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1" =1
x-1—=x
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(x-y)" =x -y
x-y) zx-(y-2)

complete presentation R

» can decide any equality:

* *

(x-y7)” my-x" because (X'yi)f?-?y-x

Question (Completeness)

Under which circumstances will oKB compute a complete presentation?
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Definitions
» FE=FUE!
» E-={loc —ro|l~reE* andlo > ro}
Definition (Extended Critical Pairs)
Let /1 ~ r, and ¢ ~ r, € E* such that
520'[510'],, = EzO’
> p € Posr(Lr)
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Then lro[ro], ~ rno is extended critical pair.
Set of extended critical pairs among equations in E is denoted CP. (E).

Definition

reduction order = is ground total if it is total on ground terms
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’)/Z (Eo, @) }_ (El, R]_) l_ (E27 Rz) l_ oo

» E=U & R =U; Ri Seo = Reo UEL
» persistent equations and rules:
Ew :U,'ﬂj>,'Ei Rw :Ui ﬂj}iRj SUJ = RWUE:'-

» ~ is fair if CP._(R,| proof based on proof orders:
compare conversions wWith (>=mul, =, B>, > mul )lex

Correctness Theorem / Bachmair, Dershowitz, and Plaisted '89

If ~ is fair and > is ground total then S, is ground complete presentation of Eg.

no proof orders, “separation of concerns”

[ N. Hirokawa, A. Middeldorp, C. Sternagel, S. Wink%./
Infinite Runs in Abstract Completion.
2nd FSCD, LIPles, 19:1-19:16, 2017.
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R is canonical presentation of Eg such that R C >

Definition

run v: (Eg, @) b (E1, R1) F (Ex, Ro) b -+ - is simplifying if

» equations in E, are nontrivial and irreducible with respect to S,

» R, is reduced

Completeness Theorem (1)

Bachmair, Dershowitz and Plaisted '89

Suppose v uses ground total reduction order -, is simplifying, and satisfies

CP.(R,UE,) C Ex.

Then E,, = @ and R, = R.

proofs use (different) proof orders,
and are rather monolithic

Completeness Theorem (2)

Devie '90

Suppose Ey is linear and ~ is simplifying linear completion run using - and

satisfying LCP(R, U E,,) C E.
Then E, = @ and R, = R.
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The Case of a Ground Total Order

Completeness Theorem (1) Bachmair, Dershowitz and Plaisted '89

Suppose ~y uses ground total reduction order -, is simplifying, and satisfies
CP_(R,UE,) C Ew.
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CP_(R,UE,) C Ew.
Then E, = @ and R, = R.

Key Idea: Disguise Variables
» suppose Ey is over terms T (F,V)
» let /C be fresh set of constants x for all x € V
» write f for ground term obtained from t by replacing every variable x by £

» have s —g tiff 5 —g f for every TRS R over T(F,V)
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Example (Devie 1990)

fi(a) = a
fg(a)

hi(g1(i1(x))) ~ g1(i1(x))

f1(g1(i1(x))) =~ g1 (i1(fi(g1(ia(x)))))
fa(g2(i2(x))) ~ g2(i2(f2(g2(i1(x)))))

Q

ha(g2(i2(x))) ~ g2(i2(x))

i1(a) = a

T

Q

gi(a)
g2(a)

ir(a) ~ a

hp(a) ~ a

(4

Q

11



The Linear Case

Example (Devie 1990)

fi(g1(i1(x))) ~ g i (<)) = ea(ia(x) fi(a) =a
f2(g2(i2(x))) ~ g2(ia(f2(g2(11(x)))))  ha(g2(i2(x))) ~ g2(ia(x))  f2(a) ~ a
gi(a) = a hi(a) ~ a i1(a) = a
go(a) ~ a hp(a) ~ a ir(a) ~ a

» orienting all equations from left to right yields a canonical system R
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The Linear Case

Example (Devie 1990)

f1(g1(i1(x))) = g1(i1(f1(g1(i2(x)))))  hi(gr(in(x))) = &u(in(x)) fi(a) = a
f2(g2(i2(x))) = g2(ia(f2(g2(i11(x)))))  ha(g2(ia(x))) ~ g2(i2(x))  f2(a) = a
gi(a) = a hi(a) ~ a i1(a) = a
go(a) ~ a hp(a) ~ a ir(a) ~ a

» orienting all equations from left to right yields a canonical system R

» cannot extend — to ground total reduction order: i1(a) = i>(a) implies

f2(g2(i2(a))) > g2(i2(f2(g2(i1(2))))) > g2(i2(f2(2(i2(2))))) > f2(g2(i2(a)))

» ordered completion cannot produce a finite complete system when using
ground-total reduction order
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Definition (Linear Ordered Completion ;)

E: set of equations

delete

orient

compose

simplify

collapse

deduce

EUu{s~s},R
E.R

Eu{s~t},R

R: set of rewrite rules

Eu{t=s},R

E,RU{s — t}

E,RU{s — t}

E,RU{s — u}

EUu{s~t},R

E,RU{s — t}

Eu{t=~s}R

Eu{s~u},R

E,RU{t— s}

Eu{u=s},R

E,R
EUu{s~t},R

Eu{u~s},R

> reduction order

if s =t

ift >p u

if t >ru

iftih?u

if s < RUE: U —Ruex t
and s =~ t is linear

12



suppose (E,, R,) is result of run

v: (Eo, @) Fiin (E1, R1) Fiin (E2, R2) Fiin - - -
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suppose (E,, R,) is result of run

v: (Eo, @) Fiin (E1, R1) Fiin (E2, R2) Fiin - - -

Completeness Theorem (2) Devie '90
Suppose Eq is linear and ~y is simplifying linear completion run using > and
satisfying LCP(R, U E,,) C E.

Then E,, = @ and R, = R.
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suppose (E,, R,) is result of run

v: (Eo, @) Fiin (E1, R1) Fiin (E2, R2) Fiin - - -

Definition (Linear Critical Pairs)

Let ¢; ~ r; and &5 ~ 1> in ET such that

> p € Posr(La),
> o =mgu(l,l2]p),
> (1 —riand rn # la, or lo = rmand rp ¥ 0

Then (y0[r0] & ro is linear critical pair.
LCP(E) is set of all linear critical pairs among rules in E.

Completeness Theorem (2)

Devie '90

Suppose Ey is linear and ~ is simplifying linear completion run using - and

satisfying LCP(R, U E,,) C E.
Then E, = @ and R, = R.
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Formalization

Ground Total Order Case

» skolemization done via new type (no assumptions on given signature)
datatype (’a,’b) f_ext = FOrig ’a | FFresh ’b

» 2200 LoC, 1500 thereof for lifting run to =~

» supports prime critical pair criterion

ii5)



Formalization

Ground Total Order Case

» skolemization done via new type (no assumptions on given signature)
datatype (’a,’b) f_ext = FOrig ’a | FFresh ’b
» 2200 LoC, 1500 thereof for lifting run to =K

» supports prime critical pair criterion

Linear Case

» 1000 LoC

» could reuse general correctness result in linear case
(original proofs used different proof orders)

ii5)



Conclusion

Summary

» new proofs for two completeness results from literature:
no proof orders, less monolithic—more formalization friendly?

» first formalization of completeness of ordered completion

» some unification of proofs
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Conclusion

Summary

» new proofs for two completeness results from literature:
no proof orders, less monolithic—more formalization friendly?

» first formalization of completeness of ordered completion

» some unification of proofs

Open Problem
Suppose R is complete presentation of Ey such that

> —W{a cannot be extended to ground total reduction order, and

» Eg is not linear

Will ordered completion run using %;g as reduction order find complete system?

16



	Ordered Completion
	Completeness Results
	Ground Total Reduction Orders
	Linear Systems

	Conclusion

