
λ-Calculus

Christian Sternagel

December 7, 2018

A little bit of syntactic sugar
helps you swallow the lambda
calculus.

Peter Landin

Already Leibniz wanted to create a universal language in which all possible problems
can be stated. Outcomes of such efforts you may already know are for instance Turing
machines [7] and register machines. From there also the expression Turing completeness
stems. A computational model is said to be Turing complete if it can compute all
“effectively” computable functions. In this note one of those Turing complete formal
frameworks is introduced: the λ-calculus (speak “lambda calculus”) [2].

1 Syntax

The basic building blocks of the λ-calculus are λ-terms (or λ-expressions).

Definition 1 (Raw Terms). The possible shapes of a raw λ-term t are defined by the
following BNF grammar:

t ::= x | (t t) | (λx. t)

Here x is a variable (or atom), (t u) is the application of the left λ-term to the right one
(the idea is that t encodes a function that can be applied to input u), and (λx. t) is a
(lambda) abstraction (somewhat similar to a function definition like f(x) = t). Variables
that occur directly after the λ of an abstraction are called bound variables.

The set of all raw λ-terms is denoted by R (deliberately using an odd symbol, so that
we will try hard to avoid it).

Remark. The Haskell equivalent to abstractions are anonymous functions. The raw
term (λx. x) for example is equivalent (modulo typing) to the Haskell function (\x -> x)

(the backslash should give the visual impression of a lambda).

© Christian Sternagel
licensed under Creative Commons License SA

http://creativecommons.org/licenses/by-sa/3.0/

Example 1. Some examples of raw λ-terms are:

x

(λx. x)

(λx. (λy. (x y)))

(((λx. x) (λx. x)) (λx. x))

In order to save parentheses the conventions that (1) outermost parentheses are dropped,
(2) application binds tighter than abstraction, and (3) application associates to the left,
are used. Then the above can be written as

x

λx. x

λx. (λy. x y)

(λx. x) (λx. x) (λx. x)

Furthermore, nested abstractions associate to the right and in order to save λs, variables
are grouped together, for example, the rather longish term

(λx. (λy. (λz. ((x y) z))))

is compressed to
λxyz. x y z

using the above conventions. (The same conventions apply also to Haskell, where for
example \x y z -> x y z is the short form of (\x -> (\y -> (\z -> ((x y) z)))).)

1.1 α-Equivalence

As in programming, the names of parameters are not supposed to change the meaning
of a function. For example, id x = x is the same function as id y = y. To make this
irrelevance of “names” more formal the notion of α-equivalence is introduced.

But before we can do so, we need to be able to talk about renaming of variables and the
set of free variables of a term.

Definition 2 (Renaming Variables). Variables are renamed by applying permutations π
(between variables) to terms as follows:1

π · x = π(x)

π · (t u) = (π · t) (π · u)

π · (λx. t) = λπ(x). (π · t)
1A permutation is a bijective function π such that π(x) 6= x for only finitely many variables x; it can

be equivalently expressed by a finite composition of swappings.

2

Thus, the permutation π is applied to every variable occurrence throughout a given
term.

Example 2. Consider the permutation (x
 y), replacing xs by ys and vice versa. Then

(x
 y) · (λxy. x (λzx. z x)) = λyx. y (λzy. z y)

Definition 3 (Free Variables). The set of free variables F(t) of a (raw) λ-term t consists
of all variables that occur outside the scope of a lambda abstraction:

F(x) = {x}
F(t u) = F(t) ∪ F(u)

F(λx. t) = F(t) \ {x}

(Raw) terms without free variables (that is, F(t) = ∅) are called closed.

Definition 4 (Freshness Constraints). We say that a set of variables X is fresh for a
given syntactic object o—written X] o—if none of the variables in X occurs in the “free
variables” of o. For terms the “free variables” are given by F and for permutations by
their domain (that is, the set of variables that are modified by the permutation).

The curious reader might be interested in the following formal definition of α-equivalence
(≡α). If you prefer an informal account, you may skip to the subsequent remark.

Definition 5 (α-Equivalence). The notion of α-equivalence is introduced simultaneously
with an auxiliary notion of equivalence between variable-term pairs with respect to
a given permutation (≡π). The pair (x, t) is π-equivalent to the pair (y, u)—written
(x, t) ≡π (y, u)—if and only if all of the following conditions are satisfied

F(t) \ {x} = F(u) \ {y} F(t) \ {x}] π π · t ≡α u π(x) = y

At the same time α-equivalence is defined inductively as follows

x ≡α x
t ≡α t′ u ≡α u′

t u ≡α t′ u′
(x, t) ≡π (y, u) for some π

λx. t ≡α λy. u

Remark. While the above is a formally correct definition of α-equivalence, it might be
instructive to just remember that two raw terms are α-equivalent if one is obtained from
the other by consistently renaming its bound variables (which might require to apply
several renaming permutations in a row).

As the name suggests, α-equivalence is an equivalence relation on raw terms. Thus, we
are finally in a position to obtain λ-terms (notice the lack of the prefix “raw”).

Definition 6 (λ-Terms). The set of λ-terms Λ is obtained by taking the quotient of the
set of raw terms with respect to α-equivalence. Formally: Λ = R/≡α.

3

Mathematically, a single term is represented by a whole set of raw terms: its α-equivalence
class. Thus, for example, when writing λxy. y; we really mean

{. . . , λxy. y, . . . , λyx. x, . . . , λab. b, . . .}

With this definition of λ-terms as a quotient, α-equivalent terms are in fact equal (be-
cause their α-equivalence classes coincide)!

2 Evaluation of Lambda Expressions

Until now you know how the syntax of the λ-calculus looks like, but it only starts to
get interesting after knowing how to do computations using such syntactic constructs.
The surprising fact is that the λ-calculus does only need a single rule to receive its full
computational power. Before this rule (called the “β-rule,” for historical reasons) can
be given, we need to talk about substitutions though.

2.1 Substitutions

A substitution is a mapping from a variable to a λ-term. We use the notation [x := t]
to denote the substitution replacing the variable x by the term t.

Definition 7 (Substitution Application). The application of a substitution [x := s] to a
λ-term t (written as t[x := s]) is defined by

x[x := s] = s

y[x := s] = y if x 6= y

(t u)[x := s] = (t[x := s]) (u[x := s])

(λy. t)[x := s] = λy. (t[x := s]) if y] (x, s)

Note that the variable y in the last case is assumed to be fresh for x and s, that is, it
is different from all the free variables of s and also unequal to x. Thus, bound variables
are not substituted.

As an indication for why the freshness condition in the last case is required, note
what would happen if it was allowed to apply a substitution [x := s] directly to a
term t = λy. u with y ∈ F(s). This would for example yield (λx. y)[y := x] = λx. x and
(λz. y)[y := x] = λz. x. While the α-equivalent raw λ-terms λx. y and λz. y provide the
same results for the same inputs (and actually represent one and the same λ-term), the
two (non-α-equivalent) raw λ-terms λx. x (resulting from a wrong substitution) and λz. x
do not behave identical (and indeed represent two different λ-terms). (This problem is
sometimes referred to as variable capture.)

4

2.2 The β-Rule

Computations within the λ-calculus are done by applying the β-rule stepwise (which is
called β-reduction).

Definition 8 (β-Reduction). The β-rule is defined inductively by

x] u

(λx. t) u→β t[x := u]
(root)

s→β t

s u→β t u
(app-l)

s→β t

u s→β u t
(app-r)

s→β t

λx. s→β λx. t
(abs)

So if there is a subterm u of s that is of the form u = (λx. v) w where x is fresh for w,
then s →β t, where t is obtained from s by replacing u with v[x := w]. We say that s
β-reduces to t in one step.

Note that it is always possible to satisfy the freshness side condition by appropriately
renaming bound variables first (since our λ-terms are actually ≡α-equivalence classes,
doing so does not even change the term).

Let s and t be λ-terms. If s reduces to t in a number of β-steps then we denote this by
s→∗β t (or s→n

β t to make concrete that the reduction has exactly n steps).

Consider for example the reduction step

((λx. x) (λx. x)) y →β (x[x := λx. x]) y = (λx. x) y

where the underlined expression (λx. x) (λx. x) is called a redex (the short form of
reducible expression) and λx. x is called its contractum. The resulting term (λx. x) y is
called the reduct of the step. In principle this alone is sufficient to define and evaluate
every effectively computable function. At least, as long as we can answer the question:
What is the result of a computation?

2.3 Normal Forms

A λ-term is said to be in normal form (NF) if it is not possible to apply any β-reduction.
A normal form can be considered as the outcome of a computation. Note that there are
λ-terms that do not have any normal form. For others it might depend on the order in
which β-steps are applied whether a normal form is reached or not.

Example 3. Reducing the term (λx. x x) (λx. x x) results in the infinite reduction se-
quence

(λx. x x) (λx. x x)→β (λx. x x) (λx. x x)→β (λx. x x) (λx. x x)→β . . .

In fact, the term (λx. x x) (λx. x x) does not have a normal form. Compare this with the
term (λyz. z) ((λx. x x) (λx. x x)). There are two (underlined) redexes: the whole term

itself and the subterm (λx. x x) (λx. x x). If the first one is contracted then the normal
form λz. z is reached immediately, but the second redex can be contracted indefinitely.

5

3 Representing Data Types in the λ-Calculus

To get a grasp of the power of the λ-calculus it is shown how some data types and
operations on them that are frequently used in functional programming languages—like
Booleans with Boolean connectives, integers with integer arithmetic, pairs, and lists with
list operations—can be encoded in the λ-calculus.

3.1 Booleans and Conditionals

Consider an expression like if b then t else e. To encode this as a λ-term, something of
the shape λbte. s is needed, where s has to specify that if b holds then the result should
be t and otherwise it should be e. In order to achieve such behavior of s the Boolean
values True and False have to be encoded as λ-terms. One possibility is

True = λxy. x

False = λxy. y

Then the if b then t else e of Haskell can be encoded as

ite = λxyz. x y z

since

ite True t e = (λxyz. x y z) (λxy. x) t e→3
β (λxy. x) t e→2

β t

and

ite False t e = (λxyz. x y z) (λxy. y) t e→3
β (λxy. y) t e→2

β e

3.2 Natural Numbers

One way to encode (natural) numbers, that is, only the non-negative part of integers, in
the λ-calculus are the so called Church numerals.

Definition 9 (Church Numerals). Let s and t be λ-terms, and n be a natural number
(that is, n ∈ N).2 Then sn t is defined inductively by

s0 t = t

sn+1 t = s (sn t)

The Church numerals (denoted by 0, 1, 2, . . . in the following) are defined by

n = λfx. fn x
2For the purpose of this note N always denotes the set {0, 1, 2, 3, . . . } of non-negative integers.

6

Example 4. Using the above definition, the first four Church numerals are given by

0 = λfx. x

1 = λfx. f x

2 = λfx. f (f x)

3 = λfx. f (f (f x))

On first sight this definition does not look very obvious (a reason for that could be that
it is not), however using the above encoding of numbers, the definitions of addition,
multiplication, and exponentiation are very succinct, namely

add = λmnfx.m f (n f x)

mul = λmnf.m (n f)

exp = λmn. n m

Example 5. To familiarize ourselves with Church numerals we reduce the λ-term add 1 2
to normal form (the contracted redex is underlined in each step):

add 1 2 = (λmnfx.m f (n f x)) 1 2

→β (λnfx. 1 f (n f x)) 2

→β λfx. 1 f (2 f x)

= λfx. 1 f ((λgy. g (g y)) f x)

→β λfx. 1 f ((λy. f (f y)) x)

→β λfx. 1 f (f (f x))

= λfx. (λgy. g y) f (f (f x))

→β λfx. (λy. f y) (f (f x))

→β λfx. f (f (f x)) = 3

After we have seen that add 1 2→∗β 3, we investigate why the add combinator works as
it should. First consider the λmnfx prefix. Here, the m and n are the two parameters
that add expects. The f and the x are needed since the result of add m n should be a
Church numeral again, that is, of the shape λfx. t for some term t. Now what happens
if we apply add to Church numerals m and n? We have

add m n = (λmnfx.m f (n f x)) m n→2
β (λfx.m f (n f x))

Before we continue, look at the redex n f x. We have

n f x = (λg y. gn y) f x→2
β f

n x

and hence for the redex m f (n f x) we obtain

m f (n f x)→2
β m f (fn x) = (λg y. gm y) f (fn x)→2

β f
m (fn x) = fm+n x

7

The last identity is left as an exercise. In total, we have add m n→∗β m+n.

The reasoning for mul is similar but a bit more involved. We start from

mul m n = (λmnf.m (n f)) m n→2
β λf.m (n f)

and for the redex n f we have

n f = (λgx. gn x) f →β λx. f
n x

and hence for the redex m (n f) we obtain

m (n f) = (λgx. gm x) ((λgx. gn x) f)→β (λgx. gm x) (λx. fn x)

→β λx. (λy. f
n y)m x→∗β λx. fnm x

We leave the proof of (λy. fn y)m x →∗β fnm x as an exercise. In total, we obtain
mul m n→∗β mn.

3.3 Pairs

Concerning pairs, some means to construct them—given two values—and to select the
first and second component are needed. This is achieved with the λ-terms

Pair = λxyf. f x y

fst = λp. p True

snd = λp. p False

The vigilant reader may already have missed subtraction on natural numbers. The
reason for this omission is that pairs are needed before subtraction can be defined. For
Church numerals subtraction is an awfully complex (and costly) operation. We will
compute subtraction by repeatedly applying the predecessor function. Hence the first
problem is to obtain λfx. fn x from λfx. fn+1 x, that is, get the Church numeral n from
n+1 by computing the predecessor function. Consider the function

pairsucc = λfp.Pair (f (fst p)) (fst p)

which may be more readable using pattern matching and syntactic sugar for pairs

pairsucc = λf (x,). (f x, x)

If (pairsucc f) is applied n + 1 times to an argument pair (x, y) then the result is
(pairsucc f)n+1 (x, y) = (fn+1 x, fn x) (as can be proved by induction on n). The
encoding of a Church numeral λfx. fn x basically is the function that applies fn to x
(that is, f is applied n times to x). Hence the result of

(λfx. fn+1 x) (pairsucc f) (Pair x x)

8

is (fn+1 x, fn x) and by selecting the second component the predecessor n of n+1 can
be obtained. This facilitates the definitions

pre = λnfx. snd (n (pairsucc f) (Pair x x))

sub = λmn. n pre m

for the predecessor function and subtraction (m − n). Note that by this definition we
have pre 0→β 0 and thus, if n is larger than m, we obtain sub m n→∗β 0.

3.4 Lists

Having pairing and Booleans, a nonempty list x : y can be encoded by the nested pairs
Pair False (Pair x y) (or (False, (x, y)), if we use syntactic sugar for pairs) where False
indicates that the list is not empty. Before defining the encoding for empty lists, consider
the functions that should work on lists. Those are: head, tail, null (checking whether a
list is empty), and Cons. Most of them are easy:

Cons = λxy.Pair False (Pair x y)

head = λz. fst (snd z)

tail = λz. snd (snd z)

Now for null the desired result for empty lists is True whereas for nonempty lists it is
False. For nonempty lists it would suffice to return the first component of the given pair.
It only remains to define Nil in a way that fst l evaluates to False for nonempty lists and
to True for empty lists. Since fst = λp. p True the solution is

Nil = λx. x

null = fst

4 Recursion

Consider an implementation of a recursive function in the λ-calculus. For instance the
list function length. In Haskell it could be implemented by

length x = if null x then 0

else 1 + length (tail x)

Hence it should be possible to write something like

length
?
= λx. ite (null x) 0 (add 1 (length (tail x)))

9

The only problem here is that the definition of length already needs the length func-
tion (which after all is the point of recursive definitions). The idea is to extend length
from above by an additional parameter f and replace all occurrences of length by this
parameter. The result is

length′ = λfx. ite (null x) 0 (add 1 (f (tail x)))

Since in the end, length should only take one argument, another λ-term has to be added.
Currently it is not clear how this term should look like, but lets call it Y. Then length
is defined by

length = Y length′

Suppose that Y has the property that for every λ-term t it holds that Y t →∗β t (Y t),
then the following reduction is possible (where length corresponds to Y t)

length→∗β (λfx. ite (null x) 0 (add 1 (f (tail x)))) length

→β λx. ite (null x) 0 (add 1 (length (tail x)))

which yields the desired result. Indeed such a Y exists.

Definition 10 (A Fixed Point Combinator). Alan Turing discovered a so called fixed
point combinator, which we will call Y ,3 and is defined by

Y = (λxf. f (x x f)) (λxf. f (x x f))

and has the fixed point4 property, that is, for all λ-terms t

Y t→∗β t (Y t)

A remarkable result is that the content of this note until here is sufficient to encode
almost all Haskell programs that were implemented so far during the lecture, only using
the λ-calculus. For example, strings are lists of characters, however, on a computer
characters are essentially numbers.

5 Reduction Strategies

A reduction strategy (or strategy for short) determines which redex to choose if there is
more than one possibility. Until now the decision was arbitrary, but when implementing
β-reduction the computer needs to know exactly what to do. Two natural choices of
reduction strategies are outlined in the following.

3Sometimes referred to as Θ.
4Intuitively speaking, a fixed point of a function f is a value v such that applying f to v always results

in v. Consequently v = f v = f (f v) = · · · = fn v for an arbitrary n ∈ N. A fixed point combinator
computes such a fixed point for a given function.

10

Definition 11 (Applicative Order). Applicative order reduction chooses the (necessarily
unique) rightmost innermost redex first.

Intuitively, applicative order reduction always reduces the arguments of a function before
the function call itself. Or put differently: functions are only applied to normal forms.

Definition 12 (Normal Order). Normal order reduction chooses the (necessarily unique)
leftmost outermost redex first.

The “normal” in normal order reduction, stems from the fact that using this reduction
strategy, whenever a normal form exists, reduction will definitely reach a normal form
eventually.

Before we can introduce further reduction strategies (which are closer to actual evalua-
tion strategies that are used by programming languages) we need two ways to classify
λ-terms.

Definition 13 (Values). A λ-term that is not an application is called a value.

Definition 14 (WHNFs). A λ-term is said to be in weak head normal form (WHNF) if
it satisfies:

whnf(x) = true

whnf(λx. t) = true

whnf((λx. t) u) = false

whnf(t u) = whnf(t) if t not abstraction

Definition 15 (Call by Value). Call by value reduction stops at values and otherwise
chooses an outermost redex whose right-hand side has already reduced to a value.

Like applicative order reduction, call by value reduction reduces arguments of functions
first. But in addition, it never “peeks” below a lambda.

Definition 16 (Call by Name). Call by name reduction chooses the same redex as normal
order reduction, but stops as soon as a WHNF is reached.

In particular, call by name reduction does not take place below lambdas either.

Call by value reduction and call by name reduction are tightly connected to two evalu-
ation strategies for programming languages of the same name: call by value evaluation
and call by name evaluation. Call by value evaluation is a strict or eager evaluation
strategy that is adopted by most programming languages. Non-strict or lazy program-
ming languages, like Haskell, adopt variants of call by name evaluation, which usually
means that function arguments are only evaluated on demand.5

5Lazy evaluation and call by name are not the same, but quite similar. Lazy evaluation corresponds
to call by name evaluation where additionally a technique called sharing (or memoization) is used to
avoid multiple computations of the same expression (this combination is one possible implementation
of call by need evaluation). However, that’s a different story.

11

Example 6. For example the function call to f in

let f x = x + 1 in f (3 + 2)

will be evaluated in the following order in Haskell

f (3 + 2)→ (3 + 2) + 1

→ 5 + 1

→ 6

Still, it is thinkable to do the derivation in a different order, as in

f (3 + 2)→ f 5

→ 5 + 1

→ 6

which would be call by value evaluation.

Note that call by name reduction means that the body of a function without arguments
is not reduced (since it is in WHNF), for example, in

foo = (\x -> 1 + 2)

The redex 1 + 2 inside foo is not reduced as long as foo does not get any argument.
This is of practical interest because if the function foo is never applied to any argument
in the remainder of the program then the (useless) effort of evaluating 1 + 2 is avoided.
(Note that in general the body of a function might contain more costly, possibly even
non-terminating, computations.)

Example 7. Consider the λ-term length Nil, computing the length of the empty list. This
corresponds to the term

(Y (λfx. ite (null x) 0 (add 1 (f (tail x))))) (λx. x)

having the seven redexes

tail x (1)

add 1 (2)

null x (3)

snd z (4)

ite (null x) (5)

snd (snd z) (6)

Y = (λxf. f (x x f)) (λxf. f (x x f)) (7)

12

where (4) and (6) are hidden in the definition of tail and (7) is hidden in the definition
of Y. When scanning for redexes starting at the left, then the first one obtained is (7),
which turns out to be the leftmost outermost redex since it is not a subterm of any
other redex. Using an outermost strategy will yield the result 0 in some reduction steps.
However, call by value reduction of the above term causes the reduction

Y = (λxf. f (x x f)) (λxf. f (x x f))

→β (λf. f ((λxf. f (x x f)) (λxf. f (x x f)) f)) = (λf. f (Y f))

→β (λf. f ((λf. f (Y f)) f))

. . .

which does not terminate. This shows that in fact every recursive definition using Y is
non-terminating under call by value reduction.

As can be seen from the above example, Y is not suitable for call by value reduction.
Gladly, there is an alternative to Y that works also in this case.

Definition 17 (A Call-by-Value Fixed Point Combinator). Here is a fixed point combi-
nator (a slight variation of Y), which we call Θv

Θv = (λxy. y (λz. x x y z)) (λxy. y (λz. x x y z))

that satisfies the property Θv t→∗β t (λx.Θv t x) with x] Θv t. While this is not exactly

the fixed point property, it is close enough in practice.6

But note that with call by value, also other constructs have to be modified (the astute
reader might already have noticed that Θv length′ Nil still does not terminate). For
example, if ... then ... else is usually assumed to be evaluated non-strictly. This
can be achieved for ite by judiciously sprinkling in dummy abstractions and dummy
arguments, as in the following variant of length′ which together with Θv yields a definition
of length that also works with call by value:

length = Θv (λfx. ite (null x) (λy. 0) (λy. add 1 (f (tail x))) x)

6 Further Remarks

Similar examples and further information can be found in the literature [1,4,6]. An
important property of the λ-calculus is that β-reduction (that is, computation) gives
unique results: there is no term s such that s →∗β t and s →∗β u for different normal
forms t and u. The lambda calculus satisfies this property since it satisfies the stronger
“Church-Rosser property,” which guarantees that for all terms t and u with t ≡β u (where

6The point of the additional abstraction, is to turn the whole subterm into a value and thereby prevent
its immediate reduction, which would cause a loop.

13

≡β means that we can apply arbitrarily many β-steps in both directions; formally, ≡β is
the symmetric, transitive, and reflexive closure of →β) we can find a common reduct v
of t and u, that is, t→∗β v and u→∗β v. We refer to the Archive of Formal Proofs [3,5],
for a recent, relatively simple, and machine checked proof of this fact.

References

[1] Henk P. Barendregt and Erik Barendsen. Introduction to lambda calculus. In As-
penæs Workshop on Implementation of Functional Languages, Göteborg. Program-
ming Methodology Group, University of Göteborg and Chalmers University of Tech-
nology, 1988.

[2] Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58(2):345–363, 1936. doi:10.2307/2371045.

[3] Bertram Felgenhauer, Julian Nagele, Vincent van Oostrom, and Christian Sternagel.
The Z property. Archive of Formal Proofs, June 2016. https://www.isa-afp.org/
entries/Rewriting_Z.shtml, Formal proof development.

[4] Anthony J. Field and Peter Harrison. Functional Programming. Addison-Wesley,
1988.

[5] Julian Nagele, Vincent van Oostrom, and Christian Sternagel. A short mechanized
proof of the Church-Rosser theorem by the Z-property for the λβ-calculus in Nominal
Isabelle. In Proceedings of the 5th International Workshop on Confluence (IWC),
2016. arXiv:1609.03139.

[6] Larry C. Paulson. ML for the Working Programmer. Cambridge University Press,
second edition, 1996. http://www.cl.cam.ac.uk/~lp15/MLbook/pub-details.

html.

[7] Alan M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. London Mathematical Society, s2-42(1):230–265, 1937. doi:10.1112/
plms/s2-42.1.230.

14

http://dx.doi.org/10.2307/2371045
https://www.isa-afp.org/entries/Rewriting_Z.shtml
https://www.isa-afp.org/entries/Rewriting_Z.shtml
http://arxiv.org/abs/1609.03139
http://www.cl.cam.ac.uk/~lp15/MLbook/pub-details.html
http://www.cl.cam.ac.uk/~lp15/MLbook/pub-details.html
http://dx.doi.org/10.1112/plms/s2-42.1.230
http://dx.doi.org/10.1112/plms/s2-42.1.230

	Syntax
	-Equivalence

	Evaluation of Lambda Expressions
	Substitutions
	The Beta-Rule
	Normal Forms

	Representing Data Types in the -Calculus
	Booleans and Conditionals
	Natural Numbers
	Pairs
	Lists

	Recursion
	Reduction Strategies
	Further Remarks
	Bibliography

