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Solving a game

: win, : lose, : draw
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Game complexity

Game Moves Length Positions Solved

Tic-Tac-Toe 4 9 103

Yes

Checkers 2.8 30 1020

Yes

Chess 35 70 1047

No

Go 250 150 10170

No
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Minimax algorithm
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Evaluation and policy
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Evaluation : Position → R
Policy : Position → RMove

Evaluation(root) =

0.4

Policy(root) =

Left 0% Right 100%
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Heuristics

In chess:
Evaluation: value of pieces, king’s safety, pawn doubling, . . .
Policy: derived from evaluation
Search: minimax + alpha-beta pruning + . . .

In go (before 2016):
Evaluation: random playouts
Policy: statistics on good shapes
Search: Monte Carlo tree search
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AlphaGo

Monte Carlo tree search Deep neural networks

Reinforcement learning

[2] Mastering the Game of Go without Human Knowledge
David Silver, Julian Schrittwieser, Karen Simonyan et al.
Nature 550, 354–359, 2017
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Monte Carlo tree search with priors

Let Pprior be a fixed policy and Eprior be a fixed evaluation.
MCTS computes a ”better” evaluation Eaverage and policy Paverage .

1. Choose a sequence of moves leading to a position s based on:

Eaverage + Pprior
Paverage

2. Extend the tree by applying all possible moves from s.
3. Evaluate s using Eprior .
4. Update Eaverage and Paverage for all ancestors of s.
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Monte Carlo tree search with priors
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Monte Carlo tree search with priors
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Monte Carlo tree search with priors: summary

1. Input: Prior evaluation, policy.
2. Simulations from a starting position sstart

3. Output: Example of a better evaluation and policy for sstart

4. Repeat the process with different starting position for more
examples.
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Go is mostly a pattern recognition game
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Machine learning

From data points (training examples), to generalization and
compression of information.

https://datascience.stackexchange.com/questions/9529/
how-to-select-regression-algorithm-for-noisy-scattered-data/9535
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Machine learning for pictures input: Convolutional neural
networks

2012: Distinguishing cats from dogs in pictures.
2015: Predicting the next played move with 57% accuracy
high amateur games at the game of Go.
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Neural networks

Each arrow is associated with a weight use to multiply its input.

Input 1

Input 2

Input 3

Input 4

Output

hidden
layer

Input
layer

Output
layer

The hidden layer is fully-connected.
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Training a neural network

Type of examples:

neural network input-output

policy network position-policy
value network position-evaluation

Generating examples:
from professional games
from self-play

Training algorithm:

modification of the weights by gradient descent
(backpropagation)
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A convolution of 256 filters of kernel size 3x3 with stride 1

go board

first filter output
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A convolution of 256 filters of kernel size 3x3 with stride 1

first filter output

second filter output
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Neural network architecture

Input: Go position.
Neural network

79 convolutional layers
Batch normalizations
Residual connections

Output
policy: 2-fully connected layer
evaluation: 3 fully-connected layer
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Self-learning system

1. Start with random prior policy and prior evaluation.
2. Self-play using Monte-Carlo Tree Search with 1600

simulations.
3. Create better examples position-policy and

position-evaluation.
4. Generalize and compress by training the neural network

architecture.
5. Better policy and evaluation becomes prior policy and

evaluation.
6. Loop to 2.
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Performance and legacy

Beat the best human player at go:
Go is easy.
Rediscover human go knowledge through self-learning:
With suitable algorithms, complex strategies can be build by
accumulating small improvements.

Thibault Gauthier Artificial Intelligence for Perfect Information Games 19/19


