Formalizing Completeness of Ordered Completion

Nao Hirokawa Aart Middeldorp Christian Sternagel Sarah Winkler Master Seminar 1 @ CL December 13, 2017

can decide ground equality:

$$(a \cdot b^{-})^{-} \approx b \cdot a^{-}$$
 because $(a \cdot b^{-})^{-} \xrightarrow{*} \cdot \xleftarrow{*}_{P \cup E \succ} b \cdot a^{-}$

can decide ground equality:

 $(\mathsf{a} \cdot \mathsf{b}^{-})^{-} \approx \mathsf{b} \cdot \mathsf{a}^{-} \quad \mathsf{because} \quad (\mathsf{a} \cdot \mathsf{b}^{-})^{-} \xrightarrow[R \cup E^{\succ}]{} \cdot \xleftarrow[R \cup E^{\succ}]{} \mathsf{b} \cdot \mathsf{a}^{-}$

Correctness Theorem

Any fair oKB run produces ground complete presentation.

complete presentation R

complete presentation R

► can decide any equality:

$$(x \cdot y^{-})^{-} \approx y \cdot x^{-}$$
 because $(x \cdot y^{-})^{-} \stackrel{*}{\longrightarrow} \stackrel{*}{\underset{R}{\longrightarrow}} y \cdot x^{-}$

complete presentation R

can decide any equality:

$$(x \cdot y^{-})^{-} \approx y \cdot x^{-}$$
 because $(x \cdot y^{-})^{-} \stackrel{*}{\xrightarrow{P}} \cdot \stackrel{*}{\xleftarrow{P}} y \cdot x^{-}$

Question (Completeness)

Under which circumstances will oKB compute a complete presentation?

- Ordered Completion
- Completeness Results
 - Ground Total Reduction Orders
 - Linear Systems
- Conclusion

TRS R is

▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \dots$

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ► confluent if $s \overset{*}{_{R}}\leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \overset{*}{_{R}}\leftarrow t$ (denoted $s \downarrow_{R} t$)

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \underset{R}{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot \underset{R}{*} \leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \stackrel{*}{_{R}}\leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \stackrel{*}{_{R}}\leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \overset{*}{_{R}} \leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \downarrow_{R} t$ for all ground terms s and t

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \stackrel{*}{_{R}} \leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \stackrel{*}{_{R}} \leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \stackrel{*}{_R} \leftarrow \cdot \rightarrow^*_R t$ implies $s \downarrow_R t$ for all ground terms s and t
- ground complete if ground confluent and terminating

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \stackrel{*}{_{R}}\leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \stackrel{*}{_{R}}\leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \stackrel{*}{_R} \leftarrow \cdot \rightarrow^*_R t$ implies $s \downarrow_R t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- ▶ (ground) complete presentation of theory *T* if *R* is (ground) complete and $↔_R^* = ↔_T^*$

TRS R is

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \stackrel{*}{_{R}} \leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \stackrel{*}{_{R}} \leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \stackrel{*}{_R} \leftarrow \cdot \rightarrow^*_R t$ implies $s \downarrow_R t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- ▶ (ground) complete presentation of theory *T* if *R* is (ground) complete and $↔_R^* = ↔_T^*$

Example

 $R = \{a \rightarrow b, b \rightarrow c\}$ is

- \blacktriangleright complete \checkmark
- \blacktriangleright complete presentation of a \approx b, b \approx c, c \approx d $~\not$

TRS R is

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \stackrel{*}{_{R}} \leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \stackrel{*}{_{R}} \leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \stackrel{*}{_R} \leftarrow \cdot \rightarrow^*_R t$ implies $s \downarrow_R t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- ▶ (ground) complete presentation of theory *T* if *R* is (ground) complete and $↔_R^* = ↔_T^*$

Example

 $\textit{R} = \{ \mathsf{a} \rightarrow \mathsf{b}, \mathsf{b} \rightarrow \mathsf{c}, \mathsf{c} \rightarrow \mathsf{d} \}$ is

- \blacktriangleright complete \checkmark
- \blacktriangleright complete presentation of a \approx b, b \approx c, c \approx d $~\checkmark$

TRS R is

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \stackrel{*}{_{R}}\leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \stackrel{*}{_{R}}\leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \stackrel{*}{_R} \leftarrow \cdot \rightarrow^*_R t$ implies $s \downarrow_R t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- ▶ (ground) complete presentation of theory *T* if *R* is (ground) complete and $↔_R^* = ↔_T^*$

Definitions

terminating TRS R is

▶ reduced if $\forall \ell \rightarrow r \in R$ have $r = r \downarrow_R$ and $\ell = \ell \downarrow_{R \setminus \{\ell \rightarrow r\}}$

TRS R is

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \underset{R}{*} \leftarrow \cdot \rightarrow_{R}^{*} t$ implies $s \rightarrow_{R}^{*} \cdot \underset{R}{*} \leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \stackrel{*}{_R} \leftarrow \cdot \rightarrow^*_R t$ implies $s \downarrow_R t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- ▶ (ground) complete presentation of theory *T* if *R* is (ground) complete and $↔_R^* = ↔_T^*$

▶ reduced if $\forall \ell \rightarrow r \in R$ have $r = r \downarrow_R$ and $\ell = \ell \downarrow_{R \setminus \{\ell \rightarrow r\}}$

TRS R is

- ▶ terminating if there is no infinite sequence $t_0 \rightarrow_R t_1 \rightarrow_R t_2 \rightarrow_R \ldots$
- ▶ confluent if $s \stackrel{*}{_{R}} \leftarrow \cdot \rightarrow^{*}_{R} t$ implies $s \rightarrow^{*}_{R} \cdot \stackrel{*}{_{R}} \leftarrow t$ (denoted $s \downarrow_{R} t$)
- complete if confluent and terminating
- ▶ ground confluent if $s \stackrel{*}{_R} \leftarrow \cdot \rightarrow^*_R t$ implies $s \downarrow_R t$ for all ground terms s and t
- ground complete if ground confluent and terminating
- ▶ (ground) complete presentation of theory *T* if *R* is (ground) complete and $↔_R^* = ↔_T^*$

Definitions

terminating TRS R is

- ▶ reduced if $\forall \ell \rightarrow r \in R$ have $r = r \downarrow_R$ and $\ell = \ell \downarrow_{R \setminus \{\ell \rightarrow r\}}$
- canonical if complete and reduced

Definitions

 $\blacktriangleright E^{\pm} = E \cup E^{-1}$

Definitions

 $\blacktriangleright E^{\pm} = E \cup E^{-1}$

•
$$E^{\succ} = \{\ell \sigma \to r\sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r\sigma\}$$

ordered rewriting

Definitions

 $\blacktriangleright E^{\pm} = E \cup E^{-1}$

•
$$E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$$
 ordered rewriting

Example

for $E = \{x + y \approx y + x\}$ and LPO with a > b > 0 > + have

$$E^{\succ} = \begin{cases} a+b \rightarrow b+a & (x+y)+x \rightarrow x+(x+y) & \dots \\ a+0 \rightarrow 0+a & a+(b+b) \rightarrow (b+b)+a \end{cases}$$

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $\blacktriangleright E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$

Definition (Extended Critical Pairs)

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\sigma = \operatorname{mgu}(\ell_1, \ell_2|_p)$
- $\blacktriangleright \ r_1 \sigma \not\succ \ell_1 \sigma \text{ and } r_2 \sigma \not\succ \ell_2 \sigma$

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $\blacktriangleright E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$

Definition (Extended Critical Pairs)

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\blacktriangleright \ \sigma = \mathsf{mgu}(\ell_1, \ell_2|_p)$
- $\blacktriangleright \ r_1 \sigma \not\succ \ell_1 \sigma \text{ and } r_2 \sigma \not\succ \ell_2 \sigma$

$$\ell_2 \sigma [\ell_1 \sigma]_p = \ell_2 \sigma$$

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $\blacktriangleright E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$

Definition (Extended Critical Pairs)

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\sigma = \operatorname{mgu}(\ell_1, \ell_2|_p)$
- $\blacktriangleright \ r_1 \sigma \not\succ \ell_1 \sigma \text{ and } r_2 \sigma \not\succ \ell_2 \sigma$

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $\blacktriangleright E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$

Definition (Extended Critical Pairs)

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\sigma = \operatorname{mgu}(\ell_1, \ell_2|_p)$
- $\blacktriangleright \ r_1 \sigma \not\succ \ell_1 \sigma \text{ and } r_2 \sigma \not\succ \ell_2 \sigma$

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $\blacktriangleright E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$

Definition (Extended Critical Pairs)

Let $\ell_1 \approx r_1$ and $\ell_2 \approx r_2 \in E^{\pm}$ such that

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\blacktriangleright \ \sigma = \mathsf{mgu}(\ell_1, \ell_2|_p)$

•
$$r_1 \sigma \neq \ell_1 \sigma$$
 and $r_2 \sigma \neq \ell_2 \sigma$

Then $\ell_2 \sigma[r_1 \sigma]_{\rho} \approx r_2 \sigma$ is extended critical pair.

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $\blacktriangleright E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$

Definition (Extended Critical Pairs)

Let $\ell_1 \approx r_1$ and $\ell_2 \approx r_2 \in E^{\pm}$ such that

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\sigma = \operatorname{mgu}(\ell_1, \ell_2|_p)$

•
$$r_1 \sigma \not\succ \ell_1 \sigma$$
 and $r_2 \sigma \not\succ \ell_2 \sigma$

Then $\ell_2 \sigma [r_1 \sigma]_p \approx r_2 \sigma$ is extended critical pair. Set of extended critical pairs among equations in *E* is denoted $\mathsf{CP}_{\succ}(E)$.

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $E^{\succ} = \{\ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma\}$

Definition (Extended Critical Pairs)

Let $\ell_1 \approx r_1$ and $\ell_2 \approx r_2 \in E^{\pm}$ such that

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\bullet \ \sigma = \mathsf{mgu}(\ell_1, \ell_2|_p)$

•
$$r_1 \sigma \neq \ell_1 \sigma$$
 and $r_2 \sigma \neq \ell_2 \sigma$

Then $\ell_2 \sigma [r_1 \sigma]_p \approx r_2 \sigma$ is extended critical pair. Set of extended critical pairs among equations in *E* is denoted $CP_{\succ}(E)$.

Example

 $1 \cdot (-x + x) \approx 0$ and $y + -y \approx -x + x$ give rise to $CP_{\succ} \ 1 \cdot (y + -y) \approx 0$:

$$1 \cdot (y + -y) \leftarrow 1 \cdot (-x + x) \rightarrow 0$$

Definitions

- $\blacktriangleright E^{\pm} = E \cup E^{-1}$
- $\blacktriangleright E^{\succ} = \{ \ell \sigma \to r \sigma \mid \ell \approx r \in E^{\pm} \text{ and } \ell \sigma \succ r \sigma \}$

Definition (Extended Critical Pairs)

Let $\ell_1 \approx r_1$ and $\ell_2 \approx r_2 \in E^{\pm}$ such that

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$
- $\sigma = \operatorname{mgu}(\ell_1, \ell_2|_p)$

•
$$r_1 \sigma \neq \ell_1 \sigma$$
 and $r_2 \sigma \neq \ell_2 \sigma$

Then $\ell_2 \sigma [r_1 \sigma]_p \approx r_2 \sigma$ is extended critical pair. Set of extended critical pairs among equations in *E* is denoted $CP_{\succ}(E)$.

Definition

reduction order \succ is ground total if it is total on ground terms

Definition (Ordered Completion)

E: set of equations *R*: set of rewrite rules \succ : reduction order

Definition (Ordered Completion)

E: set of equations *R*: set of rewrite rules \succ : reduction order

delete

 $\frac{E \cup \{s \approx s\}, R}{E, R}$
Definition (Ordered Completion)E: set of equationsR: set of rewrite rules \leftarrow : reduction orderdelete $\frac{E \cup \{s \approx s\}, R}{E, R}$ orient $\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \rightarrow t\}}$ $\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \rightarrow t\}}$ $\frac{E \cup \{t \approx s\}, R}{E, R \cup \{s \rightarrow t\}}$

Definition (Ordered Completion)							
E: set of equ	ations R: set of rewrite rules	\succ : reduction order					
delete	$\frac{E \cup \{s \approx s\}, R}{E, R}$						
orient	$\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \rightarrow t\}} \frac{E \cup \{t \approx s\}, R}{E, R \cup \{s \rightarrow t\}}$	if $s \succ t$					
compose	$\frac{E, R \cup \{s \to t\}}{E, R \cup \{s \to u\}}$	$\text{if } t \to_{R \cup E^{\succ}} u$					

Definition (Ordered Completion)							
E: set of equ	ations	R: set	of rewrite rules	\succ : reduction orde			
delete	$\frac{E \cup \{s}{E}$	$\frac{\approx s\}, R}{R}$					
orient	$\frac{E \cup \{s\\E, R \cup \}$	$\frac{\approx t\}, R}{\{s \to t\}}$	$\frac{E \cup \{t \approx s\}, R}{E, R \cup \{s \to t\}}$	if $s \succ t$			
compose	$\frac{E, R \cup F}{E, R \cup F}$	$\frac{\{s \to t\}}{\{s \to u\}}$		$\text{if } t \to_{R \cup E^{\succ}} u$			
simplify	$\frac{E \cup \{s\}}{E \cup \{s\}}$	$\frac{\approx t\}, R}{\approx u\}, R}$	$\frac{E \cup \{t \approx s\}, R}{E \cup \{u \approx s\}, R}$	$\text{if } t \xrightarrow{\bowtie_1}_{R \cup E^{\succ}} u$			

Definition (Ordered Completion) E : set of equations R : set of rewrite rules \succ : reduction order						
delete	$\frac{E \cup \{s}{E}$	$\approx s$, R				
orient	$\frac{E \cup \{s\}}{E, R \cup}$	$\frac{\approx t\}, R}{\{s \to t\}}$	$\frac{E \cup \{t \approx s\}, R}{E, R \cup \{s \to t\}}$	if $s \succ t$		
compose	$\frac{E, R \cup}{E, R \cup}$	$\frac{\{s \to t\}}{\{s \to u\}}$		$\text{if } t \to_{R \cup E^{\succ}} u$		
simplify	$\frac{E \cup \{s\}}{E \cup \{s\}}$	$\approx t\}, R$ $\approx u\}, R$	$\frac{E \cup \{t \approx s\}, R}{E \cup \{u \approx s\}, R}$	$\text{if } t \xrightarrow{\bowtie_1}_{R \cup E^{\succ}} u$		
collapse	$\frac{E, R \cup}{E \cup \{u\}}$	$\frac{\{t \to s\}}{s \approx s\}, R$		$\text{if } t \xrightarrow{\bowtie_2}_{R \cup E^{\succ}} u$		

Definition (Ordered Completion)						
E: set of equa	ations R: set	of rewrite rules	$\succ:$ reduction order			
delete	$\frac{E \cup \{s \approx s\}, R}{E, R}$					
orient	$\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \to t\}}$	$\frac{E \cup \{t \approx s\}, R}{E, R \cup \{s \to t\}}$	if $s \succ t$			
compose	$\frac{E, R \cup \{s \to t\}}{E, R \cup \{s \to u\}}$		$\text{if } t \to_{R \cup E^{\succ}} u$			
simplify	$\frac{E \cup \{s \approx t\}, R}{E \cup \{s \approx u\}, R}$	$\frac{E \cup \{t \approx s\}, R}{E \cup \{u \approx s\}, R}$	if $t \xrightarrow{\bowtie_1}_{R \cup E^{\succ}} u$			
collapse	$\frac{E, R \cup \{t \to s\}}{E \cup \{u \approx s\}, R}$		$\text{if } t \xrightarrow{\bowtie_2}_{R \cup E^{\succ}} u$			
deduce	$\frac{E,R}{E\cup\{s\approx t\},R}$		$ \text{if } s \leftrightarrow_{R \cup E} \cdot \leftrightarrow_{R \cup E} t $			

$$1 \cdot (-x + x) \approx 0$$
$$1 \cdot (x + -x) \approx x + -x$$
$$-x + x \approx y + -y$$

$$1 \cdot (-x + x) \approx 0$$
$$1 \cdot (x + -x) \approx x + -x$$
$$-x + x \approx y + -y$$

$$1 \cdot (-x + x) \approx 0$$

$$1 \cdot (x + -x) \approx x + -x$$

$$-x + x \approx y + -y$$

- ▶ LPO with precedence + > > 0
- orient $1 \cdot (-x + x) > 0$

$$1\cdot(-x+x)\to 0$$

$$1 \cdot (x + -x) \approx x + -x$$

 $-x + x \approx y + -y$

$$1\cdot(-x+x)\to 0$$

$$1 \cdot (x + -x) \approx x + -x$$
$$-x + x \approx y + -y$$

- ▶ LPO with precedence + > > 0
- deduce $1 \cdot (y + -y) \leftarrow 1 \cdot (-x + x) \rightarrow 0$

$$\begin{split} 1 \cdot (y + -y) &\approx 0 & 1 \cdot (-x + x) \to 0 \\ 1 \cdot (x + -x) &\approx x + -x \\ &-x + x &\approx y + -y \end{split}$$

$$\begin{aligned} \mathbf{1} \cdot (\mathbf{y} + -\mathbf{y}) &\approx \mathbf{0} & \mathbf{1} \cdot (-x + x) \to \mathbf{0} \\ \mathbf{1} \cdot (x + -x) &\approx x + -x \\ &-x + x &\approx y + -y \end{aligned}$$

- ▶ LPO with precedence + > > 0
- orient $1 \cdot (y + -y) > 0$

$$1 \cdot (-x+x) \to 0$$

$$1 \cdot (x+-x) \approx x + -x \qquad \qquad 1 \cdot (y+-y) \to 0$$

$$-x+x \approx y + -y$$

$$1 \cdot (-x+x) \to 0$$

$$1 \cdot (x+-x) \approx x + -x$$

$$-x + x \approx y + -y$$

$$1 \cdot (y+-y) \to 0$$

- ▶ LPO with precedence + > > 0
- simplify $1 \cdot (x + -x) \rightarrow 0$

- ▶ LPO with precedence + > > 0
- orient x + -x > 0

$$1 \cdot (-x+x) \to 0$$

$$0 \approx x + -x \qquad \qquad 1 \cdot (y+-y) \to 0$$

$$-x + x \approx y + -y \qquad \qquad x + -x \to 0$$

- ▶ LPO with precedence + > > 0
- simplify $y + -y \rightarrow 0$

- ▶ LPO with precedence + > > 0
- ► collapse $y + -y \rightarrow 0$

- ▶ LPO with precedence + > > 0
- orient $1 \cdot 0 > 0$

- ▶ LPO with precedence + > > 0
- orient -x + x > 0

 $1 \cdot (-x+x) \rightarrow 0$ $1 \cdot 0 \rightarrow 0$ $x + -x \rightarrow 0$ $-x + x \rightarrow 0$

 $1 \cdot (-x+x) \to 0$ $1 \cdot 0 \to 0$ $x + -x \to 0$ $-x + x \to 0$

- ▶ LPO with precedence + > > 0
- ► collapse $-x + x \rightarrow 0$

 $1 \cdot 0 \approx 0$ $1 \cdot 0
ightarrow 0$ x + -x
ightarrow 0-x + x
ightarrow 0

 $1 \cdot 0 \approx 0$ $1 \cdot 0 \rightarrow 0$ $x + -x \rightarrow 0$ $-x + x \rightarrow 0$

- ▶ LPO with precedence + > > 0
- $\blacktriangleright \text{ simplify } 1 \cdot 0 \rightarrow 0$

 $egin{array}{c} 1 \cdot 0
ightarrow 0 \ x+-x
ightarrow 0 \ -x+x
ightarrow 0 \end{array}$

• LPO with precedence + > - > 0

 $0 \approx 0$

 $egin{array}{c} 1 \cdot 0
ightarrow 0 \ x + -x
ightarrow 0 \ -x + x
ightarrow 0 \end{array}$

▶ LPO with precedence + > - > 0

 $0 \approx 0$

• delete $0 \approx 0$

 $1 \cdot 0 \rightarrow 0$ $x + -x \rightarrow 0$ $-x + x \rightarrow 0$

 $1 \cdot 0 \rightarrow 0$ $x + -x \rightarrow 0$ $-x + x \rightarrow 0$

- ▶ LPO with precedence + > > 0
- ▶ run produced ground complete system

 $1 \cdot 0 \rightarrow 0$ $x + -x \rightarrow 0$ $-x + x \rightarrow 0$

- ▶ LPO with precedence + > > 0
- ► run produced complete system

Definition

possibly infinite run

$$\gamma: (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$$

Definition

possibly infinite run

$$\gamma$$
: $(E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$

• $E_{\infty} = \bigcup_i E_i$ $R_{\infty} = \bigcup_i R_i$ $S_{\infty} = R_{\infty} \cup E_{\infty}^{\succ}$

Definition

possibly infinite run

$$\gamma: (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$$

$$\blacktriangleright \ E_{\infty} = \bigcup_{i} E_{i} \qquad R_{\infty} = \bigcup_{i} R_{i} \qquad S_{\infty} = R_{\infty} \cup E_{\infty}^{\succ}$$

► persistent equations and rules: $E_{\omega} = \bigcup_{i} \bigcap_{j \ge i} E_{i}$ $R_{\omega} = \bigcup_{i} \bigcap_{j \ge i} R_{j}$ $S_{\omega} = R_{\omega} \cup E_{\omega}^{\succ}$
possibly infinite run

$$\gamma: (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$$

 $\blacktriangleright \ E_{\infty} = \bigcup_{i} E_{i} \qquad R_{\infty} = \bigcup_{i} R_{i} \qquad S_{\infty} = R_{\infty} \cup E_{\infty}^{\succ}$

- ► persistent equations and rules: $E_{\omega} = \bigcup_{i} \bigcap_{j \ge i} E_{i}$ $R_{\omega} = \bigcup_{i} \bigcap_{j \ge i} R_{j}$ $S_{\omega} = R_{\omega} \cup E_{\omega}^{\succ}$
- γ is fair if $\mathsf{CP}_{\succ}(\mathsf{R}_{\omega} \cup \mathsf{E}_{\omega}) \subseteq \mathsf{E}_{\infty}$

possibly infinite run

$$\gamma: (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$$

 $\blacktriangleright \ E_{\infty} = \bigcup_{i} E_{i} \qquad R_{\infty} = \bigcup_{i} R_{i} \qquad S_{\infty} = R_{\infty} \cup E_{\infty}^{\succ}$

► persistent equations and rules: $E_{\omega} = \bigcup_{i} \bigcap_{j \ge i} E_{i}$ $R_{\omega} = \bigcup_{i} \bigcap_{j \ge i} R_{j}$ $S_{\omega} = R_{\omega} \cup E_{\omega}^{\succ}$

•
$$\gamma$$
 is fair if $\mathsf{CP}_{\succ}(\mathsf{R}_{\omega} \cup \mathsf{E}_{\omega}) \subseteq \mathsf{E}_{\infty}$

Correctness Theorem

Bachmair, Dershowitz, and Plaisted '89

If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_0 .

possibly infinite run

 γ : $(E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$

 $\blacktriangleright \ E_{\infty} = \bigcup_{i} E_{i} \qquad R_{\infty} = \bigcup_{i} R_{i} \qquad S_{\infty} = R_{\infty} \cup E_{\infty}^{\succ}$

► persistent equations and rules: $E_{\omega} = \bigcup_{i} \bigcap_{j \ge i} E_{i}$ $R_{\omega} = \bigcup_{i} \bigcap_{j \ge i} R_{j}$ $S_{\omega} = R_{\omega} \cup E_{\omega}^{\succ}$ ► γ is fair if $CP_{\succ}(R_{\omega})$ proof based on proof orders: compare conversions with $(\succ_{mul}, \succ, \bowtie, \succ_{mul})_{lex}$ Correctness Theorem Bachmair, Dershowitz, and Plaisted '89 If α is fair and \flat is ground total than C_{α} is ground complete groupstate groupstate of Γ

If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_0 .

possibly infinite run

 γ : $(E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$

 $\blacktriangleright \ E_{\infty} = \bigcup_{i} E_{i} \qquad R_{\infty} = \bigcup_{i} R_{i} \qquad S_{\infty} = R_{\infty} \cup E_{\infty}^{\succ}$

► persistent equations and rules: $E_{\omega} = \bigcup_{i} \bigcap_{j \ge i} E_{i}$ $R_{\omega} = \bigcup_{i} \bigcap_{j \ge i} R_{j}$ $S_{\omega} = R_{\omega} \cup E_{\omega}^{\succ}$ ► γ is fair if $CP_{\succ}(R_{\omega})$ proof based on proof orders: compare conversions with $(\succ_{mul}, \succ, \rhd, \succ_{mul})_{lex}$ **Correctness Theorem** Bachmair, Dershowitz, and Plaisted '89 If α is fair and \succ is ground total than S_{ω} is ground complete presentation of E_{ω}

If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_0 .

N. Hirokawa, A. Middeldorp, C. Sternagel, S. Winkler.
Infinite Runs in Abstract Completion.
2nd FSCD, LIPIcs, 19:1–19:16, 2017.

possibly infinite run

 $\gamma: (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$

 $\blacktriangleright \ E_{\infty} = \bigcup_{i} E_{i} \qquad R_{\infty} = \bigcup_{i} R_{i} \qquad S_{\infty} = R_{\infty} \cup E_{\infty}^{\succ}$

persistent equations and rules:

 $E_{\omega} = \bigcup_{i} \bigcap_{j \ge i} E_{i} \qquad R_{\omega} = \bigcup_{i} \bigcap_{j \ge i} R_{j} \qquad S_{\omega} = R_{\omega} \cup E_{\omega}^{\succ}$

• γ is fair if $CP_{\succ}(R_{\omega})$ proof based on proof orders:

compare conversions with $(\succ_{mul},\succ, \rhd,\succ_{mul})_{\mathsf{lex}}$

Correctness Theorem

Bachmair, Dershowitz, and Plaisted '89

If γ is fair and \succ is ground total then S_{ω} is ground complete presentation of E_0 .

no proof orders, "separation of concerns"

N. Hirokawa, A. Middeldorp, C. Sternagel, S. Winkle.
Infinite Runs in Abstract Completion.
2nd FSCD, LIPIcs, 19:1–19:16, 2017.

Completeness Results

 ${\mathcal R}$ is canonical presentation of ${\it E}_0$ such that ${\mathcal R}\subseteq\succ$

 ${\mathcal R}$ is canonical presentation of ${\it E}_0$ such that ${\mathcal R}\subseteq \succ$

Definition

run γ : $(E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$ is simplifying if

- \blacktriangleright equations in ${\it E}_{\omega}$ are nontrivial and irreducible with respect to ${\it S}_{\omega}$
- ▶ R_{ω} is reduced

 ${\mathcal R}$ is canonical presentation of ${\it E}_0$ such that ${\mathcal R}\subseteq \succ$

Definition

run $\gamma : (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$ is simplifying if

- \blacktriangleright equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1) Suppose γ uses ground total reduction order \succ , is simplifying, and satisfies $CP_{\succ}(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$. Then $E_{\omega} = \emptyset$ and $R_{\omega} \doteq \mathcal{R}$.

 ${\mathcal R}$ is canonical presentation of ${\it E}_0$ such that ${\mathcal R}\subseteq \succ$

Definition

run $\gamma : (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$ is simplifying if

- \blacktriangleright equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1) Suppose γ use equal up to renaming variables $r \succ$, is simplifying, and satisfies $CP_{\succ}(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$. Then $E_{\omega} = \emptyset$ and $R_{\omega} = \mathcal{R}$.

 ${\mathcal R}$ is canonical presentation of ${\it E}_0$ such that ${\mathcal R}\subseteq\succ$

Definition

run $\gamma : (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$ is simplifying if

- \blacktriangleright equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1) Suppose γ uses ground total reduction order \succ , is simplifying, and satisfies $CP_{\succ}(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$. Then $E_{\omega} = \emptyset$ and $R_{\omega} \doteq \mathcal{R}$.

Completeness Theorem (2)

Devie '90

Suppose E_0 is linear and γ is simplifying linear completion run using \succ and satisfying LCP $(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$. Then $E_{\omega} = \emptyset$ and $R_{\omega} \doteq \mathcal{R}$.

 ${\mathcal R}$ is canonical presentation of ${\it E}_0$ such that ${\mathcal R}\subseteq \succ$

Definition

run $\gamma : (E_0, \varnothing) \vdash (E_1, R_1) \vdash (E_2, R_2) \vdash \cdots$ is simplifying if

- \blacktriangleright equations in E_{ω} are nontrivial and irreducible with respect to S_{ω}
- R_{ω} is reduced

Completeness Theorem (1)

Bachmair, Dershowitz and Plaisted '89

Suppose γ uses ground total reduction order \succ , is simplifying, and satisfies $CP_{\succ}(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$.

Then $E_{\omega} = \emptyset$ and $R_{\omega} \doteq \mathcal{R}$.

proofs use (different) proof orders, and are rather monolithic

Completeness Theorem (2)

Suppose E_0 is linear and γ is simplifying linear completion run using \succ and satisfying LCP $(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$. Then $E_{\omega} = \emptyset$ and $R_{\omega} \doteq \mathcal{R}$.

Devie '90

Completeness Theorem (1)

Suppose γ uses ground total reduction order \succ , is simplifying, and satisfies $CP_{\succ}(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$. Then $E_{\omega} = \emptyset$ and $R_{\omega} \doteq \mathcal{R}$.

Bachmair, Dershowitz and Plaisted '89

Key Idea: Disguise Variables

• suppose E_0 is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$

Key Idea: Disguise Variables

- suppose E_0 is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$
- ▶ let \mathcal{K} be fresh set of constants \hat{x} for all $x \in \mathcal{V}$

Key Idea: Disguise Variables

- suppose E_0 is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$
- ▶ let \mathcal{K} be fresh set of constants \hat{x} for all $x \in \mathcal{V}$
- write \hat{t} for ground term obtained from t by replacing every variable x by \hat{x}

Key Idea: Disguise Variables

- suppose E_0 is over terms $\mathcal{T}(\mathcal{F}, \mathcal{V})$
- ▶ let \mathcal{K} be fresh set of constants \hat{x} for all $x \in \mathcal{V}$
- write \hat{t} for ground term obtained from t by replacing every variable x by \hat{x}
- ▶ have $s \to_R t$ iff $\hat{s} \to_R \hat{t}$ for every TRS *R* over $\mathcal{T}(\mathcal{F}, \mathcal{V})$

Order Extension Lemma

There exists ground-total reduction order

 $\succ^{\mathcal{K}}$ on $\mathcal{T}(\mathcal{F} \cup \mathcal{K}, \mathcal{V})$ such that $\succ \subseteq \succ^{\mathcal{K}}$

Proof. Induction on \hat{t} with respect to $\succ^{\mathcal{K}}$. $\exists \ell \approx r \in E_{\infty}^{\pm} \cup R_{\infty}$ such that

$$\hat{s} = \hat{C}[\ell\hat{\sigma}] \xrightarrow[S_{\infty}^{\mathcal{K}}]{} \hat{C}[r\hat{\sigma}] = \hat{t}$$

$$\begin{split} f_1(g_1(i_1(x))) &\approx g_1(i_1(f_1(g_1(i_2(x))))) & h_1(g_1(i_1(x))) \approx g_1(i_1(x)) & f_1(a) \approx a \\ f_2(g_2(i_2(x))) &\approx g_2(i_2(f_2(g_2(i_1(x)))))) & h_2(g_2(i_2(x))) \approx g_2(i_2(x)) & f_2(a) \approx a \\ g_1(a) &\approx a & h_1(a) \approx a & i_1(a) \approx a \\ g_2(a) &\approx a & h_2(a) \approx a & i_2(a) \approx a \end{split}$$

$f_1(g_1(i_1(x))) \approx g_1(i_1(f_1(g_1(i_2(x)))))$	$h_1(g_1(i_1(x))) \approx g_1(i_1(x))$	$f_1(a)\approxa$
$f_2(g_2(i_2(x))) \approx g_2(i_2(f_2(g_2(i_1(x)))))$	$h_2(g_2(i_2(x))) \approx g_2(i_2(x))$	$f_2(a)\approxa$
${ m g}_1({\sf a}) pprox {\sf a}$	$h_1(a)\approxa$	$i_1(a)\approxa$
$\mathrm{g}_2(a)pproxa$	$h_2(a)\approxa$	${\sf i}_2({\sf a})pprox{\sf a}$

 \blacktriangleright orienting all equations from left to right yields a canonical system R

$$\begin{split} f_1(g_1(i_1(x))) &\approx g_1(i_1(f_1(g_1(i_2(x))))) & h_1(g_1(i_1(x))) \approx g_1(i_1(x)) & f_1(a) \approx a \\ f_2(g_2(i_2(x))) &\approx g_2(i_2(f_2(g_2(i_1(x)))))) & h_2(g_2(i_2(x))) \approx g_2(i_2(x)) & f_2(a) \approx a \\ g_1(a) &\approx a & h_1(a) \approx a & i_1(a) \approx a \\ g_2(a) &\approx a & h_2(a) \approx a & i_2(a) \approx a \end{split}$$

- \blacktriangleright orienting all equations from left to right yields a canonical system R
- ► cannot extend \rightarrow_R^+ to ground total reduction order: $i_1(a) \succ i_2(a)$ implies $f_2(g_2(i_2(a))) \succ g_2(i_2(f_2(g_2(i_1(a))))) \succ g_2(i_2(f_2(g_2(i_2(a))))) \succ f_2(g_2(i_2(a))))$

$$\begin{split} f_1(g_1(i_1(x))) &\approx g_1(i_1(f_1(g_1(i_2(x))))) & h_1(g_1(i_1(x))) \approx g_1(i_1(x)) & f_1(a) \approx a \\ f_2(g_2(i_2(x))) &\approx g_2(i_2(f_2(g_2(i_1(x)))))) & h_2(g_2(i_2(x))) \approx g_2(i_2(x)) & f_2(a) \approx a \\ g_1(a) &\approx a & h_1(a) \approx a & i_1(a) \approx a \\ g_2(a) &\approx a & h_2(a) \approx a & i_2(a) \approx a \end{split}$$

- \blacktriangleright orienting all equations from left to right yields a canonical system R
- ► cannot extend \rightarrow_R^+ to ground total reduction order: $i_1(a) \succ i_2(a)$ implies $f_2(g_2(i_2(a))) \succ g_2(i_2(f_2(g_2(i_1(a))))) \succ g_2(i_2(f_2(g_2(i_2(a))))) \succ f_2(g_2(i_2(a))))$
- ordered completion cannot produce a finite complete system when using ground-total reduction order

Definition (Linear Ordered Completion ⊢_{lin})

E: set of equations *R*: set of rewrite rules \succ : reduction order

delete	$\frac{E \cup \{s \approx s\}, R}{E, R}$		
orient	$\frac{E \cup \{s \approx t\}, R}{E, R \cup \{s \to t\}}$	$\frac{E \cup \{t \approx s\}, R}{E, R \cup \{s \to t\}}$	if $s \succ t$
compose	$\frac{E, R \cup \{s \to t\}}{E, R \cup \{s \to u\}}$		$\text{if } t \to_R u$
simplify	$\frac{E \cup \{s \approx t\}, R}{E \cup \{s \approx u\}, R}$	$\frac{E \cup \{t \approx s\}, R}{E \cup \{u \approx s\}, R}$	$\text{if } t \to_R u$
collapse	$\frac{E, R \cup \{t \to s\}}{E \cup \{u \approx s\}, R}$		if $t \xrightarrow{\bowtie}_R u$
deduce	$\frac{E,R}{E\cup\{s\approx t\},R}$		if $s \leftarrow_{R \cup E^{\pm}} u \rightarrow_{R \cup E^{\pm}} t$ and $s \approx t$ is linear

suppose (E_{ω}, R_{ω}) is result of run

$$\gamma$$
: $(E_0, \varnothing) \vdash_{\mathsf{lin}} (E_1, R_1) \vdash_{\mathsf{lin}} (E_2, R_2) \vdash_{\mathsf{lin}} \cdots$

suppose (E_{ω}, R_{ω}) is result of run

$$\gamma$$
: $(E_0, \varnothing) \vdash_{\mathsf{lin}} (E_1, R_1) \vdash_{\mathsf{lin}} (E_2, R_2) \vdash_{\mathsf{lin}} \cdots$

Completeness Theorem (2)

Devie '90

Suppose E_0 is linear and γ is simplifying linear completion run using \succ and satisfying LCP $(R_{\omega} \cup E_{\omega}) \subseteq E_{\infty}$. Then $E_{\omega} = \emptyset$ and $R_{\omega} \doteq \mathcal{R}$. suppose (E_{ω}, R_{ω}) is result of run

$$\gamma: (E_0, \varnothing) \vdash_{\mathsf{lin}} (E_1, R_1) \vdash_{\mathsf{lin}} (E_2, R_2) \vdash_{\mathsf{lin}} \cdots$$

Definition (Linear Critical Pairs)

Let $\ell_1 \approx r_1$ and $\ell_2 \approx r_2$ in E^{\pm} such that

- ▶ $p \in \mathcal{P}os_{\mathcal{F}}(\ell_2)$,
- $\sigma = \operatorname{mgu}(\ell_1, \ell_2|_p),$
- ▶ $\ell_1 \succ r_1$ and $r_2 \not\succ \ell_2$, or $\ell_2 \succ r_2$ and $r_1 \not\succ \ell_1$

Then $\ell_2 \sigma[r_2 \sigma] \approx r_2 \sigma$ is linear critical pair. LCP(*E*) is set of all linear critical pairs among rules in *E*.

Completeness Theorem (2)

Suppose E_0 is linear and γ is simplifying linear completion run using \succ and satisfying LCP $(R_\omega \cup E_\omega) \subseteq E_\infty$. Then $E_\omega = \emptyset$ and $R_\omega \doteq \mathcal{R}$.

Devie '90

It's Just Ordered Completion-Lemma $(E, R) \vdash_{in}^{*} (E', R') \Longrightarrow (E, R) \vdash^{*} (E', R')$

 $\begin{array}{c} [\mathsf{It's Just Ordered Completion-Lemma}\\ \hline (E,R) \vdash^*_{\mathsf{lin}} (E',R') \Longrightarrow (E,R) \vdash^* (E',R') \\ & & \downarrow \\ \hline \\ \hline \\ \hline \\ E_{\infty} \text{-Lemma}\\ \hline \\ E_{\infty} \subseteq \rightarrow^*_{R_{\infty}} \cdot E_{\omega}^{=} \cdot {}_{R_{\infty}}^* \leftarrow \end{array}$

If $(E, R) \vdash^* (E', R')$ and $E \cup R$ is linear then $E' \cup R'$ is linear

R_{∞} -Lemma	
if $\ell \to r \in R_\infty$ then	
$\ell ightarrow_{R_\omega} \cdot (\leftrightarrow_{E_\omega \cup R_\omega}^{\prec \ell})^*$	r

Conclusion

Ground Total Order Case

▶ skolemization done via new type (no assumptions on given signature)

```
datatype ('a,'b) f_ext = FOrig 'a | FFresh 'b
```

- ▶ 2200 LoC, 1500 thereof for lifting run to $\succ^{\mathcal{K}}$
- ▶ supports prime critical pair criterion

Ground Total Order Case

▶ skolemization done via new type (no assumptions on given signature)

```
datatype ('a,'b) f_ext = FOrig 'a | FFresh 'b
```

- ▶ 2200 LoC, 1500 thereof for lifting run to $\succ^{\mathcal{K}}$
- ▶ supports prime critical pair criterion

Linear Case

- ▶ 1000 LoC
- could reuse general correctness result in linear case (original proofs used different proof orders)

Summary

- new proofs for two completeness results from literature: no proof orders, less monolithic—more formalization friendly?
- ▶ first formalization of completeness of ordered completion
- ▶ some unification of proofs

Summary

- new proofs for two completeness results from literature: no proof orders, less monolithic—more formalization friendly?
- ▶ first formalization of completeness of ordered completion
- ▶ some unification of proofs

Open Problem

Suppose \mathcal{R} is complete presentation of E_0 such that

- $\blacktriangleright \rightarrow^+_{\mathcal{R}}$ cannot be extended to ground total reduction order, and
- ► *E*₀ is not linear

Will ordered completion run using $\rightarrow_{\mathcal{R}}^+$ as reduction order find complete system?