Formalizing Completeness of Ordered Completion

Nao Hirokawa Aart Middeldorp Christian Sternagel Sarah Winkler Master Seminar 1 @ CL
December 13, 2017

Ordered Completion

Ordered Completion

Ordered Completion

> ground complete presentation
> $R \cup E$

Ordered Completion

- can decide ground equality:

$$
\left(\mathrm{a} \cdot \mathrm{~b}^{-}\right)^{-} \approx \mathrm{b} \cdot \mathrm{a}^{-} \text {because }\left(\mathrm{a} \cdot \mathrm{~b}^{-}\right)^{-} \underset{R \cup E^{\succ}}{*} \cdot \underset{R \cup E^{\succ}}{\stackrel{*}{\overleftrightarrow{ }} \mathrm{~b} \cdot \mathrm{a}^{-} .{ }^{*} .}
$$

Ordered Completion

- can decide ground equality:

$$
\left(\mathrm{a} \cdot \mathrm{~b}^{-}\right)^{-} \approx \mathrm{b} \cdot \mathrm{a}^{-} \text {because }\left(\mathrm{a} \cdot \mathrm{~b}^{-}\right)^{-} \underset{R \cup E^{\succ}}{*} \cdot \underset{R \cup E^{\succ}}{\stackrel{*}{4}} \mathrm{~b} \cdot \mathrm{a}^{-}
$$

Correctness Theorem

Any fair oKB run produces ground complete presentation.

Ordered Completion

Ordered Completion

complete presentation R

Ordered Completion

$$
\begin{aligned}
& \text { complete presentation } R
\end{aligned}
$$

- can decide any equality:

$$
\left(x \cdot y^{-}\right)^{-} \approx y \cdot x^{-} \quad \text { because } \quad\left(x \cdot y^{-}\right)^{-} \xrightarrow[R]{*} \cdot \stackrel{*}{R} y \cdot x^{-}
$$

Ordered Completion

$$
\begin{aligned}
& \text { complete presentation } R
\end{aligned}
$$

- can decide any equality:

$$
\left(x \cdot y^{-}\right)^{-} \approx y \cdot x^{-} \quad \text { because } \quad\left(x \cdot y^{-}\right)^{-} \xrightarrow[R]{*} \cdot \stackrel{*}{R} y \cdot x^{-}
$$

Question (Completeness)

Under which circumstances will oKB compute a complete presentation?

Outline

- Ordered Completion
- Completeness Results
- Ground Total Reduction Orders
- Linear Systems
- Conclusion

Ordered Completion

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t
- ground complete if ground confluent and terminating

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- (ground) complete presentation of theory T if R is (ground) complete and $\leftrightarrow_{R}^{*}=\leftrightarrow_{T}^{*}$

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- (ground) complete presentation of theory T if R is (ground) complete and $\leftrightarrow_{R}^{*}=\leftrightarrow_{T}^{*}$

Example

$R=\{\mathrm{a} \rightarrow \mathrm{b}, \mathrm{b} \rightarrow \mathrm{c}\}$ is

- complete
- complete presentation of $a \approx b, b \approx c, c \approx d \quad x$

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s \stackrel{*}{R}^{\leftarrow} \leftarrow \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- (ground) complete presentation of theory T if R is (ground) complete and $\leftrightarrow_{R}^{*}=\leftrightarrow_{T}^{*}$

Example

$R=\{\mathrm{a} \rightarrow \mathrm{b}, \mathrm{b} \rightarrow \mathrm{c}, \mathrm{c} \rightarrow \mathrm{d}\}$ is

- complete
- complete presentation of $\mathrm{a} \approx \mathrm{b}, \mathrm{b} \approx \mathrm{c}, \mathrm{c} \approx \mathrm{d}$

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s \stackrel{*}{R}^{\leftarrow} \leftarrow \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- (ground) complete presentation of theory T if R is (ground) complete and $\leftrightarrow_{R}^{*}=\leftrightarrow_{T}^{*}$

Definitions

terminating TRS R is

- reduced if $\forall \ell \rightarrow r \in R$ have $r=r \downarrow_{R}$ and $\ell=\ell \downarrow_{R \backslash\{\ell \rightarrow r\}}$

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s \stackrel{*}{R}^{\leftarrow} \leftarrow \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- (ground) complete presentation of theory T if R is (ground) complete and $\leftrightarrow_{R}^{*}=\leftrightarrow_{T}^{*}$

Definitions

terminating TRS R is
$t \downarrow_{R}$ denotes normal form of t with respect to R

- reduced if $\forall \ell \rightarrow r \in R$ have $r=r \downarrow_{R}$ and $\ell=\ell \downarrow_{R \backslash\{\ell \rightarrow r\}}$

Definitions

TRS R is

- terminating if there is no infinite sequence $t_{0} \rightarrow_{R} t_{1} \rightarrow_{R} t_{2} \rightarrow_{R} \ldots$
- confluent if $s \stackrel{*}{R}^{\leftarrow} \leftarrow \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot{ }_{R}^{*} \leftarrow t\left(\right.$ denoted $\left.s \downarrow_{R} t\right)$
- complete if confluent and terminating
- ground confluent if $s{ }_{R}^{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \downarrow_{R} t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- (ground) complete presentation of theory T if R is (ground) complete and $\leftrightarrow_{R}^{*}=\leftrightarrow_{T}^{*}$

Definitions

terminating TRS R is

- reduced if $\forall \ell \rightarrow r \in R$ have $r=r \downarrow_{R}$ and $\ell=\ell \downarrow_{R \backslash\{\ell \rightarrow r\}}$
- canonical if complete and reduced

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Example

for $E=\{x+y \approx y+x\}$ and LPO with $\mathrm{a}>\mathrm{b}>0>+$ have

$$
E^{\succ}= \begin{cases}a+b \rightarrow b+a & (x+y)+x \rightarrow x+(x+y) \quad \ldots \\ a+0 \rightarrow 0+a & a+(b+b) \rightarrow(b+b)+a\end{cases}
$$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

$$
\ell_{2} \sigma\left[\ell_{1} \sigma\right]_{p}=\ell_{2} \sigma
$$

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

$$
\begin{aligned}
& \quad \ell_{2} \sigma\left[\ell_{1} \sigma\right]_{p}=\ell_{2} \sigma \\
& r_{1} \approx \ell_{1} \\
& \ell_{2} \sigma\left[r_{1} \sigma\right]_{p}
\end{aligned}
$$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

$$
\begin{gathered}
\ell_{2} \sigma\left[\ell_{1} \sigma\right]_{p}=\ell_{2} \sigma \\
r_{1} \approx \ell_{1} \\
\ell_{2} \sigma\left[r_{1} \sigma\right]_{p}
\end{gathered} \ell_{l_{2}} \approx r_{2}
$$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

$$
\begin{gathered}
\ell_{2} \sigma\left[\ell_{1} \sigma\right]_{p}=\ell_{2} \sigma \\
r_{1} \approx \ell_{1} \\
\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \\
\ell_{2} \approx r_{2} \\
r_{2} \sigma
\end{gathered}
$$

Then $\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \approx r_{2} \sigma$ is extended critical pair.

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

$$
\begin{gathered}
\ell_{2} \sigma\left[\ell_{1} \sigma\right]_{p}=\ell_{2} \sigma \\
r_{1} \approx \ell_{1} \\
\ell_{2} \sigma\left[r_{1} \sigma\right]_{p}
\end{gathered} \ell_{l_{2} \approx r_{2}} \quad r_{2} \sigma
$$

Then $\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \approx r_{2} \sigma$ is extended critical pair.
Set of extended critical pairs among equations in E is denoted $\mathrm{CP}_{\succ}(E)$.

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

$$
\begin{gathered}
\ell_{2} \sigma\left[\ell_{1} \sigma\right]_{p}=\ell_{2} \sigma \\
r_{1} \approx \ell_{1} \\
\ell_{2} \sigma\left[r_{1} \sigma\right]_{p}
\end{gathered}
$$

Then $\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \approx r_{2} \sigma$ is extended critical pair.
Set of extended critical pairs among equations in E is denoted $\mathrm{CP}_{\succ}(E)$.

Example

$1 \cdot(-x+x) \approx 0$ and $y+-y \approx-x+x$ give rise to $C P_{\succ} 1 \cdot(y+-y) \approx 0$:

$$
1 \cdot(y+-y) \leftarrow 1 \cdot(-x+x) \rightarrow 0
$$

Consider set of equations E and reduction order \succ.

Definitions

- $E^{ \pm}=E \cup E^{-1}$
- $E^{\succ}=\left\{\ell \sigma \rightarrow r \sigma \mid \ell \approx r \in E^{ \pm}\right.$and $\left.\ell \sigma \succ r \sigma\right\}$

Definition (Extended Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2} \in E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$
- $r_{1} \sigma \nsucc \ell_{1} \sigma$ and $r_{2} \sigma \nsucc \ell_{2} \sigma$

$$
\begin{gathered}
\ell_{2} \sigma\left[\ell_{1} \sigma\right]_{p}=\ell_{2} \sigma \\
r_{1} \approx \ell_{1} \\
\ell_{2} \sigma\left[r_{1} \sigma\right]_{p}
\end{gathered} \ell_{l_{2} \approx r_{2}} \quad r_{2} \sigma
$$

Then $\ell_{2} \sigma\left[r_{1} \sigma\right]_{p} \approx r_{2} \sigma$ is extended critical pair.
Set of extended critical pairs among equations in E is denoted $\mathrm{CP}_{\succ}(E)$.

Definition

reduction order \succ is ground total if it is total on ground terms

Definition (Ordered Completion)

E : set of equations $\quad R$: set of rewrite rules $\quad \succ$: reduction order

Definition (Ordered Completion)

E : set of equations $\quad R$: set of rewrite rules $\quad \succ$: reduction order
delete $\quad \frac{E \cup\{s \approx s\}, R}{E, R}$

Definition (Ordered Completion)

E : set of equations $\quad R$: set of rewrite rules $\quad \succ$: reduction order
delete

$$
\frac{E \cup\{s \approx s\}, R}{E, R}
$$

orient

$$
\frac{E \cup\{s \approx t\}, R}{E, R \cup\{s \rightarrow t\}} \quad \frac{E \cup\{t \approx s\}, R}{E, R \cup\{s \rightarrow t\}} \quad \text { if } s \succ t
$$

Definition (Ordered Completion)

E : set of equations $\quad R$: set of rewrite rules $\quad \succ$: reduction order
delete

$$
\frac{E \cup\{s \approx s\}, R}{E, R}
$$

orient
$\frac{E \cup\{s \approx t\}, R}{E, R \cup\{s \rightarrow t\}} \quad \frac{E \cup\{t \approx s\}, R}{E, R \cup\{s \rightarrow t\}} \quad$ if $s \succ t$
compose $\frac{E, R \cup\{s \rightarrow t\}}{E, R \cup\{s \rightarrow u\}}$

$$
\text { if } t \rightarrow_{R \cup E \succ} u
$$

Definition (Ordered Completion)

E : set of equations $\quad R$: set of rewrite rules $\quad \succ$: reduction order
delete $\quad \frac{E \cup\{s \approx s\}, R}{E, R}$
orient
$\frac{E \cup\{s \approx t\}, R}{E, R \cup\{s \rightarrow t\}} \quad \frac{E \cup\{t \approx s\}, R}{E, R \cup\{s \rightarrow t\}} \quad$ if $s \succ t$
compose $\frac{E, R \cup\{s \rightarrow t\}}{E, R \cup\{s \rightarrow u\}}$
if $t \rightarrow_{\text {RUE }} u$
simplify
$\frac{E \cup\{s \approx t\}, R}{E \cup\{s \approx u\}, R} \quad \frac{E \cup\{t \approx s\}, R}{E \cup\{u \approx s\}, R}$
if $t{\xrightarrow{\triangleright_{1}}}_{R \cup E \succ} u$

Definition (Ordered Completion)

E : set of equations $\quad R$: set of rewrite rules $\quad \succ$: reduction order
delete

$$
\frac{E \cup\{s \approx s\}, R}{E, R}
$$

orient
$\frac{E \cup\{s \approx t\}, R}{E, R \cup\{s \rightarrow t\}} \quad \frac{E \cup\{t \approx s\}, R}{E, R \cup\{s \rightarrow t\}} \quad$ if $s \succ t$
compose $\frac{E, R \cup\{s \rightarrow t\}}{E, R \cup\{s \rightarrow u\}}$
if $t \rightarrow$ RUE〉 u
simplify
$\frac{E \cup\{s \approx t\}, R}{E \cup\{s \approx u\}, R} \quad \frac{E \cup\{t \approx s\}, R}{E \cup\{u \approx s\}, R}$
if $t{\xrightarrow{\triangleright_{1}}}_{R \cup E \succ} u$
collapse $\frac{E, R \cup\{t \rightarrow s\}}{E \cup\{u \approx s\}, R}$

$$
\text { if } t \xrightarrow{\triangleright_{2}} R \cup E \succ u
$$

Definition（Ordered Completion）

E ：set of equations $\quad R$ ：set of rewrite rules $\quad \succ$ ：reduction order
delete

$$
\frac{E \cup\{s \approx s\}, R}{E, R}
$$

orient

$$
\frac{E \cup\{s \approx t\}, R}{E, R \cup\{s \rightarrow t\}} \quad \frac{E \cup\{t \approx s\}, R}{E, R \cup\{s \rightarrow t\}} \quad \text { if } s \succ t
$$

compose $\frac{E, R \cup\{s \rightarrow t\}}{E, R \cup\{s \rightarrow u\}}$
if $t \rightarrow$ RUE〉 u
simplify

$$
\frac{E \cup\{s \approx t\}, R}{E \cup\{s \approx u\}, R} \quad \frac{E \cup\{t \approx s\}, R}{E \cup\{u \approx s\}, R}
$$

$$
\text { if } t \xrightarrow{\triangleright_{1}} \text { RUE〉 } u
$$

collapse $\frac{E, R \cup\{t \rightarrow s\}}{E \cup\{u \approx s\}, R}$
deduce

$$
\frac{E, R}{E \cup\{s \approx t\}, R}
$$

$$
\text { if } s \leftrightarrow_{R \cup E} \cdot \leftrightarrow_{R \cup E} t
$$

Example

$$
\begin{aligned}
1 \cdot(-x+x) & \approx 0 \\
1 \cdot(x+-x) & \approx x+-x \\
-x+x & \approx y+-y
\end{aligned}
$$

Example

$$
\begin{aligned}
& 1 \cdot(-x+x) \approx 0 \\
& 1 \cdot(x+-x) \approx x+-x \\
& \quad-x+x \approx y+-y
\end{aligned}
$$

- LPO with precedence $+>->0$

Example

$$
\begin{aligned}
& 1 \cdot(-x+x) \\
& 1 \cdot(x+-x) \\
& 1 \cdot x+-x \\
& \quad-x+x
\end{aligned} \begin{aligned}
& \approx y+-y
\end{aligned}
$$

- LPO with precedence $+>->0$
- orient

$$
1 \cdot(-x+x)>0
$$

Example

$$
1 \cdot(-x+x) \rightarrow 0
$$

$$
\begin{array}{r}
1 \cdot(x+-x) \approx x+-x \\
-x+x \approx y+-y
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
1 \cdot(-x+x) \rightarrow 0
$$

$$
\begin{aligned}
1 \cdot(x+-x) & \approx x+-x \\
-x+x & \approx y+-y
\end{aligned}
$$

- LPO with precedence $+>->0$
- deduce $1 \cdot(y+-y) \leftarrow 1 \cdot(-x+x) \rightarrow 0$

Example

$$
\begin{array}{rlr}
1 \cdot(y+-y) & \approx 0 & 1 \cdot(-x+x) \rightarrow 0 \\
1 \cdot(x+-x) & \approx x+-x & \\
& -x+x & \approx y+-y
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{rlr}
1 \cdot(y+-y) & \approx 0 & 1 \cdot(-x+x) \rightarrow 0 \\
1 \cdot(x+-x) & \approx x+-x & \\
& -x+x & \approx y+-y
\end{array}
$$

- LPO with precedence $+>->0$
- orient $1 \cdot(y+-y)>0$

Example

$$
\begin{array}{rr}
& 1 \cdot(-x+x) \rightarrow 0 \\
1 \cdot(x+-x) \approx x+-x & 1 \cdot(y+-y) \rightarrow 0 \\
-x+x \approx y+-y &
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{rr}
& 1 \cdot(-x+x) \rightarrow 0 \\
1 \cdot(x+-x) \approx x+-x & 1 \cdot(y+-y) \rightarrow 0 \\
-x+x \approx y+-y &
\end{array}
$$

- LPO with precedence $+>->0$
- simplify $1 \cdot(x+-x) \rightarrow 0$

Example

$$
\begin{array}{rr}
& 1 \cdot(-x+x)
\end{array} \rightarrow 0
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{rr}
& 1 \cdot(-x+x)
\end{array} \rightarrow 0
$$

- LPO with precedence $+>->0$
- orient $\quad x+-x>0$

Example

$$
\begin{array}{lr}
& 1 \cdot(-x+x) \rightarrow 0 \\
0 \approx x+-x & 1 \cdot(y+-y) \rightarrow 0 \\
x \approx y+-y & x+-x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{rl}
1 \cdot(-x+x) & \rightarrow 0 \\
1 \cdot(y+-y) & \rightarrow 0 \\
-x+x \approx y+-y & x+-x
\end{array}>0
$$

- LPO with precedence $+>->0$
- simplify $y+-y \rightarrow 0$

Example

$$
\begin{array}{rl}
1 \cdot(-x+x) & \rightarrow 0 \\
1 \cdot(y+-y) & \rightarrow 0 \\
-x+x \approx 0 & x+-x
\end{array} \rightarrow 0
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{rl}
1 \cdot(-x+x) & \rightarrow 0 \\
1 \cdot(y+-y) & \rightarrow 0 \\
-x+x \approx 0 & x+-x
\end{array} \rightarrow 0
$$

- LPO with precedence $+>->0$
- collapse $y+-y \rightarrow 0$

Example

$$
\begin{array}{rr}
1 \cdot 0 \approx 0 & 1 \cdot(-x+x) \rightarrow 0 \\
-x+x \approx 0 & x+-x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{rr}
1 \cdot 0 \approx 0 & 1 \cdot(-x+x) \rightarrow 0 \\
-x+x \approx 0 & x+-x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$
- orient $1.0>0$

Example

$$
\begin{array}{rl}
1 \cdot(-x+x) & \rightarrow 0 \\
1 \cdot 0 & \rightarrow 0 \\
-x+x \approx 0 & x+-x
\end{array}>0
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{rl}
1 \cdot(-x+x) & \rightarrow 0 \\
1 \cdot 0 & \rightarrow 0 \\
-x+x \approx 0 & x+-x
\end{array} \rightarrow 0
$$

- LPO with precedence $+>->0$
- orient $\quad-x+x>0$

Example

$$
\begin{aligned}
1 \cdot(-x+x) & \rightarrow 0 \\
1 \cdot 0 & \rightarrow 0 \\
x+-x & \rightarrow 0 \\
-x+x & \rightarrow 0
\end{aligned}
$$

- LPO with precedence $+>->0$

Example

$$
\begin{aligned}
1 \cdot(-x+x) & \rightarrow 0 \\
1 \cdot 0 & \rightarrow 0 \\
x+-x & \rightarrow 0 \\
-x+x & \rightarrow 0
\end{aligned}
$$

- LPO with precedence $+>->0$
- collapse $-x+x \rightarrow 0$

Example

$$
1 \cdot 0 \approx 0 \quad \begin{array}{r}
1 \cdot 0 \\
x+0 \\
x+x \rightarrow 0 \\
-x+x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
1 \cdot 0 \approx 0 \quad \begin{aligned}
1 \cdot 0 & \rightarrow 0 \\
x+-x & \rightarrow 0 \\
-x+x & \rightarrow 0
\end{aligned}
$$

- LPO with precedence $+>->0$
- simplify $1.0 \rightarrow 0$

Example

$$
0 \approx 0 \quad \begin{array}{r}
1 \cdot 0 \\
\rightarrow 0 \\
x+-x \rightarrow 0 \\
-x+x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
0 \approx 0 \quad \begin{array}{r}
1 \cdot 0 \\
\rightarrow 0 \\
x+-x \rightarrow 0 \\
-x+x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$
- delete $0 \approx 0$

Example

$$
\begin{array}{r}
1 \cdot 0 \rightarrow 0 \\
x+-x \rightarrow 0 \\
-x+x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$

Example

$$
\begin{array}{r}
1 \cdot 0 \rightarrow 0 \\
x+-x \rightarrow 0 \\
-x+x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$
- run produced ground complete system

Example

$$
\begin{array}{r}
1 \cdot 0 \rightarrow 0 \\
x+-x \rightarrow 0 \\
-x+x \rightarrow 0
\end{array}
$$

- LPO with precedence $+>->0$
- run produced complete system

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

- $E_{\infty}=\bigcup_{i} E_{i} \quad R_{\infty}=\bigcup_{i} R_{i} \quad S_{\infty}=R_{\infty} \cup E_{\infty}^{\succ}$

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

- $E_{\infty}=\bigcup_{i} E_{i} \quad R_{\infty}=\bigcup_{i} R_{i} \quad S_{\infty}=R_{\infty} \cup E_{\infty}^{\succ}$
- persistent equations and rules:

$$
E_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} E_{i} \quad R_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} R_{j} \quad S_{\omega}=R_{\omega} \cup E_{\omega}^{\succ}
$$

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

- $E_{\infty}=\bigcup_{i} E_{i} \quad R_{\infty}=\bigcup_{i} R_{i} \quad S_{\infty}=R_{\infty} \cup E_{\infty}^{\succ}$
- persistent equations and rules:

$$
E_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} E_{i} \quad R_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} R_{j} \quad S_{\omega}=R_{\omega} \cup E_{\omega}^{\succ}
$$

- γ is fair if $\operatorname{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

- $E_{\infty}=\bigcup_{i} E_{i} \quad R_{\infty}=\bigcup_{i} R_{i} \quad S_{\infty}=R_{\infty} \cup E_{\infty}^{\succ}$
- persistent equations and rules:

$$
E_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} E_{i} \quad R_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} R_{j} \quad S_{\omega}=R_{\omega} \cup E_{\omega}^{\succ}
$$

- γ is fair if $\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$

Correctness Theorem

Bachmair, Dershowitz, and Plaisted '89
If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_{0}.

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

- $E_{\infty}=\bigcup_{i} E_{i} \quad R_{\infty}=\bigcup_{i} R_{i} \quad S_{\infty}=R_{\infty} \cup E_{\infty}^{\succ}$
- persistent equations and rules:

$$
E_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} E_{i} \quad R_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} R_{j} \quad S_{\omega}=R_{\omega} \cup E_{\omega}^{\succ}
$$

- γ is fair if $\mathrm{CP}_{\succ}\left(R_{\omega} \left\lvert\, \begin{array}{l}\text { proof based on proof orders: } \\ \text { compare conversions with }\left(\succ_{\text {mul }}, \succ, \triangleright, \succ_{\text {mul }}\right)_{\text {lex }}\end{array}\right.\right.$

Correctness Theorem Bachmair, Dershowitz, and Plaisted '89
If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_{0}.

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

- $E_{\infty}=\bigcup_{i} E_{i} \quad R_{\infty}=\bigcup_{i} R_{i} \quad S_{\infty}=R_{\infty} \cup E_{\infty}^{\succ}$
- persistent equations and rules:

$$
E_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} E_{i} \quad R_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} R_{j} \quad S_{\omega}=R_{\omega} \cup E_{\omega}^{\succ}
$$

- γ is fair if $\mathrm{CP}_{\succ}\left(R_{\omega}\right.$ proof based on proof orders:

$$
\text { compare conversions with }\left(\succ_{\operatorname{mul}}, \succ, \bowtie, \succ_{\operatorname{mul}}\right)_{\operatorname{lex}}
$$

Correctness Theorem
Bachmair, Dershowitz, and Plaisted '89
If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_{0}.
N. Hirokawa, A. Middeldorp, C. Sternagel, S. Winkler. Infinite Runs in Abstract Completion.
2nd FSCD, LIPIcs, 19:1-19:16, 2017.

Definition

possibly infinite run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots
$$

- $E_{\infty}=\bigcup_{i} E_{i} \quad R_{\infty}=\bigcup_{i} R_{i} \quad S_{\infty}=R_{\infty} \cup E_{\infty}^{\succ}$
- persistent equations and rules:

$$
E_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} E_{i} \quad R_{\omega}=\bigcup_{i} \bigcap_{j \geqslant i} R_{j} \quad S_{\omega}=R_{\omega} \cup E_{\omega}^{\succ}
$$

- γ is fair if $\mathrm{CP}_{\succ}\left(R_{\omega} \quad\right.$ proof based on proof orders:

$$
\text { compare conversions with }\left(\succ_{\text {mul }}, \succ, \bowtie, \succ_{\text {mul }}\right)_{\text {lex }}
$$

Correctness Theorem
Bachmair, Dershowitz, and Plaisted '89
If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_{0}. no proof orders, "separation of concerns"
R. Hirokawa, A. Middeldorp, C. Sternagel, S. Winkle. Infinite Runs in Abstract Completion.
2nd FSCD, LIPIcs, 19:1-19:16, 2017.

Completeness Results

This Section

\mathcal{R} is canonical presentation of E_{0} such that $\mathcal{R} \subseteq \succ$

This Section

\mathcal{R} is canonical presentation of E_{0} such that $\mathcal{R} \subseteq \succ$

Definition

run γ : $\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots$ is simplifying if

- equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

This Section

\mathcal{R} is canonical presentation of E_{0} such that $\mathcal{R} \subseteq \succ$

Definition

run γ : $\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots$ is simplifying if

- equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1)
Bachmair, Dershowitz and Plaisted '89
Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies
$\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

This Section

\mathcal{R} is canonical presentation of E_{0} such that $\mathcal{R} \subseteq \succ$

Definition

run γ : $\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots$ is simplifying if

- equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1)
Bachmair, Dershowitz and Plaisted '89
Suppose γ use equal up to renaming variables ${ }^{r} \succ$, is simplifying, and satisfies
$\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega}=\mathcal{R}$.

This Section

\mathcal{R} is canonical presentation of E_{0} such that $\mathcal{R} \subseteq \succ$

Definition

run γ : $\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots$ is simplifying if

- equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1)

Bachmair, Dershowitz and Plaisted '89
Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies
$\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

Completeness Theorem (2)
Devie '90
Suppose E_{0} is linear and γ is simplifying linear completion run using \succ and satisfying $\operatorname{LCP}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

This Section

\mathcal{R} is canonical presentation of E_{0} such that $\mathcal{R} \subseteq \succ$

Definition

run γ : $\left(E_{0}, \varnothing\right) \vdash\left(E_{1}, R_{1}\right) \vdash\left(E_{2}, R_{2}\right) \vdash \cdots$ is simplifying if

- equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1)

Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies
$\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.
proofs use (different) proof orders,
and are rather monolithic

Completeness Theorem (2)

Suppose E_{0} is linear and γ is simplifying linear completion run using \succ and satisfying $\operatorname{LCP}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

The Case of a Ground Total Order

Completeness Theorem (1)
Bachmair, Dershowitz and Plaisted '89
Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies $\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

The Case of a Ground Total Order

Completeness Theorem (1)
Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies $\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

Key Idea: Disguise Variables

- suppose E_{0} is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$

The Case of a Ground Total Order

Completeness Theorem (1)
Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies $\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

Key Idea: Disguise Variables

- suppose E_{0} is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$
- let \mathcal{K} be fresh set of constants \hat{x} for all $x \in \mathcal{V}$

The Case of a Ground Total Order

Completeness Theorem (1)
Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies $\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

Key Idea: Disguise Variables

- suppose E_{0} is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$
- let \mathcal{K} be fresh set of constants \hat{x} for all $x \in \mathcal{V}$
- write \hat{t} for ground term obtained from t by replacing every variable x by \hat{x}

The Case of a Ground Total Order

Completeness Theorem (1)
Suppose γ uses ground total reduction order \succ, is simplifying, and satisfies $\mathrm{CP}_{\succ}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

Key Idea: Disguise Variables

- suppose E_{0} is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$
- let \mathcal{K} be fresh set of constants \hat{x} for all $x \in \mathcal{V}$
- write \hat{t} for ground term obtained from t by replacing every variable x by \hat{x}
- have $s \rightarrow_{R} t$ iff $\hat{s} \rightarrow_{R} \hat{t}$ for every TRS R over $\mathcal{T}(\mathcal{F}, \mathcal{V})$

Roadmap to Completeness

```
Order Extension Lemma
There exists ground-total reduction order
    on \mathcal{T}(\mathcal{F}\cup\mathcal{K},\mathcal{V})\mathrm{ such that }\succ\subseteq\succ\mathcal{K}
```


Roadmap to Completeness

Order Extension Lemma
There exists ground-total reduction order
$\succ^{\mathcal{K}}$ on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$ such that $\succ \subseteq \succ^{\mathcal{K}}$

Proof.

- define $>_{\text {kbo }}$ with $c>f$ for all $c \in \mathcal{K}, f \in \mathcal{F}$
- for \perp minimal constant in \mathcal{F}, let t_{\perp} be term where every variable replaced by \perp
- define $s \succ^{\mathcal{K}} t$ as $s_{\perp} \succ t_{\perp}$ or $s_{\perp}=t_{\perp}$ and $s>_{\mathrm{kbo}} t$

Roadmap to Completeness

```
Order Extension Lemma
There exists ground-total reduction order
    on \(\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})\) such that \(\succ \subseteq \succ^{\mathcal{K}}\)
        \(\downarrow\)
    Ground Completeness on \(\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})\)
    \(S_{\omega}^{\mathcal{K}}\) is ground complete presentation of \(E_{0}\)
with respect to \(\succ^{\mathcal{K}}\)
```


Roadmap to Completeness

Order Extension Lemma
There exists ground-total reduction order $\succ^{\mathcal{K}}$ on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$ such that $\succ \subseteq \succ^{\mathcal{K}}$ \downarrow
Ground Completeness on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$
$S_{\omega}^{\mathcal{K}}$ is ground complete presentation of E_{0}
with respect to $\succ^{\mathcal{K}}$
\downarrow
Peak Analysis Lemma
Peak Analysis Lemma
if s}\underset{r\approx\ell\in\mp@subsup{E}{\omega}{}\pm}{\epsilon\epsilon,}\cdot\vec{\mp@subsup{S}{\omega}{}
if s}\underset{r\approx\ell\in\mp@subsup{E}{\omega}{}\pm}{\epsilon\epsilon,}\cdot\vec{\mp@subsup{S}{\omega}{}
s\leftrightarrow\leftrightarrow\mp@subsup{E}{\infty}{}}\mp@subsup{t}{}{\prime}\mathrm{ for some t}\succeq\mp@subsup{t}{}{\prime}\mathrm{ or }s\not\in\operatorname{NF}(\mp@subsup{S}{\omega}{}
s\leftrightarrow\leftrightarrow\mp@subsup{E}{\infty}{}}\mp@subsup{t}{}{\prime}\mathrm{ for some t}\succeq\mp@subsup{t}{}{\prime}\mathrm{ or }s\not\in\operatorname{NF}(\mp@subsup{S}{\omega}{}

Roadmap to Completeness

Roadmap to Completeness

Roadmap to Completeness

Proof.
(a) proper overlap

(b) variable overlap

Roadmap to Completeness

Order Extension Lemma
There exists ground-total reduction order $\succ^{\mathcal{K}}$ on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$ such that $\succ \subseteq \succ^{\mathcal{K}}$ \downarrow
Ground Completeness on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$ $S_{\omega}^{\mathcal{K}}$ is ground complete presentation of E_{0} with respect to $\succ^{\mathcal{K}}$

Peak Analysis Lemma
if $s \underset{r \approx \ell \in E_{\omega} \pm}{\epsilon} \cdot \underset{S_{\omega}}{\epsilon} t$ and $r \sigma \nsucc \ell \sigma$ then
$s \underset{E_{\infty}}{ } t^{\prime}$ for some $t \succeq t^{\prime}$ or $s \notin \operatorname{NF}\left(S_{\omega}\right)$

Normal Form Persistence
$N F\left(S_{\infty}\right)=\operatorname{NF}\left(S_{\omega}\right)$

Roadmap to Completeness

Proof.
Induction on \hat{t} with respect to $\succ^{\mathcal{K}}$.
$\exists \ell \approx r \in E_{\infty}{ }^{ \pm} \cup R_{\infty}$ such that

$$
\hat{s}=\hat{C}[\ell \hat{\sigma}] \underset{S_{\infty}^{\kappa}}{\longrightarrow} \hat{C}[r \hat{\sigma}]=\hat{t}
$$

\hat{C}
$\hat{C} \neq \square: \checkmark$
$\hat{C}=\square:$
(1) if $s \succ t$ then $s \rightarrow s_{\infty} t$, so $s \notin \operatorname{NF}\left(S_{\infty}\right)=\operatorname{NF}\left(S_{\omega}\right) \checkmark$
(2) $\ell \approx r \in E_{\infty} \backslash E_{\omega}$, so $\ell \approx r \in E_{i} \backslash E_{i+1}$

- $\ell=r$ or $r \rightarrow \ell \in R_{i+1}$
impossible as $\ell \hat{\sigma} \succ r \hat{\sigma}$

Roadmap to Completeness

Proof.
Induction on \hat{t} with respect to $\succ^{\mathcal{K}}$.
$\exists \ell \approx r \in E_{\infty}{ }^{ \pm} \cup R_{\infty}$ such that

$$
\hat{s}=\hat{C}[\ell \hat{\sigma}] \underset{s_{\infty}^{\kappa}}{\longrightarrow}[\hat{C}[\hat{\sigma}]=\hat{t}
$$

人
$\hat{C} \neq \square$
$\hat{C}=\square:$
(1) if $s \succ t$ then $s \rightarrow s_{\infty} t$, so $s \notin \operatorname{NF}\left(S_{\infty}\right)=\operatorname{NF}\left(S_{\omega}\right) \checkmark$
(2) $\ell \approx r \in E_{\infty} \backslash E_{\omega}$, so $\ell \approx r \in E_{i} \backslash E_{i+1}$

- $\ell=r$ or $r \rightarrow \ell \in R_{i+1}$ impossible as $\ell \hat{\sigma} \succ r \hat{\sigma}$
- $\ell \rightarrow r \in R_{i+1}$ or $\ell \rightarrow S_{i+1}$. $E_{i+1} r$ ℓ is S_{∞}-reducible, hence S_{ω}-reducible

Roadmap to Completeness

Order Extension Lemma	
There exists ground-total reduction order $\succ^{\mathcal{K}}$ on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$ such that $\succ \subseteq \succ^{\mathcal{K}}$	
-	
Ground Completeness on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$	
$S_{\omega}^{\mathcal{K}}$ is ground complete presentation of E_{0} with respect to	
\downarrow	
Peak Analysis Lemma	Norr NFF
if $s \underset{r \approx \ell \in E_{\omega} \pm}{\epsilon \epsilon \sigma} \cdot \overrightarrow{S_{\omega}} t$ and $r \sigma \nsucc \ell \sigma$ then $s \leftrightarrow_{E_{\infty}} t^{\prime}$ for some $t \succeq t^{\prime}$ or $s \notin \operatorname{NF}\left(S_{\omega}\right)$	
(-Lemma	
if $\hat{s} \rightarrow_{S_{\infty}^{\kappa}} \hat{t}$ then $s \notin \operatorname{NF}\left(S_{\omega}\right)$	

Proof.
Induction on \hat{t} with respect to $\succ^{\mathcal{K}}$.
$\exists \ell \approx r \in E_{\infty}{ }^{ \pm} \cup R_{\infty}$ such that

$$
\hat{s}=\hat{C}[\ell \hat{\sigma}] \underset{S_{\infty}^{\mathcal{K}}}{\longrightarrow} \hat{C}[r \hat{\sigma}]=\hat{t}
$$

C
$\hat{C}=\square:$
(1) if $s \succ t$ then $s \rightarrow s_{\infty} t$, so $s \notin \operatorname{NF}\left(S_{\infty}\right)=\operatorname{NF}\left(S_{\omega}\right) \checkmark$
(2) $\ell \approx r \in E_{\infty} \backslash E_{\omega}$, so $\ell \approx r \in E_{i} \backslash E_{i+1} \checkmark$

- $\ell=r$ or $r \rightarrow \ell \in R_{i+1}$ impossible as $\ell \hat{\sigma} \succ r \hat{\sigma}$
- $\ell \rightarrow r \in R_{i+1}$ or $\ell \rightarrow s_{i+1}$. $E_{i+1} r$ ℓ is S_{∞}-reducible, hence S_{ω}-reducible
- $\ell E_{i+1} \cdot s_{i+1} \leftarrow r$ conclude by IH

Roadmap to Completeness

The Linear Case

Example (Devie 1990)

$$
\begin{aligned}
& \mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}\left(\mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{2}(x)\right)\right)\right)\right) \quad \mathrm{h}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}(x)\right) \quad \mathrm{f}_{1}(\mathrm{a}) \approx \mathrm{a} \\
& \mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) \approx \mathrm{g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{1}(x)\right)\right)\right)\right) \quad \mathrm{h}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) \approx \mathrm{g}_{2}\left(\mathrm{i}_{2}(x)\right) \quad \mathrm{f}_{2}(\mathrm{a}) \approx \mathrm{a} \\
& \mathrm{~g}_{1}(\mathrm{a}) \approx \mathrm{a} \\
& \mathrm{~g}_{2}(\mathrm{a}) \approx \mathrm{a} \\
& \mathrm{~h}_{1}(\mathrm{a}) \approx \mathrm{a} \\
& \mathrm{i}_{1}(\mathrm{a}) \approx \mathrm{a} \\
& \mathrm{~h}_{2}(\mathrm{a}) \approx \mathrm{a}
\end{aligned}
$$

The Linear Case

Example (Devie 1990)

$$
\begin{array}{rlrl}
\mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) & \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}\left(\mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{2}(x)\right)\right)\right)\right) & \mathrm{h}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) & \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}(x)\right) \\
\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) & \approx \mathrm{f}_{1}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{1}(x)\right)\right)\right)\right) & \mathrm{h}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) & \approx \mathrm{g}_{2}\left(\mathrm{i}_{2}(x)\right) & \mathrm{f}_{2}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{1}(\mathrm{a}) & \approx \mathrm{a} & \mathrm{~h}_{1}(\mathrm{a}) \approx \mathrm{a} & \mathrm{i}_{1}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{2}(\mathrm{a}) & \approx \mathrm{a} & \mathrm{~h}_{2}(\mathrm{a}) \approx \mathrm{a} & \mathrm{i}_{2}(\mathrm{a}) \approx \mathrm{a}
\end{array}
$$

- orienting all equations from left to right yields a canonical system R

The Linear Case

Example (Devie 1990)

$$
\begin{array}{rlrl}
\mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) & \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}\left(\mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{2}(x)\right)\right)\right)\right) & \mathrm{h}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) & \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}(x)\right) \\
\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) & \mathrm{f}_{1}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{1}(x)\right)\right)\right)\right) & \mathrm{h}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) & \approx \mathrm{g}_{2}\left(\mathrm{i}_{2}(x)\right) & \mathrm{f}_{2}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{1}(\mathrm{a}) & \approx \mathrm{a} & \mathrm{~h}_{1}(\mathrm{a}) \approx \mathrm{a} & \mathrm{i}_{1}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{2}(\mathrm{a}) & \approx \mathrm{a} & \mathrm{~h}_{2}(\mathrm{a}) \approx \mathrm{a} & \mathrm{i}_{2}(\mathrm{a}) \approx \mathrm{a}
\end{array}
$$

- orienting all equations from left to right yields a canonical system R
- cannot extend \rightarrow_{R}^{+}to ground total reduction order: $\mathrm{i}_{1}(\mathrm{a}) \succ \mathrm{i}_{2}(\mathrm{a})$ implies $\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(\mathrm{a})\right)\right) \succ \mathrm{g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{1}(\mathrm{a})\right)\right)\right)\right) \succ \mathrm{g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(\mathrm{a})\right)\right)\right)\right) \succ \mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(\mathrm{a})\right)\right)$

The Linear Case

Example (Devie 1990)

$$
\begin{array}{rlrl}
\mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) & \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}\left(\mathrm{f}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{2}(x)\right)\right)\right)\right) & \mathrm{h}_{1}\left(\mathrm{~g}_{1}\left(\mathrm{i}_{1}(x)\right)\right) & \approx \mathrm{g}_{1}\left(\mathrm{i}_{1}(x)\right) \\
\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) & \approx \mathrm{f}_{1}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{1}(x)\right)\right)\right)\right) & \mathrm{h}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(x)\right)\right) & \approx \mathrm{g}_{2}\left(\mathrm{i}_{2}(x)\right) & \mathrm{f}_{2}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{1}(\mathrm{a}) & \approx \mathrm{a} & \mathrm{~h}_{1}(\mathrm{a}) \approx \mathrm{a} & \mathrm{i}_{1}(\mathrm{a}) \approx \mathrm{a} \\
\mathrm{~g}_{2}(\mathrm{a}) & \approx \mathrm{a} & \mathrm{~h}_{2}(\mathrm{a}) \approx \mathrm{a} & \mathrm{i}_{2}(\mathrm{a}) \approx \mathrm{a}
\end{array}
$$

- orienting all equations from left to right yields a canonical system R
- cannot extend \rightarrow_{R}^{+}to ground total reduction order: $\mathrm{i}_{1}(\mathrm{a}) \succ \mathrm{i}_{2}(\mathrm{a})$ implies $\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(\mathrm{a})\right)\right) \succ \mathrm{g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{1}(\mathrm{a})\right)\right)\right)\right) \succ \mathrm{g}_{2}\left(\mathrm{i}_{2}\left(\mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(\mathrm{a})\right)\right)\right)\right) \succ \mathrm{f}_{2}\left(\mathrm{~g}_{2}\left(\mathrm{i}_{2}(\mathrm{a})\right)\right)$
- ordered completion cannot produce a finite complete system when using ground-total reduction order

Definition (Linear Ordered Completion $\vdash_{\text {lin }}$)

E : set of equations $\quad R$: set of rewrite rules $\quad \succ$: reduction order
delete $\frac{E \cup\{s \approx s\}, R}{E, R}$
orient

$$
\frac{E \cup\{s \approx t\}, R}{E, R \cup\{s \rightarrow t\}} \quad \frac{E \cup\{t \approx s\}, R}{E, R \cup\{s \rightarrow t\}} \quad \text { if } s \succ t
$$

compose $\frac{E, R \cup\{s \rightarrow t\}}{E, R \cup\{s \rightarrow u\}}$
simplify $\quad \frac{E \cup\{s \approx t\}, R}{E \cup\{s \approx u\}, R} \quad \frac{E \cup\{t \approx s\}, R}{E \cup\{u \approx s\}, R}$
if $t \rightarrow_{R} u$
collapse $\frac{E, R \cup\{t \rightarrow s\}}{E \cup\{u \approx s\}, R}$
if $t \stackrel{\rightharpoonup}{\longrightarrow}_{R} u$
deduce

$$
\frac{E, R}{E \cup\{s \approx t\}, R}
$$

suppose $\left(E_{\omega}, R_{\omega}\right)$ is result of run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash_{\text {lin }}\left(E_{1}, R_{1}\right) \vdash_{\text {lin }}\left(E_{2}, R_{2}\right) \vdash_{\text {lin }} \cdots
$$

suppose $\left(E_{\omega}, R_{\omega}\right)$ is result of run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash_{\text {lin }}\left(E_{1}, R_{1}\right) \vdash_{\text {lin }}\left(E_{2}, R_{2}\right) \vdash_{\text {lin }} \cdots
$$

Completeness Theorem (2)

Suppose E_{0} is linear and γ is simplifying linear completion run using \succ and satisfying $\operatorname{LCP}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.
suppose $\left(E_{\omega}, R_{\omega}\right)$ is result of run

$$
\gamma:\left(E_{0}, \varnothing\right) \vdash_{\operatorname{lin}}\left(E_{1}, R_{1}\right) \vdash_{\operatorname{lin}}\left(E_{2}, R_{2}\right) \vdash_{\operatorname{lin}} \ldots
$$

Definition (Linear Critical Pairs)

Let $\ell_{1} \approx r_{1}$ and $\ell_{2} \approx r_{2}$ in $E^{ \pm}$such that

- $p \in \operatorname{Pos}_{\mathcal{F}}\left(\ell_{2}\right)$,
- $\sigma=\operatorname{mgu}\left(\ell_{1},\left.\ell_{2}\right|_{p}\right)$,
- $\ell_{1} \succ r_{1}$ and $r_{2} \nsucc \ell_{2}$, or $\ell_{2} \succ r_{2}$ and $r_{1} \nsucc \ell_{1}$

Then $\ell_{2} \sigma\left[r_{2} \sigma\right] \approx r_{2} \sigma$ is linear critical pair.
$\operatorname{LCP}(E)$ is set of all linear critical pairs among rules in E.

Completeness Theorem (2)

Suppose E_{0} is linear and γ is simplifying linear completion run using \succ and satisfying $\operatorname{LCP}\left(R_{\omega} \cup E_{\omega}\right) \subseteq E_{\infty}$.
Then $E_{\omega}=\varnothing$ and $R_{\omega} \doteq \mathcal{R}$.

Roadmap to Completeness

$$
\begin{array}{|l|}
\hline \text { It's Just Ordered Completion-Lemma } \\
\hline(E, R) \vdash_{\text {lin }}^{*}\left(E^{\prime}, R^{\prime}\right) \Longrightarrow(E, R) \vdash^{*}\left(E^{\prime}, R^{\prime}\right) \\
\hline
\end{array}
$$

Roadmap to Completeness

It's Just Ordered Completion-Lemma
$(E, R) \vdash_{\text {lin }}^{*}\left(E^{\prime}, R^{\prime}\right) \Longrightarrow(E, R) \vdash^{*}\left(E^{\prime}, R^{\prime}\right)$
E_{∞}-Lemma
$E_{\infty} \subseteq \rightarrow_{R_{\infty}}^{*} \cdot E_{\omega}^{=} \cdot R_{\infty}^{*} \leftarrow$

Roadmap to Completeness

Conclusion

Formalization

Ground Total Order Case

- skolemization done via new type (no assumptions on given signature)
datatype ('a,'b) f_ext = FOrig 'a | FFresh 'b
- 2200 LoC, 1500 thereof for lifting run to $\succ^{\mathcal{K}}$
- supports prime critical pair criterion

Formalization

Ground Total Order Case

- skolemization done via new type (no assumptions on given signature)
datatype ('a,'b) f_ext = FOrig 'a | FFresh 'b
- 2200 LoC, 1500 thereof for lifting run to $\succ^{\mathcal{K}}$
- supports prime critical pair criterion

Linear Case

- 1000 LoC
- could reuse general correctness result in linear case (original proofs used different proof orders)

Conclusion

Summary

- new proofs for two completeness results from literature: no proof orders, less monolithic-more formalization friendly?
- first formalization of completeness of ordered completion
- some unification of proofs

Conclusion

Summary

- new proofs for two completeness results from literature: no proof orders, less monolithic-more formalization friendly?
- first formalization of completeness of ordered completion
- some unification of proofs

Open Problem

Suppose \mathcal{R} is complete presentation of E_{0} such that

- $\rightarrow_{\mathcal{R}}^{+}$cannot be extended to ground total reduction order, and
- E_{0} is not linear

Will ordered completion run using $\rightarrow_{\mathcal{R}}^{+}$as reduction order find complete system?

