
Formalizing Completeness of Ordered Completion

Nao Hirokawa Aart Middeldorp Christian Sternagel Sarah Winkler

Master Seminar 1 @ CL

December 13, 2017

1



Ordered Completion

oKB

�

x · 1 ≈ x
x · x− ≈ 1

(x · y) · z ≈ x · (y · z)

1− → 1
x · 1→ x

x · x− → 1
(x−)− → x

(x · y)− → x− · y−
(x · y) · z → x · (y · z)

x · y ≈ y · x

ground complete presentation

R ∪ E
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I can decide ground equality:

(a · b−)− ≈ b · a− because (a · b−)−
∗−−−−→
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Ordered Completion



Definitions

TRS R is

I terminating if there is no infinite sequence t0 →R t1 →R t2 →R . . .

I confluent if s ∗R← · →∗R t implies s →∗R · ∗R← t (denoted s ↓R t)

I complete if confluent and terminating

I ground confluent if s ∗R← · →∗R t implies s ↓R t for all ground terms s and t

I ground complete if ground confluent and terminating

I (ground) complete presentation of theory T if R is (ground) complete and

←→∗R =←→∗T
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Example

R = {a→ b, b→ c} is

I complete X

I complete presentation of a ≈ b, b ≈ c, c ≈ d 7
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Consider set of equations E and reduction order �.

Definitions

I E± = E ∪ E−1

I E� = {`σ → rσ | ` ≈ r ∈ E± and `σ � rσ}

ordered rewriting

Definition (Extended Critical Pairs)

Let `1 ≈ r1 and `2 ≈ r2 ∈ E± such that

I p ∈ PosF (`2)

I σ = mgu(`1, `2|p)

I r1σ 6� `1σ and r2σ 6� `2σ

`2σ[`1σ]p = `2σ

`2σ[r1σ]p

r1 ≈ `1
r2σ

`2 ≈ r2

Then `2σ[r1σ]p ≈ r2σ is extended critical pair.

Set of extended critical pairs among equations in E is denoted CP�(E ).

Example
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`2σ[r1σ]p

r1 ≈ `1
r2σ

`2 ≈ r2

Then `2σ[r1σ]p ≈ r2σ is extended critical pair.

Set of extended critical pairs among equations in E is denoted CP�(E ).

Example

for E = {x + y ≈ y + x} and LPO with a > b > 0 > + have

E� =

{
a + b→ b + a (x + y) + x → x + (x + y) . . .

a + 0→ 0 + a a + (b + b)→ (b + b) + a 5
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Let `1 ≈ r1 and `2 ≈ r2 ∈ E± such that

I p ∈ PosF (`2)

I σ = mgu(`1, `2|p)

I r1σ 6� `1σ and r2σ 6� `2σ

`2σ[`1σ]p = `2σ

`2σ[r1σ]p

r1 ≈ `1
r2σ
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Then `2σ[r1σ]p ≈ r2σ is extended critical pair.

Set of extended critical pairs among equations in E is denoted CP�(E ).
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1 · (−x + x) ≈ 0 and y +−y ≈ −x + x give rise to CP� 1 · (y +−y) ≈ 0:

1 · (y +−y)←− 1 · (−x + x) −→ 0
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Definitions

I E± = E ∪ E−1

I E� = {`σ → rσ | ` ≈ r ∈ E± and `σ � rσ}
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Definition (Ordered Completion)

E : set of equations R: set of rewrite rules �: reduction order

delete
E ∪ {s ≈ s},R

E ,R

orient
E ∪ {s ≈ t},R
E ,R ∪ {s → t}

E ∪ {t ≈ s},R
E ,R ∪ {s → t} if s � t

compose
E ,R ∪ {s → t}
E ,R ∪ {s → u} if t →R∪E� u

simplify
E ∪ {s ≈ t},R
E ∪ {s ≈ u},R

E ∪ {t ≈ s},R
E ∪ {u ≈ s},R if t

·B1−−→R∪E� u

collapse
E ,R ∪ {t → s}
E ∪ {u ≈ s},R if t

·B2−−→R∪E� u

deduce
E ,R

E ∪ {s ≈ t},R if s ←→R∪E · ←→R∪E t

6
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6



Example

1 · (−x + x) ≈ 0

1 · (x +−x) ≈ x +−x
− x + x ≈ y +−y

I LPO with precedence + > − > 0

7



Example

1 · (−x + x) ≈ 0

1 · (x +−x) ≈ x +−x
− x + x ≈ y +−y

I LPO with precedence + > − > 0

7



Example

1 · (−x + x) ≈ 0

1 · (x +−x) ≈ x +−x
− x + x ≈ y +−y

I LPO with precedence + > − > 0

I orient 1 · (−x + x) > 0

7



Example

1 · (− x + x)→ 0

1 · (x +−x) ≈ x +−x
− x + x ≈ y +−y

I LPO with precedence + > − > 0

7



Example

1 · (− x + x)→ 0

1 · (x +−x) ≈ x +−x
− x + x ≈ y +−y

I LPO with precedence + > − > 0

I deduce 1 · (y +−y)← 1 · (−x + x)→ 0

7



Example

1 · (y +−y) ≈ 0 1 · (− x + x)→ 0

1 · (x +−x) ≈ x +−x
− x + x ≈ y +−y

I LPO with precedence + > − > 0

7



Example

1 · (y +−y) ≈ 0 1 · (− x + x)→ 0

1 · (x +−x) ≈ x +−x
− x + x ≈ y +−y

I LPO with precedence + > − > 0

I orient 1 · (y +−y) > 0

7



Example

1 · (− x + x)→ 0

1 · (x +−x) ≈ x +−x 1 · (y +−y)→ 0

− x + x ≈ y +−y

I LPO with precedence + > − > 0

7



Example

1 · (− x + x)→ 0

1 · (x +−x) ≈ x +−x 1 · (y +−y)→ 0

− x + x ≈ y +−y

I LPO with precedence + > − > 0

I simplify 1 · (x +−x)→ 0

7



Example

1 · (− x + x)→ 0

0 ≈ x +−x 1 · (y +−y)→ 0

− x + x ≈ y +−y

I LPO with precedence + > − > 0

7



Example

1 · (− x + x)→ 0

0 ≈ x +−x 1 · (y +−y)→ 0

− x + x ≈ y +−y

I LPO with precedence + > − > 0

I orient x +−x > 0

7



Example

1 · (− x + x)→ 0

0 ≈ x +−x 1 · (y +−y)→ 0

− x + x ≈ y +−y x +−x → 0

I LPO with precedence + > − > 0

7



Example

1 · (− x + x)→ 0

1 · (y +−y)→ 0

− x + x ≈ y +−y x +−x → 0

I LPO with precedence + > − > 0

I simplify y +−y → 0

7



Example

1 · (− x + x)→ 0

1 · (y +−y)→ 0

− x + x ≈ 0 x +−x → 0

I LPO with precedence + > − > 0

7



Example

1 · (− x + x)→ 0

1 · (y +−y)→ 0

− x + x ≈ 0 x +−x → 0

I LPO with precedence + > − > 0

I collapse y +−y → 0

7



Example

1 · 0 ≈ 0 1 · (− x + x)→ 0

− x + x ≈ 0 x +−x → 0

I LPO with precedence + > − > 0

7



Example

1 · 0 ≈ 0 1 · (− x + x)→ 0

− x + x ≈ 0 x +−x → 0

I LPO with precedence + > − > 0

I orient 1 · 0 > 0

7



Example

1 · (− x + x)→ 0

1 · 0→ 0

− x + x ≈ 0 x +−x → 0

I LPO with precedence + > − > 0

7



Example

1 · (− x + x)→ 0

1 · 0→ 0

− x + x ≈ 0 x +−x → 0

I LPO with precedence + > − > 0

I orient −x + x > 0

7



Example

1 · (− x + x)→ 0

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

7



Example

1 · (− x + x)→ 0

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

I collapse −x + x → 0

7



Example

1 · 0 ≈ 0

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

7



Example

1 · 0 ≈ 0

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

I simplify 1 · 0→ 0

7



Example

0 ≈ 0

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

7



Example

0 ≈ 0

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

I delete 0 ≈ 0

7



Example

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

7



Example

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

I run produced ground complete system

7



Example

1 · 0→ 0

x +−x → 0

− x + x → 0

I LPO with precedence + > − > 0

I run produced complete system

7



Definition

possibly infinite run

γ : (E0,∅) ` (E1,R1) ` (E2,R2) ` · · ·

I E∞ =
⋃

i Ei R∞ =
⋃

i Ri S∞ = R∞ ∪ E�∞

I persistent equations and rules:

Eω =
⋃

i

⋂
j>i Ei Rω =

⋃
i

⋂
j>i Rj Sω = Rω ∪ E�ω

I γ is fair if CP�(Rω ∪ Eω) ⊆ E∞

Correctness Theorem Bachmair, Dershowitz, and Plaisted ’89

If γ is fair and � is ground total then Sω is ground complete presentation of E0.

N. Hirokawa, A. Middeldorp, C. Sternagel, S. Winkler.
Infinite Runs in Abstract Completion.
2nd FSCD, LIPIcs, 19:1–19:16, 2017.

proof based on proof orders:

compare conversions with (�mul,�,B· ,�mul)lex

no proof orders, “separation of concerns”
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Completeness Results



This Section

R is canonical presentation of E0 such that R ⊆ �

Definition

run γ : (E0,∅) ` (E1,R1) ` (E2,R2) ` · · · is simplifying if

I equations in Eω are nontrivial and irreducible with respect to Sω

I Rω is reduced

Completeness Theorem (1) Bachmair, Dershowitz and Plaisted ’89

Suppose γ uses ground total reduction order �, is simplifying, and satisfies

CP�(Rω ∪ Eω) ⊆ E∞.

Then Eω = ∅ and Rω
.

= R.

Completeness Theorem (2) Devie ’90

Suppose E0 is linear and γ is simplifying linear completion run using � and

satisfying LCP(Rω ∪ Eω) ⊆ E∞.

Then Eω = ∅ and Rω
.

= R.

proofs use (different) proof orders,

and are rather monolithic

equal up to renaming variables

9
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The Case of a Ground Total Order

Completeness Theorem (1) Bachmair, Dershowitz and Plaisted ’89

Suppose γ uses ground total reduction order �, is simplifying, and satisfies

CP�(Rω ∪ Eω) ⊆ E∞.

Then Eω = ∅ and Rω
.

= R.

Key Idea: Disguise Variables

I suppose E0 is over terms T (F ,V)

I let K be fresh set of constants x̂ for all x ∈ V
I write t̂ for ground term obtained from t by replacing every variable x by x̂

I have s →R t iff ŝ →R t̂ for every TRS R over T (F ,V)

10
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Roadmap to Completeness

Order Extension Lemma

There exists ground-total reduction order

�K on T (F ∪ K,V) such that � ⊆ �K

Ground Completeness on T (F ∪ K,V)

SKω is ground complete presentation of E0

with respect to �K

Peak Analysis Lemma

if s
ε,σ←−−−−−−

r≈`∈Eω
±
· −→

Sω
t and rσ 6� `σ then

s ←→E∞ t ′ for some t � t ′ or s 6∈ NF(Sω)

Normal Form Persistence

NF(S∞) = NF(Sω)

-Lemma

if ŝ →SK∞
t̂ then s /∈ NF(Sω)

Normal Form Lemma

NF(Sω) ⊆ NF(R)

Completeness Theorem

if (Eω,Rω) is simplified then Eω = ∅ and

Rω is complete

Proof.

I define >kbo with c > f for all c ∈ K, f ∈ F
I for ⊥ minimal constant in F , let t⊥ be term where

every variable replaced by ⊥
I define s �K t as s⊥ � t⊥ or s⊥ = t⊥ and s >kbo t

Proof.

(a) proper overlap

Eω Sω

I s ←−−−−−−−→
CP�(Eω∪Rω)

t

I so s ←−→
E∞

t by fairness

s t

(b) variable overlap

Eω Sω

Sω
∗s t

t ′

∃x ∈ Var(`) such that Sω-step
happens in σ(x)

I t 6∈ NF(Sω) if x ∈ Var(r)
I otherwise ∃t ′ � t with

s ←→Eω t ′, so s ←→E∞ t ′

Proof.
Induction on t̂ with respect to �K.

∃` ≈ r ∈ E∞
± ∪ R∞ such that

ŝ = Ĉ [`σ̂] −−→
SK∞

Ĉ [r σ̂] = t̂

Proof.

I if t →R u then t � u

I by ground completeness t̂ ↓SKω û and t̂ �K û

I t̂ must be SKω -reducible, hence SK∞-reducible

I conclude by Key Lemma

Proof.

I Eω must be R-reducible by completeness of R
I by Normal Form Lemma Eω must be Sω-reducible

I as Eω is simplified must have Eω = ∅
I from Normal Form Lemma and Rω ⊆ R conclude

Rω
.

= R by results on normalization equivalence
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ŝ = Ĉ [`σ̂] −−→
SK∞
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Ĉ = �:

(1) if s � t then s →S∞ t, so s /∈ NF(S∞) = NF(Sω) 3

(2) ` ≈ r ∈ E∞ \ Eω, so ` ≈ r ∈ Ei \ Ei+1

I ` = r or r → ` ∈ Ri+1

impossible as `σ̂ � r σ̂

I `→ r ∈ Ri+1 or `→Si+1
· Ei+1 r

` is S∞-reducible, hence Sω-reducible

I ` Ei+1 · Si+1
← r

conclude by IH

(3) ` ≈ r ∈ Eω

I have t 6∈ NF(R), so t̂ /∈ NF(S∞)

I thus ∃ step t̂ →SK∞
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ŝ = Ĉ [`σ̂] −−→
SK∞
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Ĉ = �:

(1) if s � t then s →S∞ t, so s /∈ NF(S∞) = NF(Sω) 3

(2) ` ≈ r ∈ E∞ \ Eω, so ` ≈ r ∈ Ei \ Ei+1 3

(3) ` ≈ r ∈ Eω 3

I have t 6∈ NF(R), so t̂ /∈ NF(S∞)

I thus ∃ step t̂ →SK∞
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I t̂ must be SKω -reducible, hence SK∞-reducible

I conclude by Key Lemma

Proof.

I Eω must be R-reducible by completeness of R
I by Normal Form Lemma Eω must be Sω-reducible

I as Eω is simplified must have Eω = ∅
I from Normal Form Lemma and Rω ⊆ R conclude

Rω
.

= R by results on normalization equivalence



Roadmap to Completeness

Order Extension Lemma

There exists ground-total reduction order

�K on T (F ∪ K,V) such that � ⊆ �K

Ground Completeness on T (F ∪ K,V)

SKω is ground complete presentation of E0

with respect to �K

Peak Analysis Lemma

if s
ε,σ←−−−−−−

r≈`∈Eω
±
· −→

Sω
t and rσ 6� `σ then

s ←→E∞ t ′ for some t � t ′ or s 6∈ NF(Sω)

Normal Form Persistence

NF(S∞) = NF(Sω)

-Lemma
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Roadmap to Completeness

Order Extension Lemma

There exists ground-total reduction order

�K on T (F ∪ K,V) such that � ⊆ �K

Ground Completeness on T (F ∪ K,V)

SKω is ground complete presentation of E0

with respect to �K

Peak Analysis Lemma

if s
ε,σ←−−−−−−

r≈`∈Eω
±
· −→

Sω
t and rσ 6� `σ then

s ←→E∞ t ′ for some t � t ′ or s 6∈ NF(Sω)
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t
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t by fairness

s t
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Eω Sω

Sω
∗s t

t ′
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Proof.
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The Linear Case

Example (Devie 1990)

f1(g1(i1(x))) ≈ g1(i1(f1(g1(i2(x))))) h1(g1(i1(x))) ≈ g1(i1(x)) f1(a) ≈ a

f2(g2(i2(x))) ≈ g2(i2(f2(g2(i1(x))))) h2(g2(i2(x))) ≈ g2(i2(x)) f2(a) ≈ a

g1(a) ≈ a h1(a) ≈ a i1(a) ≈ a

g2(a) ≈ a h2(a) ≈ a i2(a) ≈ a

I orienting all equations from left to right yields a canonical system R

I cannot extend →+
R to ground total reduction order: i1(a) � i2(a) implies

f2(g2(i2(a))) � g2(i2(f2(g2(i1(a))))) � g2(i2(f2(g2(i2(a))))) � f2(g2(i2(a)))

I ordered completion cannot produce a finite complete system when using

ground-total reduction order
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Definition (Linear Ordered Completion `lin)

E : set of equations R: set of rewrite rules �: reduction order

delete
E ∪ {s ≈ s},R

E ,R

orient
E ∪ {s ≈ t},R
E ,R ∪ {s → t}

E ∪ {t ≈ s},R
E ,R ∪ {s → t} if s � t

compose
E ,R ∪ {s → t}
E ,R ∪ {s → u} if t →R u

simplify
E ∪ {s ≈ t},R
E ∪ {s ≈ u},R

E ∪ {t ≈ s},R
E ∪ {u ≈ s},R if t →R u

collapse
E ,R ∪ {t → s}
E ∪ {u ≈ s},R if t ·B−→R u

deduce
E ,R

E ∪ {s ≈ t},R if s ←R∪E± u →R∪E± t
and s ≈ t is linear

12



suppose (Eω,Rω) is result of run

γ : (E0,∅) `lin (E1,R1) `lin (E2,R2) `lin · · ·

Definition (Linear Critical Pairs)

Let `1 ≈ r1 and `2 ≈ r2 in E± such that

I p ∈ PosF (`2),

I σ = mgu(`1, `2|p),

I `1 � r1 and r2 6� `2, or `2 � r2 and r1 6� `1
Then `2σ[r2σ] ≈ r2σ is linear critical pair.

LCP(E ) is set of all linear critical pairs among rules in E .

Completeness Theorem (2) Devie ’90

Suppose E0 is linear and γ is simplifying linear completion run using � and

satisfying LCP(Rω ∪ Eω) ⊆ E∞.

Then Eω = ∅ and Rω
.

= R.
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Roadmap to Completeness

It’s Just Ordered Completion-Lemma

(E ,R) `∗lin (E ′,R ′) =⇒ (E ,R) `∗ (E ′,R ′)

E∞-Lemma

E∞ ⊆ →∗R∞ · E=
ω · ∗

R∞
←

Peak Analysis Lemma

r←`←−−−−−
Eω
±∪Rω

· −−→
Rω

⊆ ∗−−→
R∞
· E=

ω ·
∗←−−

R∞
if r 6� `

Linearity Preservation

If (E ,R) `∗ (E ′,R ′) and E ∪ R is linear

then E ′ ∪ R ′ is linear

R∞-Lemma

if `→ r ∈ R∞ then

`→Rω · (←→≺`Eω∪Rω
)∗ r

-Lemma

if s →!
R t then s →∗Rω

t

Normal Form Lemma

NF(Rω) ⊆ NF(R)

Completeness Theorem

if (Eω,Rω) is simplified then Eω = ∅ and

Rω is complete
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Conclusion



Formalization

Ground Total Order Case

I skolemization done via new type (no assumptions on given signature)

datatype (’a,’b) f ext = FOrig ’a | FFresh ’b

I 2200 LoC, 1500 thereof for lifting run to �K

I supports prime critical pair criterion

Linear Case

I 1000 LoC

I could reuse general correctness result in linear case

(original proofs used different proof orders)

15



Formalization

Ground Total Order Case

I skolemization done via new type (no assumptions on given signature)

datatype (’a,’b) f ext = FOrig ’a | FFresh ’b

I 2200 LoC, 1500 thereof for lifting run to �K

I supports prime critical pair criterion

Linear Case

I 1000 LoC

I could reuse general correctness result in linear case

(original proofs used different proof orders)

15



Conclusion

Summary

I new proofs for two completeness results from literature:

no proof orders, less monolithic—more formalization friendly?

I first formalization of completeness of ordered completion

I some unification of proofs

Open Problem

Suppose R is complete presentation of E0 such that

I →+
R cannot be extended to ground total reduction order, and

I E0 is not linear

Will ordered completion run using →+
R as reduction order find complete system?

16



Conclusion

Summary

I new proofs for two completeness results from literature:

no proof orders, less monolithic—more formalization friendly?

I first formalization of completeness of ordered completion

I some unification of proofs

Open Problem

Suppose R is complete presentation of E0 such that

I →+
R cannot be extended to ground total reduction order, and

I E0 is not linear

Will ordered completion run using →+
R as reduction order find complete system?

16


	Ordered Completion
	Completeness Results
	Ground Total Reduction Orders
	Linear Systems

	Conclusion

