
Proof Strategy Language and
Proof Method Recommendation
PSL and PaMpeR
Yutaka Nagashima
Master Seminar,
the Computational Logic group at University of Innsbruck
December 2017

Presentation title | Presenter name

taken from:
https://github.com/seL4/seL4

Example proof at Data61

2

better automation?

impressive!

interesting?

PSL: Proof Strategy Language and Proof Script Generation

PSL and try-hard for Isabelle/HOL
The percentage of automatically proved obligations out of 1526

proof obligations (timeout = 300s)

0%

25%

50%

75%

100%

try_hard sledgehammer

3

73%

57%20% 16%
Part 1

27% Part 2

PSL: Proof Strategy Language and Proof Script Generation4

Isabelle/HOL before PSL

tactic / sub-tool

proof goal context

no sub-goal!subgoals

error-message

PSL: Proof Strategy Language and Proof Script Generation5

Isabelle/HOL before PSL

tactic / sub-tool

proof goal context

no sub-goal!subgoals

error-message
 It's blatantly clear
 You stupid machine, that what
 I tell you is true
 (Michael Norrish)

PSL: Proof Strategy Language and Proof Script Generation6

PSL (Proof Strategy Language)

PSL

meta-tool
approach

programming
language

extensible
(Eisbach)

tactics
quickcheck

runtime tactic
generation

extensive
proof search

low memory
usage

efficient proof
generation

native Isabelle
proof script

sledgehammer

parallel
search

almost no code clutter!! easy installation

PSL: Proof Strategy Language and Proof Script Generation7

Isabelle/HOL with PSL

strategy

proof goal

context

efficient tactic
proved theorem /

subgoals / message

PSL

tactic / sub-tool

proof goal context

PSL: Proof Strategy Language and Proof Script Generation8

Isabelle/HOL with PSL

strategy

proof goal

context

efficient tactic
proved theorem /

subgoals / message

PSL

tactic / sub-tool

proof goal context

Much less interaction with
Isabelle.

PSL and PaMpeR. | Yutaka Nagashima

Tactics 1

9

preprocesgoal

Case 2

goal

goal goalimp

subgoal 1

Case 3

imp subgoal 2 goalimpimp
tactic

new goal

Case 1

imp goal

False Pimp

principle of explosion

PSL and PaMpeR. | Yutaka Nagashima

[], ,
Tactics 2

10

tactic

preprocesgoal

new goal

Case 1

imp goal

Case 2

goal

goal goalimp

Case 3

imp subgoal 2 goalimpimpsubgoal 1

: thm

PSL and PaMpeR. | Yutaka Nagashima

[]
Tactics 2

11

tactic

preprocesgoal

Case 4 (failure = empty list)

goal goalimp

PSL and PaMpeR. | Yutaka Nagashima

Tactics 4

12

fun tactic :: thm -> [thm]

[, ,…]tacticgoal :: thm goal 1:: thm goal 2 :: thm

Lazy

simp autoOR

THENinduct auto

REPEAT simp

inductsimpauto

succeedfail

PSL and PaMpeR. | Yutaka Nagashima

Tactics 3

13

[,]

[](w /\ x => y /\ z => z)

(y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm

++

apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

PSL and PaMpeR. | Yutaka Nagashima

Tactics 3

14

[,]

[](w /\ x => y /\ z => z)

(y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm

++

apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

apply (rule conjE, assumption)

sequential combinator that admits backtracking (= THEN)

PSL and PaMpeR. | Yutaka Nagashima

Tactics 3

15

[,]

[](w /\ x => y /\ z => z)

(y /\ z => w => x => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y => z => z)
=>

(w /\ x => y /\ z => z)

(w /\ x => y /\ z => z)
=>

(w /\ x => y /\ z => z)

back

[]

:thm

++

apply (erule conjE)

apply (assumption)

our original goal our current proof
obligation

apply (rule conjE, assumption)

sequential combinator that admits backtracking (= THEN)

giant
tactic?

PSL: Proof Strategy Language and Proof Script Generation

Giant tactic

16

problem 2: Giant
tactics are too slow!

problem 1: Default
tactics are too weak!

problem 3: Sledgehammer and quick-check are not tactics!

giant tactic?

force autosimp fastOR OR OR

PSL: Proof Strategy Language and Proof Script Generation

Thens [Dynamic(Induct), Auto, IsSolved]

17 non-determinism

(InductA ++ InductB ++ …) THEN auto THEN is_solved
goal

Dynamic (Induct)

Auto

IsSolved

sequential
combination

(THEN)

runtime interpretation

problem 2: Giant

tactics are too slow!

problem 1: Default tactics are too weak!

PSL: Proof Strategy Language and Proof Script Generation18

type tactic = thm -> thm Seq.seq

goal

Dynamic (Induct)

Auto

IsSolved

pointer?

explicit tree construction?

problem 2: Giant
tactics are too slow!

truncating backtracked
steps is hard!

PSL: Proof Strategy Language and Proof Script Generation19

type tactic = thm -> thm Seq.seq type ‘a tactic = ‘a -> ‘a monad

writer monad + non-deterministic monad
goal

Dynamic (Induct)

Auto

IsSolved

efficient proof
scripts

 as “state”

pointer?

explicit tree construction?

problem 2: Giant
tactics are too slow!

truncating backtracked
steps is hard!

PSL: Proof Strategy Language and Proof Script Generation20

They work on Proof.state not on thm.

problem 3: Sledgehammer and quick-check are not tactics!

 type ‘a tactic = 'a -> ‘a nondet_state_monad

 type tactic = P.state -> P.state nondet_state_monad

 persistant hammering

Thens [Dynamic (Induct), Thens[Hammer+ , IsSolved]]

PSL: Proof Strategy Language and Proof Script Generation21

They work on Proof.state not on thm.

problem 3: Sledgehammer and quick-check are not tactics!

 type ‘a tactic = 'a -> ‘a nondet_state_monad

 type tactic = P.state -> P.state nondet_state_monad

 persistant hammering

Thens [Dynamic (Induct), Thens[Hammer+ , IsSolved]]

parallel

PThenOne

PSL: Proof Strategy Language and Proof Script Generation22

They work on Proof.state not on thm.

problem 3: Sledgehammer and quick-check are not tactics!

 type ‘a tactic = 'a -> ‘a nondet_state_monad

 type tactic = P.state -> P.state nondet_state_monad

 persistant hammering

Thens [Dynamic (Induct), Thens[Hammer+ , IsSolved]]

parallel

PThenOne

PSL and PaMpeR. | Yutaka Nagashima

try_hard: the default strategy

23

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

PSL: Proof Strategy Language and Proof Script Generation

PSL and try-hard for Isabelle/HOL
The percentage of automatically proved obligations out of 1526

proof obligations (timeout = 300s)

0%

25%

50%

75%

100%

try_hard sledgehammer

24

73%

57%20% 16%

PSL:
Demo

PSL: Proof Strategy Language and Proof Script Generation

PSL and try-hard for Isabelle/HOL
The percentage of automatically proved obligations out of 1526

proof obligations (timeout = 300s)

0%

25%

50%

75%

100%

try_hard sledgehammer

26

Part 1

73%

57%20% 16%

27% Part 2
try_smart

PSL and PaMpeR. | Yutaka Nagashima

What’s wrong with try_hard?

27

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

Huge search space with little intelligence

special purpose tools

PSL and PaMpeR. | Yutaka Nagashima

What’s wrong with try_hard?

28

strategy Basic =
 Ors [
 Auto_Solve,
 Blast_Solve,
 FF_Solve,
 Thens [IntroClasses, Auto_Solve],
 Thens [Transfer, Auto_Solve],
 Thens [Normalization, IsSolved],
 Thens [DInduct, Auto_Solve],
 Thens [Hammer, IsSolved],
 Thens [DCases, Auto_Solve],
 Thens [DCoinduction, Auto_Solve],
 Thens [Auto, RepeatN(Hammer), IsSolved],
 Thens [DAuto, IsSolved]]

strategy Try_Hard =
Ors [Thens [Subgoal, Basic],
 Thens [DInductTac, Auto_Solve],
 Thens [DCaseTac, Auto_Solve],
 Thens [Subgoal, Advanced],
 Thens [DCaseTac, Solve_Many],
 Thens [DInductTac, Solve_Many]]

Huge search space with little intelligence

special purpose toolsCan we guess which tool to use
based on the meta-information and
information in the standard library?

PSL: Proof Strategy Language and Proof Script Generation29

PaMpeR: Proof Method
Recommendation System

lookup regression tree:
[[bool] => [(meth * float)]]

method recommendation:
[(meth * float)]

database:
[(meth * [bool])]

multi-label
regression tree algorithm

proof goal *  
proof context

preparation phase

user phase
[bool]

full-feature
extractor

(68 features)

large
proof

corpora
(AFP)

huge and
complex

carefully hand-crafted

fast
feature

extractor

proof goal and context as a
vector of boolean values

PSL: Proof Strategy Language and Proof Script Generation30

Hand-crafted feature extractor?
assertions about proof goal

assertions about proof goal and its context

Example1: Is the outermost constant \/?

Example2: constants related to corecursion?

defined in
Isabelle/HOL

user defined
constant ?

defined
by a user

PSL: Proof Strategy Language and Proof Script Generation31

Hand-crafted feature extractor?
assertions about proof goal

assertions about proof goal and its context

Example1: Is the outermost constant \/?

Example2: constants related to corecursion?

defined in
Isabelle/HOL

user defined
constant ?

defined
by a user

= if the context has theorems called Plus.code, Plus.ctr, Plus.sel.

PSL: Proof Strategy Language and Proof Script Generation32

Is a buzzword missing?
hand-crafted

feature?
Why not deep

learning?

Deep Learning!!

not enough data

self-play like
AlphaGo Zero?

proof
search is not a 2-player

game

PSL: Proof Strategy Language and Proof Script Generation33

Is a buzzword missing?
hand-crafted

feature?
Why not deep

learning?

Deep Learning!!

not enough data

self-play like
AlphaGo Zero?

proof
search is not a 2-player

game

(for now)

PSL: Proof Strategy Language and Proof Script Generation34

Is a buzzword missing?
hand-crafted

feature?
Why not deep

learning?

Deep Learning!!

not enough data

self-play like
AlphaGo Zero?

proof
search is not a 2-player

game

Regression tree works and is explainable!

(for now)

PSL:
Demo

(for now)

PSL: Proof Strategy Language and Proof Script Generation36 images from https://www.iconfinder.com/vasabii

PSL & try_hard:
more computation

pa
rt1

PaMpeR: get smart
using heuristicspart2

Future work: try-hard to try-smart

try_
sma

rt

PSL: Proof Strategy Language and Proof Script Generation37

Thanks!
meta-tool
approach

programming
language

extensible
(Eisbach)

runtime tactic
generation

extensive
proof search

low memory
usage

efficient proof
generation

native Isabelle
proof script

parallel
search

almost no code clutter!! easy installation

feature
extractor

regression
tree

