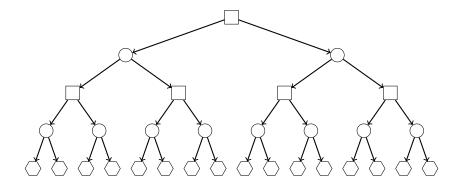
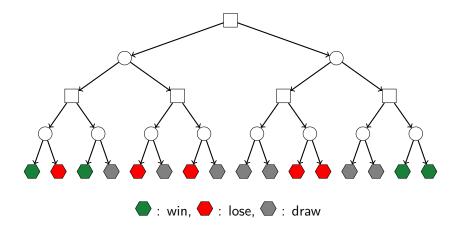
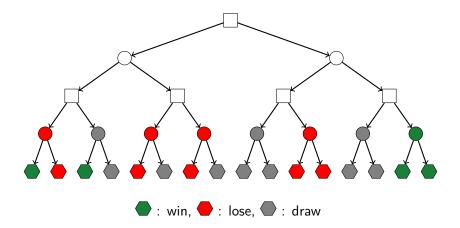
Artificial Intelligence for Perfect Information Games

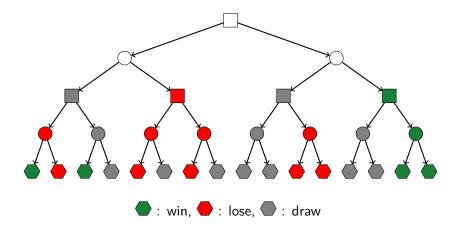
Thibault Gauthier

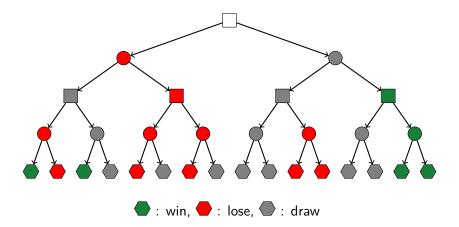
November 8, 2017

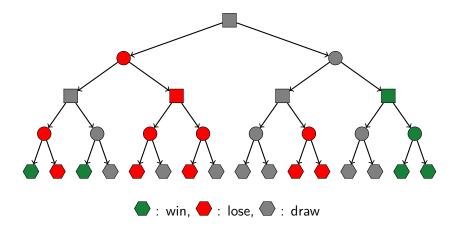






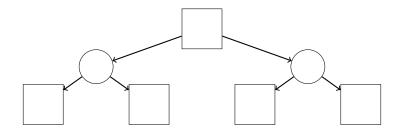


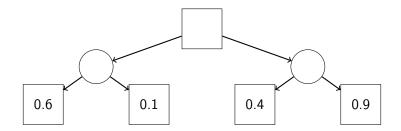


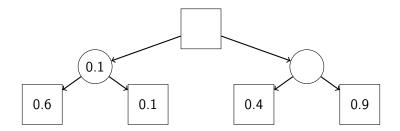


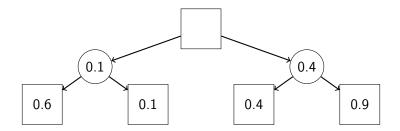
Game	Moves	Length	Positions	Solved
Tic-Tac-Toe	4	9	10 ³	
Checkers	2.8	30	10 ²⁰	
Chess	35	70	1047	
Go	250	150	10^{170}	

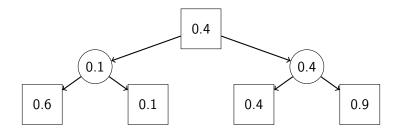
Game	Moves	Length	Positions	Solved
Tic-Tac-Toe	4	9	10 ³	Yes
Checkers	2.8	30	10 ²⁰	Yes
Chess	35	70	1047	No
Go	250	150	10^{170}	No



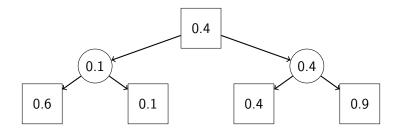








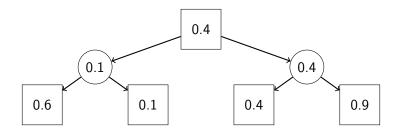
Evaluation and policy



 $\begin{array}{ll} \textit{Evaluation}: & \textit{Position} \rightarrow \mathbb{R} \\ \textit{Policy}: & \textit{Position} \rightarrow \mathbb{R}^{\textit{Move}} \end{array}$

Evaluation(root) =
Policy(root) =

Evaluation and policy



 $\begin{array}{ll} \textit{Evaluation}: & \textit{Position} \rightarrow \mathbb{R} \\ \textit{Policy}: & \textit{Position} \rightarrow \mathbb{R}^{\textit{Move}} \end{array}$

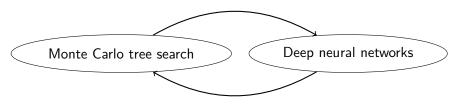
Evaluation(root) = 0.4 Policy(root) = Left 0% Right 100% In chess:

- $\bullet\,$ Evaluation: value of pieces, king's safety, pawn doubling, \ldots
- Policy: derived from evaluation
- Search: minimax + alpha-beta pruning + . . .

In go (before 2016):

- Evaluation: random playouts
- Policy: statistics on good shapes
- Search: Monte Carlo tree search

AlphaGo



Reinforcement learning

[2] Mastering the Game of Go without Human Knowledge David Silver, Julian Schrittwieser, Karen Simonyan et al. Nature 550, 354–359, 2017

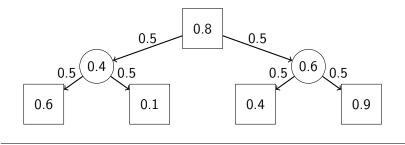
Thibault Gauthier

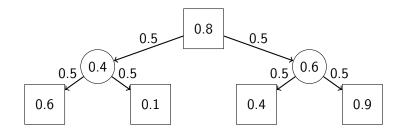
Let P_{prior} be a fixed policy and E_{prior} be a fixed evaluation. MCTS computes a "better" evaluation $E_{average}$ and policy $P_{average}$.

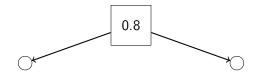
1. Choose a sequence of moves leading to a position s based on:

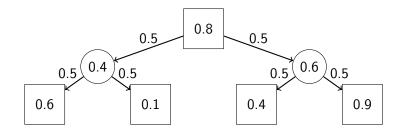
$$E_{average} + rac{P_{prior}}{P_{average}}$$

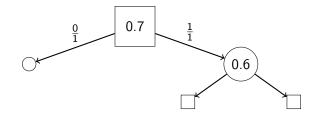
- 2. Extend the tree by applying all possible moves from s.
- 3. Evaluate s using E_{prior}.
- 4. Update $E_{average}$ and $P_{average}$ for all ancestors of s.

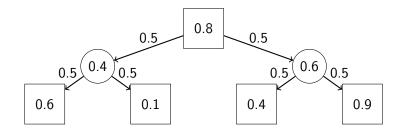


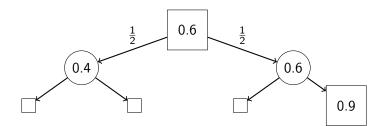


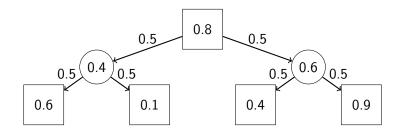


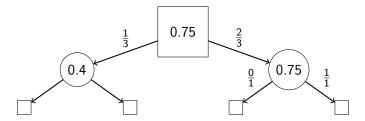








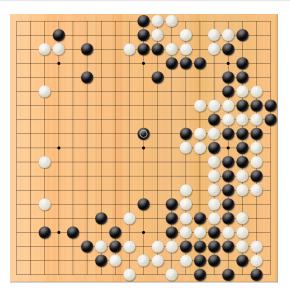




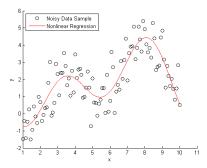
Monte Carlo tree search with priors: summary

- 1. Input: Prior evaluation, policy.
- 2. Simulations from a starting position sstart
- 3. Output: Example of a better evaluation and policy for s_{start}
- 4. Repeat the process with different starting position for more examples.

Go is mostly a pattern recognition game



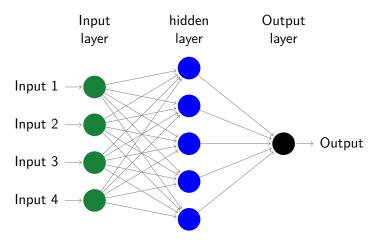
From data points (training examples), to generalization and compression of information.



https://datascience.stackexchange.com/questions/9529/ how-to-select-regression-algorithm-for-noisy-scattered-data/9535 Machine learning for pictures input: Convolutional neural networks

- 2012: Distinguishing cats from dogs in pictures.
- 2015: Predicting the next played move with 57% accuracy high amateur games at the game of Go.

Each arrow is associated with a weight use to multiply its input.



The hidden layer is fully-connected.

Type of examples:

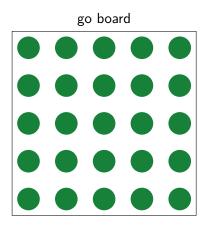
neural network	input-output		
policy network	position-policy		
value network	position-evaluation		

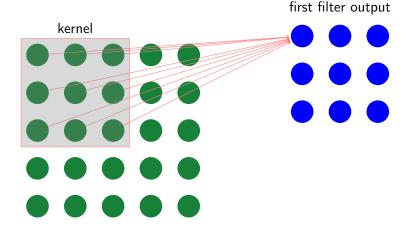
Generating examples:

- from professional games
- from self-play

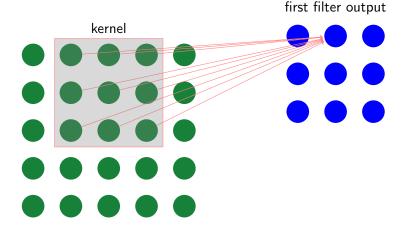
Training algorithm:

 modification of the weights by gradient descent (backpropagation)

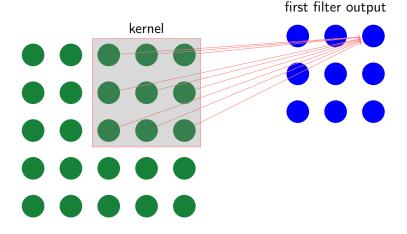




Thibault Gauthier



Thibault Gauthier



first filter output

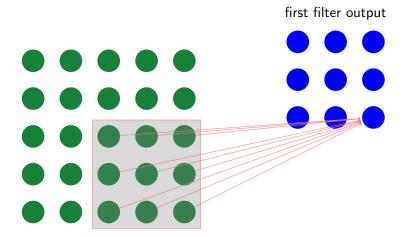
first filter output 0 0

first filter output

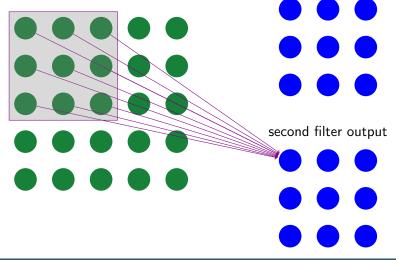
first filter output

$\bullet \bullet \bullet \bullet \bullet$

first filter output $\bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet \bullet \bullet$



first filter output



Neural network architecture

- Input: Go position.
- Neural network
 - 79 convolutional layers
 - Batch normalizations
 - Residual connections
- Output
 - policy: 2-fully connected layer
 - evaluation: 3 fully-connected layer

Self-learning system

- 1. Start with random prior policy and prior evaluation.
- 2. Self-play using Monte-Carlo Tree Search with 1600 simulations.
- 3. Create better examples position-policy and position-evaluation.
- 4. Generalize and compress by training the neural network architecture.
- 5. Better policy and evaluation becomes prior policy and evaluation.
- 6. Loop to 2.

Performance and legacy

- Beat the best human player at go: Go is easy.
- Rediscover human go knowledge through self-learning: With suitable algorithms, complex strategies can be build by accumulating small improvements.