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René Thiemann

joint work with Jose Divasón, Sebastiaan Joosten,
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René Thiemann (CL @ UIBK) Perron–Frobenius for Complexity 2/30



Introduction

Overview

Introduction

Certifying Matrix Growth

Proofs

Formalization
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Introduction

Certification Approach

Take input problem, e.g., Boolean formula

Analyse using automated untrusted tools, e.g., run SAT-solver

Obtain answer (SAT/UNSAT) + certificate

Check certificate by trusted tool (trusted = formal proof)

Certification can be easy
positive answer of SAT-solver with assignment x ,¬y ,¬z , . . .
Certification can be hard or expensive
“there is no satisfying assignment”, DRAT, . . .
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Introduction

Complexity of Term Rewrite Systems

sort(Cons(x , xs))→ insort(x , sort(xs))

sort(Nil)→ Nil

insort(x ,Cons(y , ys))→ Cons(x ,Cons(y , ys)) | x 6 y

insort(x ,Cons(y , ys))→ Cons(y , insort(x , ys)) | x 66 y

insort(x ,Nil)→ Cons(x ,Nil)

Aim: bound on maximal number of rewrite steps starting from

sort(Cons(x1, . . .Cons(xn,Nil)))
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Introduction

Running automated complexity tool

Running TCT on TRS yields O(n2) + certificate

[[sort]](xs) =

3 3 0
0 0 1
0 0 1

 · [[xs]]

[[insort]](x , xs) =

1 1 2
0 0 1
0 0 1

 · [[xs]] +

2
1
2


[[Cons]](x , xs) =

1 1 0
0 0 1
0 0 1


︸ ︷︷ ︸

A

· [[xs]] +

0
1
2



[[Nil]] =

1
0
2
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Introduction

Certification — part 1

Obtain strict decrease in every rewrite step:

[[sort(Cons(x , xs))]] =3 3 3
0 0 1
0 0 1

· [[xs]] +

3
2
2

 >
≥
≥

3 3 3
0 0 1
0 0 1

· [[xs]] +

2
1
2


= [[insort(x , sort(xs))]]

René Thiemann (CL @ UIBK) Perron–Frobenius for Complexity 7/30



Introduction

Certification — part 2

Bound initial interpretation:

[[sort(Cons(x1, . . .Cons(xn,Nil)))]] =3 3 0
0 0 1
0 0 1

An

1
0
2

+
∑
i<n

Ai

0
1
2

 ∈ O(n · An)

Key analysis: growth of values of An depending on n
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René Thiemann (CL @ UIBK) Perron–Frobenius for Complexity 9/30



Certifying Matrix Growth

Eigenvalues and eigenvectors

Matrix A has eigenvector v 6= 0 with eigenvalue λ if

Av = λv

Remark

λ is eigenvalue of A if and only if
λ is root of characteristic polynomial χA

Consequences

Anv = λnv

|Anv | = |λ|n|v |
if |λ| > 1 then An grows exponentially

Theorem

An grows polynomially if and only if
|λ| 6 1 for all eigenvalues λ of A

René Thiemann (CL @ UIBK) Perron–Frobenius for Complexity 10/30



Certifying Matrix Growth

Jordan blocks

Matrix A has Jordan normal form J = PAP−1

J =


J1 0 . . . 0

0 J2
. . .

...
...

. . .
. . . 0

0 . . . 0 Jk

 Ji =



λi 1 0 . . . 0

0 λi 1
. . .

...
...

. . .
. . .

. . . 0
...

. . . λi 1
0 . . . . . . 0 λi


Remarks

the λi s are precisely the eigenvalues of A

χA = χJ =
∏k

i=1(x − λi )si where si = size of Jordan block Ji
J is unique up to permutation of blocks

Consequences

An = P−1JnP, so A and J have same growth rate

Jni ∈ Θ(nsi−1|λi |n)

if maxi |λi | = 1 then An ∈ Θ(ns−1) where s = max|λi |=1 si
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Certifying Matrix Growth

Basic certification algorithm for An ∈ O(nd)

Input: Matrix A and degree d
Output: Accept or assertion failure.

1. Compute all eigenvalues λ1, . . . , λn of A
(all complex roots of χA)

2. Compute spectral radius ρA := maxi |λi |
3. Assert ρA 6 1
4. For each λi with |λi | = 1, and Jordan block of A and λi with

size si , assert si − 1 6 d
5. Accept
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Certifying Matrix Growth

Example insertion sort

Input: Matrix A and degree d
Output: Accept or assertion failure.

1. Compute all eigenvalues λ1, . . . , λn of A
(all complex roots of χA)

2. Compute spectral radius ρA := maxi |λi |
3. Assert ρA 6 1
4. For each λi with |λi | = 1, and Jordan block of A and λi with

size si , assert si − 1 6 d
5. Accept

Input: A =

1 1 0
0 0 1
0 0 1

 , d = 1

1. λ1 = 1, λ2 = 0

2. ρA = 1

4. s1 − 1 = 2− 1 6 1 = d
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Certifying Matrix Growth

Another example

Input: A =
1

2


2 0 0 0
0 0 0 1
0 1 0 1
0 0 1 1


1. χA =

(x − 1) (8x3 − 4x2 − 2x − 1)

8
λ1 = 1

λ2 = (root #1 of f1)

λ3 = (root #1 of f2) + (root #1 of f3)i

λ4 = (root #1 of f2) + (root #2 of f3)i

f1 = 8x3 − 4x2 − 2x − 1

f2 = 32x3 − 16x2 + 1

f3 = 1024x6 + 512x4 + 64x2 − 11
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Certifying Matrix Growth

The problem and its solution

algorithm 1 requires precise calculations (|λi | = 1)

precise calculations with algebraic numbers are expensive

aim: avoid explicit computation of eigenvalues

solution: apply the Perron–Frobenius theorem
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Certifying Matrix Growth

Perron–Frobenius, Part 1

Theorem (Perron–Frobenius)

Let A be a non-negative real matrix

ρA is an eigenvalue of A

Consequence
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Certifying Matrix Growth

Perron–Frobenius, Part 2

Theorem (Perron–Frobenius)

Let A be a non-negative real and irreducible matrix

ρA is an eigenvalue of A

ρA has multiplicity 1

∃f k. χA = f · (xk − ρkA) ∧ (f (y) = 0 −→ |y | < ρA)

. . .

Consequence

non-negative real and irreducible matrices
have constant or exponential growth
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Certifying Matrix Growth

Perron–Frobenius, Part 3

Theorem

Let A be a non-negative real matrix

ρA is an eigenvalue of A

∃f K . χA = f ·
∏

k∈K (xk − ρkA) ∧ (f (y) = 0 −→ |y | < ρA)

Consequence
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Certifying Matrix Growth

Uniqueness of f and K

Theorem

Let A be a non-negative real matrix

ρA is an eigenvalue of A

∃!f K . χA = f ·
∏

k∈K (xk − ρkA) ∧ (f (y) = 0 −→ |y | < ρA)

decompose χA computes f and K for ρA = 1

Consequence
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Certifying Matrix Growth

New certification algorithm

Input: non-negative matrix A and degree d

Output: Accept or assertion failure.

1. Assert that χA has no real roots in (1,∞) via Sturm’s method

2. Compute K via decompose χA

3. If |K | − 1 6 d then accept

4. Check the Jordan blocks for eigenvalue 1, i.e., assert that
each Jordan block of A and 1 has size s 6 d + 1

5. If dim A 6 4 then accept

6. For each k ∈ {2, . . . ,maxK} do

mk := |{k ′ ∈ K . k divides k ′}|
If mk − 1 > d then check the Jordan blocks for all primitive
roots of unity of degree k

7. Accept
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Certifying Matrix Growth

Experiments

input: d = 0 and matrix A of dimension 21 with

χA =
4096x21 − 8192x20 + . . .+ 152x6 − x4 − 9x3 + 1

4096

basic certification algorithm

factor χA =
(x+1)(x2+1)(x2+x+1)·((x−1)(64x7−64x6+4x3−1))2

4096
compute norms of roots of 64x7 − 64x6 + 4x3 − 1
timeout after 1 hour

new certification algorithm
apply Sturm’s method
decompose χA = (x3 − 1) · (x4 − 1) · f , K = {3, 4}
only check Jordan block of eigenvalue 1
finished within fraction of a second

matrices of termComp (dim A 6 5): new algorithm 5x faster
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Certifying Matrix Growth

Improvements in Automation

new certification runs in polynomial time for dim A 6 5

=⇒ there exists polynomial time SAT/SMT-encoding

=⇒ possibility to encode desired degree when searching for matrix
interpretation
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Proofs

Perron–Frobenius Theorem

Parts 1 and 2 are well-studied
New part 3: if A is real non-negative matrix, then
∃f K . χA = f ·

∏
k∈K (xk − ρkA) ∧ (f (y) = 0 −→ |y | < ρA)

Proof by induction on the dimension of A.

If A is irreducible, then apply part 2 and set K = {k}
If dim A = 1 then result is trivial: f = 1, K = {1}
Otherwise,

π(A) =

(
B C
0 D

)
where π is a permutation of rows and columns

=⇒ B and D are real non-negative matrices, χA = χB · χD

=⇒ apply induction hypothesis and perform case analysis:
ρB = ρD ∨ ρB < ρD ∨ ρB > ρD
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Proofs

Largest Jordan blocks

Step 5 of new algorithm (if dim A 6 4 then accept) requires

Theorem

If A is non-negative real matrix, dim A 6 4 and ρA 6 1 then for
every JB with |λ| = 1 there exists JB of 1 which is at least as large

Proof.

Let there be JB with λ 6= 1, |λ| = 1 and size s such that all
JBs of 1 are smaller than s

=⇒ s > 1 since ρA = 1 is eigenvalue

=⇒ χA = (x2 − 1)2

=⇒ π(A) =

(
B C
0 D

)
=


0 a c d
1
a 0 e f
0 0 0 b
0 0 1

b 0

 for
a, b > 0

c, d , e, f ≥ 0
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Proofs

Proof continued

π(A) = PJP−1 and h = 0 −→ g = 0 for

g =
−abe + af + bc − d

2b

h =
abe + af + bc + d

2a

J =


−1 g 0 0
0 −1 0 0
0 0 1 h
0 0 0 1



P =


1
2
−a
2

abe+af−bc−d
8b

abe+af−bc−d
8

0 0 1
2

−b
2

1
a 1 abe−af +bc−d

2ab 0

0 0 1
b 1
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Proofs

Largest Jordan blocks

Theorem

If A is non-negative real matrix, dim A 6 4 and ρA 6 1 then for
every JB with |λ| = 1 there exists JB of 1 which is at least as large

Conjecture

If A is non-negative real matrix and ρA 6 1 then for
every JB with |λ| = 1 there exists JB of 1 which is at least as large

with conjecture it would suffice to only consider JB for 1

no violation of conjecture among billions of tested matrices

no idea how to prove it
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Formalization

Overview on Formalization

Carrier-based matrices (N× N× (N→ N→ α)) for part 3

permits decomposition of matrices into smaller ones

Type-based matrices (ι :: finite→ ι→ α) for part 1

continuity of matrix operations, Brouwer’s fixpoint theorem

Combination for part 2

proof requires continuity as well as decomposition
transfer, local type definitions
(see paper or master seminar 2 in SS 2016)
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Summary

Summary

efficient algorithm for certifying polynomial growth of An for
non-negative real matrices

conjecture on largest Jordan blocks for further simplification

permits SAT/SMT encoding for dim A 6 5

soundness based on Perron–Frobenius theorem

Isabelle formalization available in archive of formal proofs

further application: unique solutions of Markov chains
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