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A type system is the most cost
effective unit test you’ll ever
have.

Peter Hallam

There are two important tasks concerning types in a functional language: type checking
and type inference.

Type checking is the process of verifying given constraints on types and may either occur
at compile-time (static type checking) or at run-time (dynamic type checking). Since
with static type checking type correctness is already established during the compilation
process, there is no need to store any type information in the running program. Haskell
uses static type checking, hence this is also what is discussed in the following.

Type inference is the process of computing a (most general) type for a given expression. A
language where types are inferred automatically (like Haskell) makes some programming
tasks easier. For example, types of variables need not be declared explicitly, but still
type safety is maintained.’

Before giving the details of type checking and type inference, some typed language is
needed. Two obvious choices would be A-calculus extended by types (also called simply
typed lambda-calculus) and Haskell itself. Since the former is inconvenient to use and
the latter is more complex than necessary, a mixture of both is considered.

1 Core FP

The language used to demonstrate type checking and type inference, residing somewhere
between A-calculus and Haskell, is called core FP. Its expressions (e) are defined by the

LA program is type safe if a certain class of errors—mnamely type errors—is prevented by the compiler.
An example of a type error would be the application of a list length function to an integer.
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following BNF grammar

e == xzlee|lr.e (A-terms)
| ¢
| letx=eine
| if e then e else ¢
where constants (c) stand for primitives like True, False, <, >, =, x, +, +, —, 0, 1, Pair,
fst, snd, Nil, Cons, head, tail, ... (think “predefined constants and functions”).

2 Type Checking

Before going into type checking, some formal definitions are required. In the following
a type 7 is of the form

Ti=al|T—71|C(T,...,T)
where « (ag, a1, ...) is a type variable, ‘—’ is the (right-associative) function space
constructor (in the end just a special case of the next construct), and C (Cy, Co, ...) an

arbitrary type constructor (like List for the type of lists). Every type constructor has a
fixed arity, that is, the number of arguments it takes. For example, List is unary, hence
applications of the type constructor for lists are of the form List(«), List(Int), List(Bool),
etc. Note that the base types (Bool, Int, ...) are just a special case of type constructors,
namely those of arity zero (that is, without arguments). Instead of Bool() or Int(), as
indicated by the BNF grammar, such nullary type constructors are written without (),
like Bool, Int.

A (typing) environment is a set of pairs, mapping variables and constants to types.
Instead of (e, 7) these pairs are written e :: 7, denoting “e has type 7.” For example, the
typing environment where the variable z is of type Bool and the variable y of type List(«),
is written

{z :: Bool, y :: List(«)}.
In the following, let
P = {True :: Bool, False :: Bool, + :: Int — Int — Int, 0 :: Int, 1 :: Int, Nil :: List(«), ...}
denote the primitive (typing) environment (containing type information for every prim-

itive constant).

A (type) substitution o is a mapping from type variables to types such that only for
finitely many type variables o we have o(a) # «. Therefore, type substitutions may
be represented by sets of bindings {ag — 70,...,an — 7,}. The application of a
substitution o to a type 7 (written 7o) is defined by
ao = o(a)
(11 = )0 = T10 — To0

C(11y...,m)o0 =C(m0,...,7Th0)
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Table 1: The inference rules for type checking.

The application of a type substitution to another type substitution is their composition

o109 = (Az.o1(x)03)

The following example familiarizes the reader with type substitutions.

Example 1. Consider the type 7 and the type substitutions o and os:
T=a— (a1 = a3)
o ={a+— Int — Int,a; — List(ag)}
o9 = {ag — ag, a0 — a,a— ag}
Then we have

7o = (Int — Int) — (List(a2) — a3)

ooy = {a — Int — Int, a1 — List(«), as — ag, a9 — a}
A typing judgment is written E F e :: 7 (akin to a sequent in natural deduction) for
some typing environment F, core FP expression e and type 7.
Such a typing judgment reads:
From the typing environment E, type T can be derived for the expression e.

The inference rules that are used to check types (that is, prove typing judgments by
natural deduction) are given in Table 1.

The part of an inference rule above the line consists of a number of premises. Below the
line are its conclusions.

Now type checking of a typing judgment E F e :: 7 corresponds to giving a natural
deduction proof using the rules from Table 1.

Let us have a closer look at the different inference rules.



(ins) The instantiation rule states that for elements of the typing environment arbitrary
type instances (obtained by applying the type substitution o) of their original
type T can be derived. In other words, those elements are polymorphic (for example,
if a length function was in E, we could apply it to lists of Ints, Bools, ... ).

(app) The application rule states that in order to prove that the type 71 can be derived
for the application e es we have to show that it is the case that (1) the type 7o — 7
can be derived for e; and (2) the type 7 can be derived for ey. This rule captures
the intuition that function application does only make sense for functions, that is,
expressions of some arrow type T — 7', and further, the argument of a function
has to have the correct type. (When arrow types are read as implication, this rule
resembles modus ponens—aka implication elimination—for propositional logic.)

(abs) The abstraction rule states that a function Az.e has type 71 — 75 if under the
assumption that the variable x has type 7 we can derive type 7 for the func-
tion body e. (Again reading arrow types as implication, this rule corresponds to
implication introduction—on the level of types—for propositional logic.)

(let) The let(-binding) rule states that the expression let = e; in e has type 72 if (1)
the type 71 can be derived for e; and (2) assuming type 71 for variable z, type
T9 can be derived for ey. (You may think of the let rule as a combination of the
abstraction rule and the application rule, since let x = e; in ey is equivalent to
(Az.e2) e1 in our setting.)?

(copy) The copy rule allows us to reuse previously derived results.

(ite) The if-then-else rule captures the intuition that the conditional expression e;
of if e; then es else e3 has to be of type Bool and the then-branch as well as
the else-branch have to be of the same type.

Often, thinking in a goal-oriented manner, that is, reading inference rules from bottom
to top (or put differently, thinking about the premises of an inference rule as the subgoals
we have to prove in order to arrive at its conclusion), will help you in finding a proof of
a typing judgment. The only guesswork has to be done for the type 7o of the argument
in the (app) rule as well as the type 71 (which also corresponds to a function argument)
in the (let) rule.

Example 2. Consider the typing environment E = {True :: Bool, + :: Int — Int — Int}.
Then the judgment E - (Az.x) True :: Bool can be proved by

1 True :: Bool ins £

2 ] x :: Bool assumption ‘
3 Az.z :: Bool — Bool abs 2

4 (Az.z) True :: Bool app 3,1

and the judgment F + Axz.x + x :: Int — Int by

2Note that this variant of let is not polymorphic, that is, it is not possible to use different type instances
of 71 for x inside es.



x::Int assumption
+:Int—=Int—Int  ins E

(+) x = Int — Int app 2, 1
x4+ Int app 3,1
Ar.z 4+ x::Int — Int  abs 14

U W N =

In the second example the ‘4’ is used infix. This is just for convenience. By the grammar
for core FP expressions it would be prefix, which is used as in Haskell, that is, (+) z y
instead of = + y.

3 Type Inference

Inferring the most general type of a given expression is known as type inference. It is a
bit more complicated than type checking. Hence some further definitions are needed.

The set of type variables of a type 7 is given by

V(Tl —>7‘2) ZV(Tl)UV(Tg)
V(C(T1y...ymn)) =V(m)U...UV(m)

Example 3. Recall the type 7 and the substitution ¢ from Example 1. Then we have:

V(1) ={a,a1, a3}
V(TJ) = {0427043}

3.1 Unification Problems

A wunification problem is represented by a (finite) sequence of equations between types
T & T{;...;Tn ~ 7). Here, an empty sequence is represented by [J. Unification is
the process of finding a substitution o such that the types in each equation become
syntactically identical, that is, 70 = 7{0;...; 7,0 = 7,,0. Such a substitution is then
called a solution to the unification problem or just a unifier. If a unification problem
admits a solution then it is found by any exhaustive sequence of applications of the
inference rules of Table 2

(d) The decomposition rules capture the facts that (di) two applications of type con-
structors are unifiable if and only if the type constructors are equal and their
respective parameters are unifiable, and (d2) two arrow types are unifiable if and
only if their respective components are unifiable.



(d) decomposition
E;;C(r,.. ) = C(1y, ..., 70); Eo

. ~ . . ~ .
Eyym =15 5™ =T, B

(d1)

Ei;m —m %T{ —>’T£;E2

d
Ey;m & 1,10 ~ 7h; B ()

(t) removal of trivial equations

Eym=TiEp

— s ®

Ey; By
(v) variable elimination
EyyaxT1;Ey agV(T) Eyyr~a; By agV(r)
(Bu B fars rp (B Bo)fars rp @

Table 2: The inference rules for unification.

(v) The variable rules state that as soon as either the left-hand side (for v;) or the right-
hand side (for vo) of an equation is a type variable «, the extracted information
can be used (in form of a substitution) to refine the remaining problem, but only
if the type variable does not occur on the other side of the equation. This is called
the occur-check.

(t) The trivial equations removal rule does exactly that, it removes trivial equations
(which do neither pose further constraints nor give additional information), that
is, equations where left-hand side and right-hand side are identical.

We apply the rules of unification from top to bottom. We depict unification derivations
as sequences. If E is the premise and E’ the conclusion of an inference rule r (with
r € {d1,da,v1,vo,t}), the application of r is written as E :>¢(7T) E’, where o indicates a
substitution (for r € {dj,ds,t} the substitution ¢, that is, the empty substitution, with
t(a) = « for all type variables «, is used). To solve a given unification problem FE; the
inference rules are applied repeatedly. The inference rules are designed such that this

process stops after finitely many, say n, steps:
E :>((77;1) FEy :>((77;2) s :>ngn) Epi.

If E,,1 = O then E; has the solution ¢ = o109---0,.> If E, # O then E; does not
have a solution.

3The order of applying the unification rules to equations in E may have an effect on the unifier.
However, every computed unifier o is most general. This means that any other unifier 7 can be
obtained from o¢. Formally this means that there exists a substitution p such that m = opu.
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Table 3: The inference rules for computing typing constraints.

Example 4. The types List(Bool) and List(«) are unifiable as can be seen by the deriva-

tion
List(Bool) ~ List(a) =% Bool ~ a
(v2)
:>{042»—>Bool} -

The unifier is ¢«{ae — Bool} = {a — Bool}.

3.2 Typing Constraints

Before unification can be used to implement type inference, a translation from type
inference problems to unification problems is needed. This is the purpose of the inference
rules in Table 3.

A type inference problem is given by E > e :: 7. This reads: “Transform the given
problem into a unification problem using the inference rules of Table 3. Afterwards
solve the resulting unification problem (if possible).” If unification succeeds, we obtain
a substitution ¢ such that F e :: 70.

Note that in the typing constraint rules of Table 3, the type variables a, o1 and ay are
required to be fresh, that is, they do not occur in the preceding derivations.

To solve the type inference problem E > e :: o we apply the typing constraint rules from
top to bottom. If no further application of a typing constraint rule is possible before
having a unification problem, then statement e cannot be typed with respect to the type
environment F. Otherwise, at some point the given type inference problem is translated
into a unification problem (representing typing constraints). If the resulting unification
problem has a solution, applying this to the initial type 7, represents the most general
type of the original type inference problem, otherwise the original type inference problem
is not typable.

Example 5. Consider the primitive environment P as defined above and application of
the identity function as given by let id = Az.x in id 1. The resulting type inference



problem is
Ppoletid=Mr.xz in id 1 :: oy

where «q is a fresh type variable. Using the typing constraint rules this is transformed
into the unification problem:

P>letid=Xr.xinid 1l : ag

let
=

P dx.x:ap Piday>idl::ag
abs
=
Pri:ab>zx:agarxa —ag Pid:ar>idl:: a

con

o ag;o oy — ag; Pid o >idl i ag
app
=

o = ag;a] oy —>ag; Pidap>idag — agy Pid i ar>1 0oy

con

Qo Rz o] R ag —>az o] oy~ Pidar>1nay

con

o gy R g — Q3301 T ag — ag;Int & ay.
Afterwards we use unification to obtain a solution:

o & Q30 R Qo —> a3 &g — ag;Int = ay

%\SQL%} Q)] = a3 — Q3o <o — ap;Int = ay
{\:3611)>—>043—>a3} a3 — az & ag — ap;Int ~ ay
= a3 = oy a3 ~ ap;Int &~ ay
%23)%4} ay = ap;Int = ay
{(1114{—)040} Int ~ (&%)
:>{\(/120)>—>|nt} 0.

The resulting unifier is
o ={ag— Int,a; — Int = Int, e — Int, a3 — Int, ay — Int}.

Since the type variable ag was used for the initial type inference problem and o () = Int,
the most general type for let id = Azx.z in id 1 is Int.

Note: To compute the unifier o we look how the type variables change by applying
all substitutions appearing in the unification proof sequence. For «q this is easy since
ag is mapped to Int. For «y this is a bit more involved since «y is first mapped to



a3 — ag, but afterwards as is mapped to a4 and finally a4 is mapped to Int. Hence
o(a1) = Int — Int.

Example 6. As a second example consider the expression Ax.x x and the primitive en-
vironment P. The resulting type inference problem is

P Ar.xx:a
where g is a fresh type variable. This is transformed into the unification problem:

P>Ar.xx:a

abs
=

Prxi :oi>rr:anoay~a — o

app
=

Prxi:oabaxr:ag—>anPr:oa>r:agoy<a — oy

con

ar oz~ anPria>ras;a)car —

con
=

] R a3 — ;0] R Q3,00 X Q] — (g

Afterwards we use unification as follows:
(v1)

] R a3 — ;] Q3,00 = Q] — Q9 :>{a1»—>a3—>a2}

ag — ag & az;ag & (a3 — ag) — @9

where after the first step the occur-check fails and hence the given unification problem
is not unifiable. This means that Ax.x = is not typable.

Example 7. As a further example consider the Y-combinator and the empty environ-
ment @. The type inference problem @ > Y :: «q is transformed into a unification
problem as follows:

> Af.(Az. f (zx)) Az. f (zx)) = ap

ab
=
f

n

froar> (e f(xz)) (A

(zx)) g0 = ag — ag

app
=

fra>p . f(zx)az—aynfrag> e f(rr)::ag;a) = — a

abs
=

{frapzooa)> f(xr)::asas — as = ay — as;

froar> e f(zx):az; a0~ a; — ag

app
=



igf
{fran,zoau}> frag— a5 {fo,x0}>rr::as

a3 >R ay —as fra>Ar f(xx) s as;a) = ap — ag
con
=

ar o= as {fran, ot >x o ag;

a3 >R ay —as fra> A f(xx) s as;a) = ap — ag
igg

aprag— a5 {fran,rragl>rar = o {fran,x gl >a o ar

as v ay Ry —as frap> A f(zx) s as;a0 o — ag
Egg

a1 R ag— asaq oy — ag{f o an,x sl > ar
az >R oy —as fra>Ar f(xx) oo ap — a
con
=
a1 " g — Q5,004 = 7 — Qg; 04 = Q7; 3 — g = g4 — A5,
froar> e f(zx):az;a0~a; — ag

abs
=

a1 " g — Q5,004 = 7 — Qg 04 = A7, 03 — (g X 04 — A5,

{frap,xas)> f(xr)::agas~ag — agap = ap — ag
app

=

a1 R g —> Q5,04 T 7 — Qg 04 = Q7 (i3 — (g = 0y — Ay,
{fra,xmas)> frag— ag{f:a,x:a8)>rr::an as~ag — ag;

) = 0 — 2

con
=
a1 R g —> Q5,04 Q7 —> Qg 04 = Q7; (i3 — (g = 0y — Ay,
1%a10—>a9;{f::041,:c:: Oég}l>l’.13:: 10, X3 = g — Qg; 0lg <~ 1 — (9

(07

1Y)

PP
= 0] | Og — Q5,04 7 — O, 04 Q7,03 — 0 0Oy — O,
a1 R agg = ag {f o, ag) > xi oy — aqp;

{fra,x a8} >ra;as = ag— ag;ap ~ap —

cons
=

Qg — Q5,04 T A7 — Qg; g = Q7,3 — g =& g — Q55

a1g = agyag ~ ajp — a0 {f aq, T agt > agg;
a3 X g — g, g X 1 — (9
cons
=
a1 " g — Q5,004 = 7 — Qg; 04 = Q7; 3 — g = g — Ql5;
a1 = oo — Qg; 0g = 11 —7 (0;

QB%all;QS%asl—())a9;ao%a1—>a2



It is left as an exercise to show that this unification problem is not solvable and hence
Y is not typable.

4 Recursion

An interesting result for the simply typed lambda calculus (that will not be proved in
this course, however), is that every typable A-term is guaranteed to terminate. This is
also true for core FP. As has been seen in the last section, Y is not typable. That is, of
course, due to the mentioned result. But if Y is not typable, there is no possibility to
define recursive functions (since all other thinkable fixed point combinators are also not
typable). The trick is, to include Y as a primitive constant and just assign a type that
suffices to make applications of Y well-typed.

The idea of the fixed point combinator was that given some function ¢ (expecting itself as
first argument), it replicates this function and applies it to the computed fixed point Y ¢,
that is, ¢ (Y t).

Example 8. Again, consider the function length. As a first approach for its implementa-
tion consider
length = Az.if null z then 0 else 1 + length (tail z)

where null :: List(a) — Bool, tail :: List(a) — List(«), 0 :: Int, 1 :: Int, and + :: Int —
Int — Int are constants contained in P. As already mentioned for the corresponding
A-term, this definition is not well-defined, due to the recursive reference to length.

Again the problem is solved by introducing an additional argument and applying Y to
the resulting expression, that is,

length =Y (Afz.if null z then 0 else 1+ f (tail x)).

It can be seen that Y expects some function (that is, an expression having an arrow type)
as its argument. The function that is supplied to Y in turn expects another function
(namely the one that is about to be defined). This process should be generally applicable,
hence Y does need some not too restricted type. The result after some investigation will
be similar to

Y:i(a—a)—a

Now let P, denote the primitive typing environment P extended by a type assignment
for Y
P,=PU{Y:(a—a)—a}

11



5 Further Remarks

The type inference algorithm presented in this chapter follows the Hindley-Milner type
inference algorithm for the simply typed lambda calculus. It was first presented by
Hindley [1] and independently conceived by Milner [2]. Sometimes it is also referred to
as Algorithm W.
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