$ is a counterexample).

Little is known about how to generalize the affine functions.

Thank you for your attention.

