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Abstract

This report provides a brief overview of process calculi and showcases the mCRL2 toolset.
In particular we will focus on ACP and µ-Calculus, since mCRL2 is based on both of them.
At the end we provide a short introduction on how to use some of the tools provided by
mCRL2.
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1 Introduction

This report is about process calculi and mCRL2, a modern toolset for process specifi-
cation and model checking. We will discuss mCRL2 itself and the concepts it is based
upon. We will provide a short overview of the model checking logic used by mCRL2,
µ-Calculus, for a more in-depth explanation on model checking please refer to the related
report Model Checking on Büchi Automata by Deni Juric and Thomas Wohlfarter.

There are various process calculi like ACP, CCS, CSP, Join-Calculus, PEPA and π-
Calculus. In short, a process calculus is an approach for formally modelling concurrent
systems. It provides algebraic laws for analyzing and transforming process descriptions
and permits formal reasoning about equivalences between processes (e.g. using bisimula-
tion [1]). We will focus on the process calculus and process specification syntax mCRL2
uses, which is based on the Algebra of Communicating Processes [2].

We will also take a look at Labelled Transition Systems, since they are the low level
counterpart to ACP and process calculi in general. The report is largely based on
Modelling and Analysis of Communicating Systems [3] by Jan Friso Groote and Michel
Reniers.

2 Labelled Transition Systems

An LTS (Labelled Transition System) is a directed labelled graph and it consists of
a set of states and a set of transitions labelled with actions that connect the states.
Additionally it must have an initial state. It is also important to note that it will
deadlock if a reachable state does not terminate and has no outgoing transitions. If a
state has more than one outgoing transition with the same label to different states, then
it is non-deterministic.

An LTS is a tuple (S,A,→, s0 >) where:

• S is a set of states

• A is a set of actions

• → ⊆ S ×A× S is a transition relation

• s0 ∈ S is the initial state

In Figure 1 and Figure 2 you can see examples of two LTSs for alarm clocks. The first
alarm clock on the left allows for repeated alarms which can be seen by the loop on top
of the alarm state. With the second alarm clock it is only possible to signal the alarm
once after it is set.
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2 Labelled Transition Systems
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Both LTSs are deterministic since no state has more than one outgoing transition with
the same label to a different state. However we can make the right LTS (Figure 2) non-
deterministic by drawing a loop on top of the alarm state as you can see in Figure 3.
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alarm

alarm

reset

Figure 3

2.1 Bisimulation

Bisimulation is a binary relation between LTSs, where the related states of two LTSs
behave the same way in the sense that each state has the same actions as its related state.
Bisimulation [4] is not the only form of equivalence. We will show the difference between
trace equivalence and strong bisimilarity as they are easy to show in an example.

• Trace equivalence:
Two LTSs are equivalent iff they can perform the same sequences of actions, start-
ing from their initial states

• Strong bisimilarity:
If one LTS can perform an action a then the other LTS must also be able to per-
form an action a in a way that the resulting states are again related.

The two coffee machines in Figure 4 are trace equivalent but not strongly bisimilar
because the resulting states are not related. As an example we can check what happens
after inserting a coin. With the first coffee machine we reach state P2 and with the
second coffee machine we reach either Q2 or Q3 depending on the choice of beverage.
So the process of inserting a coin and then either getting a coffee or a tea is the same
but the actions that are possible after inserting a coin differ.
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Figure 4: Bisimilarity of two coffee machines.

3 µ-Calculus

As already mentioned before µ-Calculus is an integral part of mCRL2. µ-Calculus
shares some similarities with propositional logic with the extension that we are now able
to speak about actions and traces in processes.
It is used to describe and verify properties of LTSs.

3.1 Hennessy-Milner Logic

Hennessy-Milner Logic is a modal logic like LTL or CTL and for this reason we can see
some similarities.

ϕ ::= true | false | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | ⟨a⟩ϕ | [a]ϕ

• true is true in each state of a process and false is never true

• ¬, ∧ , ∨ and → as in propositional logic

• ⟨a⟩ϕ is valid whenever an a − action can be performed such that ϕ is valid after
this a has been done

• [a]ϕ is valid when for every action a that can be done, ϕ holds after doing that a

3.2 Diamond and Box Modalities

Although ⟨a⟩ϕ - diamond modality and [a]ϕ - box modality look somewhat similar, yet
they are very different. We can imagine the diamond modality like a F in LTL and the
box modality like a G in LTL.
In order to show the difference between the two modalities we have four simple LTSs
where we take a look whether the box modality or the diamond modality of a is valid.
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3 µ-Calculus
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Figure 5: Four LTSs.

In the first LTS (Figure 5a) a a action is possible to a state where ϕ holds and therefore
both ⟨a⟩ϕ and [a]ϕ hold in the initial state.
In the second LTS (Figure 5b) there is no a action to a state where ϕ holds and for that
reason neither ⟨a⟩ϕ nor [a]ϕ hold in the initial state.
In the third LTS (Figure 5c) there is an a action to a state where ϕ holds and an a action
to a state where ϕ does not hold and therefore ⟨a⟩ϕ is valid since there is at least one a
action that leads to a valid ϕ. [a]ϕ is invalid because not every a action leads to ϕ.
In the fourth LTS (Figure 5d) there is no a action at all and for that reason ⟨a⟩ϕ is not
valid, because there needs to be an a action that can be performed. However [a]ϕ is
valid, since there is no action that can be done.

3.3 Regular Formulae

In many cases we’d like to allow for more than one single action in a modality and in
this case Regular formulas are useful.
An example would be that after two or more arbitrary actions, a specific action must
happen or after two receive actions, a send action must follow.
Regular formulas are based on Action formulas. An Action formula is a set of multi-
actions, which is as follows:
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3.3 Regular Formulae

af ::= α | true | false | af | af ∩ af | af ∪ af

• α represents the set with exactly the multi-action α.

• true is the set of all multi-actions.

• false is the empty set.

• af denotes the complement of the set af .

• ∪ and ∩ denote union and intersection, respectively.

The modal formula ⟨true⟩⟨a⟩true expresses that an arbitrary action followed by an action
a can be performed.
The formula [true]false expresses that no action can be done.

Regular formulae extend action formulae by allowing actions in modalities.

R ::= ϵ | af | R ·R | R+R | R∗ | R+

• ϵ is the empty sequence of actions.

• R1 ·R2 represents the concatenation of R1 and R2.

• R1 +R2 denotes the union of R1 and R2.

• R∗ denotes zero ore more repetitions.

• R+ denotes one ore more repetitions.

Since R1 ·R2 denotes the concatenation of R1 and R2, we can write ⟨a · b · c⟩true instead
of ⟨a⟩⟨b⟩⟨c⟩true true. Both express that the sequence of actions a, b and c can be per-
formed.
In contrast to that [a · b + c · d]false means that neither the sequence a · b nor c · d is
possible.
Also [a+]ϕ says that ϕ must hold in any state reachable by one or more a actions.
Furthermore [ϵ]ϕ = ⟨ϵ⟩ϕ = ϕ therefore we can always perform no action to stay in the
same state.

Two other commonly used formulae are the always and eventually modalities.

□ϕ = [true∗]ϕ ⋄ ϕ = ⟨true∗⟩ϕ
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3 µ-Calculus

where □ϕ means that ϕ holds in all reachable states and ⋄ϕ says that there is a sequence
of actions after which ϕ holds.

3.4 Safety and Liveness Properties

The always and eventually modalities can be further referred to as Safety and Liveness
properties. These find their use case also in practice as they are the typical properties one
would want to check in environments like distributed systems. For example to determine
the responsiveness of a server or if a program terminates.

3.4.1 Safety Property

□ϕ says that something bad will never happen.

It is best to show this with an example. The following is a program with a critical region
and two actions, enter and leave.

[true∗ · enter · leave∗ · enter ]false

In this example it is impossible to enter twice in a row. There has to be a leave action
in between two enter actions.

6



3.5 Fixed Point Modalities

3.4.2 Liveness Property

⋄ϕ means that Something good will happen.

In order to demonstrate the liveness property we have a program that sends and receives
messages.

[true∗ · send]⟨true∗ · receive⟩true

Every time a message is sent, it can eventually be received.

3.5 Fixed Point Modalities

By extending the Hennessy-Milner logic with fixed points we have:

af ::= α | true | false | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | ϕ → ψ | ⟨a⟩ϕ | [a]ϕ | µX.ϕ | νX.ϕ | X.

• X is a set of states

• µX.ϕ is the minimal fixed point

• νX.ϕ is the maximal fixed point

• minimal and maximal fixed point operators are each other’s duals

¬νX.ϕ = µX.¬ϕ ¬µX.ϕ = νX.¬ϕ

To make us more familiar with the concept of fixed points and especially with the differ-
ence between the minimal fixed point and the maximal fixed point, we have an example
with a simple LTS with exactly one state and a loop with an action a.

s

a

Example 3.1. The first question is if µX.⟨a⟩X and νX.⟨a⟩X hold for the state s.
The states in question are the empty set X = ∅ and the set of all states X = {s}.
X = ∅ is the same as X = ⟨a⟩X, which can be further reduced to false = ⟨a⟩false, which
we can see is valid.
Therefore µX.⟨a⟩X - minimal fixed point is valid for all states in the empty set but not
in s and νX.⟨a⟩X - maximal fixed point is valid for all states in the largest set {s}.

7



5 mCRL2

4 ACP

ACP is the Algebra of Communicating Processes and is used to describe parallel and
concurrent processes. We will see later on that mCRL2 uses a syntax very close to the
mathematical notation of ACP.

In ACP, a process is defined [2] as follows:

P ::= a | δ | τ | P + P | P · P | (P ||P ) | (P |⌊P ) | (P |P ) | τI(P )

Here, a represents an atomic action, δ is the deadlock action
and τ is the silent action.

a+ b means either a or b (alternative operator), a · b means a followed by b (sequencing
operator).

|⌊ is the left-merge operator, it is the generalized version of || (merge operator) and de-
notes concurrency.

Example 4.1. (a ·b)|⌊(c ·d) ensures that the left branch is started first, in this case that
a occurs first, so only the sequences abcd, acdb and acbd are possible.

(a · b)||(c · d) is therefore actually an alternative between (a · b)|⌊(c · d) and (c · d)|⌊(a · b).

| is the called the communications operator and is used do pass data between actions.

Example 4.2. r(d)|w(d) means that the value d is communicated from action w from
the right side to r on the left side.

τI is the abstraction operator. It is used to hide certain actions.

Example 4.3. τ{c}((a+ b) · c) is equal to (a+ b) · τ , which can be reduced to a+ b.

5 mCRL2

mCRL2 is a toolset which is used for specifying and analysing behaviour of distributed
systems and protocols. We chose this tool because it uses an ACP-like syntax for its
formal specification language for processes as well as µ-Calculus for model checking.

5.1 Process Specification

Let’s first take a look at the mCRL2 syntax for specifying processes. Usually, a process
specification file will have a file name of the form *.mcrl2.
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5.1 Process Specification

act a, b, c, d, e;

proc P = a . b . c;
Q = d + e;
R = (a + b) . c . d . e;

init P;

Figure 6: The mCRL2 process specification syntax.

As you can see in the first line in Figure 6, we specify all available actions using the
act keyword. This relates to atomic actions in the ACP syntax. Now that we have
defined the actions, we can specify the process itself, or multiple processes, if there are
more than one. We do this using the proc keyword, followed by the name of the process.
In Figure 6 we have three processes, P, Q and R. We then equate every process with a
combination of actions, action sequences, action alternatives. Processes themselves can
also be used on the right-hand side, which is essential for recursion. In mCRL2, we use
. to denote a sequence and + to denote an alternative. This means that process P is a
sequence of actions a, b and c. Process Q is a choice between either action d or action e.
And finally, process R is a choice between action a and b, followed by c, d and e. Note
the parentheses around a + b, since . binds stronger than +. Finally, the init keyword
specifies the starting process, in this case P.

To demonstrate the power of ACP and µ-Calculus in combination with the mCRL2
toolset, we will now look at an implementation of the two coffee machines (Figure 4) in
mCRL2.

First, we have to define the actions for coffee machine 1.

act insert_coin , choose_coffee , choose_tea ,
pour_coffee , pour_tea ;

The insert_coin action is self-explanatory. choose_coffee and choose_tea denote
the actions of pressing either the button for coffee, or the button for tea. And finally,
pour_coffee and pour_tea denote the action of dispensing either coffee or tea.

Since coffee machine 2 is trace equivalent to coffee machine 1, it has the same actions.

Next, we define the process for coffee machine 1.

proc P = insert_coin . (
choose_coffee . pour_coffee +
choose_tea . pour_tea

) . P;
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5 mCRL2

We start by inserting a coin (insert_coin). Then, we are left with a choice between
choosing coffee and pouring coffee or choosing tea and pouring tea. We see that choosing
coffee or tea is tightly coupled to pouring it, since this is a choice between two sequences
(choose_coffee . pour_coffee) and (choose_tea . pour_tea). This is of course
because we don’t want the machine to dispense tea when in fact we chose coffee.

The last action is P itself, which results in a recursion. This is because we want the
machine to be reusable.

We now define the process for coffee machine 2.

proc Q = (
( insert_coin . choose_coffee . pour_coffee ) +
( insert_coin . choose_tea . pour_tea )

) . Q;

For this machine, we specify a process named Q. This process starts with a choice, which
is either a sequence of inserting a coin, choosing coffee and pouring coffee or inserting a
coin, choosing tea and pouring tea. In comparison to the first machine, the insert_coin
action is now part of the choice between coffee or tea.

Lastly, we need to specify the starting process for both machines,

init P;

and

init Q;

respectively.

5.2 Process Properties

Now that we have specified the processes for two coffee machines, we want to define
some properties they adhere to.

In mCRL2, these properties are defined in *.mcf (model checking formula) files and
expressed by regular formulae.

We start with a simple property: The machine does only pour coffee after coffee is chosen.
For this, we use a box modality which is false if any sequence of actions that are not
choose_coffee is followed by pour_coffee.

[! choose_coffee * . pour_coffee ]false

The mCRL2 syntax for formulae uses [ and ] for box modalities.

The second property is the counterpart to the first. The machine should only pour tea
if in fact we chose tea.
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5.3 Model Checking

[! choose_tea * . pour_tea ]false

With our third property, we want to ensure that the machine is reusable.
[true* . ( pour_tea + pour_coffee ) . insert_coin ]true

After any valid sequence of actions (true*) which ends with pouring either coffee or tea
(pour_tea + pour_coffee), inserting a coin is possible.

Lastly, we define a property which guarantees that the machine does not allow choosing
a beverage without payment.
[! insert_coin * . ( choose_tea + choose_coffee )]false

For that, we define that any sequence of actions which are not insert_coin, followed
by choosing coffee or tea, is invalid.

5.3 Model Checking

We have now seen how to specify processes and process properties using mCRL2, but
we have not yet used any tool provided by it.

For model checking we need three tools, which are provided by mCRL2 as command
line utilities. First, we need mcrl22lps to convert our *.mcrl2 process specification into
an LPS [5, Linear Process Specifications]. An LPS is a process specification with a very
simple structure, which we can then convert into a so-called PBES [5, Parametrized
Boolean Equation Systems] using lps2pbes. mCRL2 can then check wether a given
formula holds by solving this set of equations. This is done with the pbes2bool tool.

We will now look at a specific example using our coffee machines.

We assume the following directory structure1:

./

coffee_machine_1.mcrl2

coffee_machine_2.mcrl2

properties

choose_coffee_to_pour_coffee.mcf

choose_tea_to_pour_tea.mcf

insert_coin_after_pour.mcf

no_free_coffee.mcf

1You can find all files in the accompanying ZIP archive if you want to try these tools yourself.
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5 mCRL2

We want to check that coffee machine 1 never gives out free coffee.

First, we convert our process specification into an LPS:

mcrl22lps coffee_machine_1 .mcrl2 coffee_machine_1 .lps

Next, we convert the LPS we just created into a PBES:

lps2pbes -f properties / no_free_coffee .mcf coffee_machine_1 .
lps properties / no_free_coffee . coffee_machine_1 .pbes

Here, with the -f flag, we specify the formula which should be checked.

Finally, we use pbes2bool to solve the PBES.

pbes2bool properties / no_free_coffee . coffee_machine_1 .pbes

If we additionally pass the -v flag, we can see the strategies used to solve the equation.
Here is the output for our property:

Guessing input format : PBES in internal format
pbes2bool parameters :

input file: properties / no_free_coffee .
coffee_machine_1 .pbes

data rewriter : jitty
substitution strategy : 0
search strategy : breadth -first
solution strategy lf
erase level : none

Loading PBES in pbes format ...
Processed 1 and generated 1 boolean variables .
Generated 1 BES equations in total , generating BES
Solving a BES with 1 equations using the local fixed point

algorithm .
Solving equations of rank 0.
The solution for the initial variable of the pbes is true
true

With the appropriate flags, you can manually specify which strategies should be used.
These can be found in the documentation [5, pbes2bool] or by using the tool’s help flag
(-h).

In the last line of the output, we can see true. This boolean value represents wether the
formula holds. This means that our property no_free_coffee.mcf holds for our first
coffee machine coffee_machine_1.mcrl2
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5.4 LTS

5.4 LTS

An LTS is a useful way of getting a visual overview of a process. The lps2lts command
can be used to convert an LPS into an LTS.

lps2lts coffee_machine_1 .lps coffee_machine_1 .lts

We can now view the LTS with the ltsgraph command:

ltsgraph coffee_machine_1 .lts

This opens a GUI (Figure 7) which allows you to interactively traverse the graph and
view it in full.

Figure 7: ltsgraph window showing coffee_machine_1.lts.

As you can see in Figure 7, the green circle represents the starting state. In the Automatic
Layout section, you can click start to automatically lay out the graph, which usually
makes it much more readable. You can then drag the state circles around and by right-
clicking them, you can fix their positions, so that they are not affected by the automatic
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5 mCRL2

layout anymore. One additional feature is Exploration Mode. You can access it from the
Tools menu. In this mode, you can step from one state, beginning in the starting state,
to all states that are reachable from it.

5.5 Bisimilarity

The last tool we want to demonstrate is ltscompare, which as the name implies is used
to compare two LTSs.

We already know that our two coffee machines are trace equivalent, but not bisimilar.
We now want to check this with ltscompare.

First, we need to generate the LTSs for our two coffee machines.

mcrl22lps coffee_machine_1 .mcrl2 coffee_machine_1 .lps
mcrl22lps coffee_machine_2 .mcrl2 coffee_machine_2 .lps

lps2lts coffee_machine_1 .lps coffee_machine_1 .lts
lps2lts coffee_machine_2 .lps coffee_machine_2 .lts

Next, we run ltscompare and pass --equivalence to specify which equivalence should
be used, in our case bisim.

ltscompare --equivalence =bisim coffee_machine_1 .lts
coffee_machine_2 .lts

Again, all available equivalences can be seen in the tool’s help page (-h flag) or in the
mCRL2 documentation [5, ltscompare].

From the command, we get the following output:

LTSs are not equal ( strong bisimilarity using the O(m log n)
algorithm [ Groote / Jansen / Keiren /Wijs 2017])

So in fact, the two LTSs are not bisimilar. We know, however, that they are trace
equivalent. We can verify this using the trace option for --equivalence.

ltscompare --equivalence =trace coffee_machine_1 .lts
coffee_machine_2 .lts

And indeed, we get the following output:

LTSs are equal ( strong trace equivalence )
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6 Conclusion

In this report we heard about mCRL2 and integral concepts which it is based on. Specif-
ically we went over Labelled Transition Systems, ACP, µ-Calculus in greater detail.

In order to be able to talk about mCRL2 we tried to show how the different concepts
and logics depend on each other and how they relate to mCRL2.

In the final chapter we then proceeded to showcase how we can test Bisimilarity and
Trace Equivalence with mCRL2.

References

[1] Process calculus — Wikipedia. url: https://en.wikipedia.org/wiki/Process_
calculus (visited on 02/22/2017).

[2] Algebra of Communicating Processes — Wikipedia. url: https://en.wikipedia.
org/wiki/Algebra_of_Communicating_Processes (visited on 02/27/2017).

[3] Modelling and Analysis of Communicating Systems. url: http://www.win.tue.
nl/~jfg/educ/2IW25/herfst2009/mcrl2-book.pdf (visited on 02/22/2017).

[4] Bisimulation — Wikipedia. url: https://en.wikipedia.org/wiki/Bisimulation
(visited on 02/22/2017).

[5] mCRL2 User Documentation. url: http://www.mcrl2.org/web/user_manual/
user.html (visited on 02/22/2017).

15

https://en.wikipedia.org/wiki/Process_calculus
https://en.wikipedia.org/wiki/Process_calculus
https://en.wikipedia.org/wiki/Algebra_of_Communicating_Processes
https://en.wikipedia.org/wiki/Algebra_of_Communicating_Processes
http://www.win.tue.nl/~jfg/educ/2IW25/herfst2009/mcrl2-book.pdf
http://www.win.tue.nl/~jfg/educ/2IW25/herfst2009/mcrl2-book.pdf
https://en.wikipedia.org/wiki/Bisimulation
http://www.mcrl2.org/web/user_manual/user.html
http://www.mcrl2.org/web/user_manual/user.html

	Introduction
	Labelled Transition Systems
	Bisimulation

	-Calculus
	Hennessy-Milner Logic
	Diamond and Box Modalities
	Regular Formulae
	Safety and Liveness Properties
	Safety Property
	Liveness Property

	Fixed Point Modalities

	ACP
	mCRL2
	Process Specification
	Process Properties
	Model Checking
	LTS
	Bisimilarity

	Conclusion
	Bibliography

