

Functional Programming

Lecture 2

Cezary Kaliszyk Jonas Schöpf Christian Sternagel Vincent van Oostrom

Department of Computer Science

Topics

abstract data types, algebraic data types, binary search trees, combinator parsing, efficiency, encoding data types as lambda-terms, evaluation strategies, formal verification, first steps, guarded recursion, Haskell introduction, higher-order functions, historical overview, induction, infinite data structures, input and output, lambda-calculus, lazy evaluation, list comprehensions, lists, modules, pattern matching, polymorphism, property-based testing, reasoning about functional programs, recursive functions, sets, strings, tail recursion, trees, tupling, type checking, type inference, types, types and type classes, unification, user-defined types

Topics

abstract data types, algebraic data types, binary search trees, combinator parsing, efficiency, encoding data types as lambda-terms, evaluation strategies, formal verification, first steps, guarded recursion, Haskell introduction, higher-order functions, historical overview, induction, infinite data structures, input and output, lambda-calculus, lazy evaluation, list comprehensions, lists, modules, pattern matching, polymorphism, property-based testing, reasoning about functional programs, recursive functions, sets, strings, tail recursion, trees, tupling, type checking, type inference, types, types and type classes, unification, user-defined types

Overview

- Types and Type Classes
- Lists

- Patterns, Guards, and More
- Higher-Order Functions

Types and Type Classes

$$\tau ::= \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

ullet types au are built according to grammar

$$\tau := \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

• with type variables α – a, b, . . .

$$\tau := \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

- with type variables α a, b, ...
- type constructors C Bool, Int, [], (,), ...

$$\tau := \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

- with type variables α a, b, ...
- type constructors C Bool, Int, [], (,),...

$$\tau := \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

- with type variables α a, b, ...
- type constructors C Bool, Int, [], (,), ...
- function type constructor -> (special case of previous item)

$$\tau := \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

- with type variables α a, b, ...
- type constructors C Bool, Int, [], (,), ...
- function type constructor -> (special case of previous item)
- -> associates to the right: τ -> $(\tau$ -> $\tau)$ = τ -> τ -> τ

$$\tau := \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

- with type variables α a, b, . . .
- type constructors C Bool, Int, [], (,), ...
- function type constructor -> (special case of previous item)
- -> associates to the right: $\tau \rightarrow (\tau \rightarrow \tau) = \tau \rightarrow \tau \rightarrow \tau$
- as approximation types may be thought of as collections of values their inhabitants can reduce to, e.g., Bool = {True, False}, reflects the intuition that every expression of type Bool reduces either to True or False (or diverges) during runtime

$$\tau := \alpha \mid \tau \rightarrow \tau \mid C \tau \dots \tau$$

- with type variables α a, b, . . .
- type constructors C Bool, Int, [], (,), ...
- function type constructor -> (special case of previous item)
- -> associates to the right: $\tau \rightarrow (\tau \rightarrow \tau) = \tau \rightarrow \tau \rightarrow \tau$
- as approximation types may be thought of as collections of values their inhabitants can reduce to, e.g., Bool = {True, False}, reflects the intuition that every expression of type Bool reduces either to True or False (or diverges) during runtime
- type signature/constraint $e :: \tau$ means "e is of type τ "

• Bool - logical values (True, False)

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)
- String sequences of characters ("abc", "1+2=3")

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)
- String sequences of characters ("abc", "1+2=3")

syntactic sugar for list
of characters, e.g.,
['a','b','c']

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)
- String sequences of characters ("abc", "1+2=3")
- Int fixed-precision integers with at least 29 bits (-100, 0, 999)

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)
- String sequences of characters ("abc", "1+2=3")
- Int fixed-precision integers with at least 29 bits (-100, 0, 999)
- Integer arbitrary-precision integers

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)
- String sequences of characters ("abc", "1+2=3")
- Int fixed-precision integers with at least 29 bits (-100, 0, 999)
- Integer arbitrary-precision integers
- Float single-precision floating-point numbers (-12.34, 3.14159)

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)
- String sequences of characters ("abc", "1+2=3")
- Int fixed-precision integers with at least 29 bits (-100, 0, 999)
- Integer arbitrary-precision integers
- Float single-precision floating-point numbers (-12.34, 3.14159)
- Double double-precision floating-point numbers

- Bool logical values (True, False)
- Char single characters ('a', '\n', ...)
- String sequences of characters ("abc", "1+2=3")
- Int fixed-precision integers with at least 29 bits (-100, 0, 999)
- Integer arbitrary-precision integers
- Float single-precision floating-point numbers (-12.34, 3.14159)
- Double double-precision floating-point numbers

Note - Show Types in GHCi

- Prelude> :set +t
- commands may be put inside ~/.ghci (read on GHCi startup)

List Types

- type of lists with elements of type τ : [τ]
- all elements are of same type
- no restriction on length of list

List Types

- type of lists with elements of type τ : [τ]
- all elements are of same type
- no restriction on length of list

Tuple Types

- type of tuples with elements of types τ_1, \ldots, τ_n : (τ_1, \ldots, τ_n)
- length: 2 (pair), 3 (triple), 4 (quadruple), ..., n (n-tuple), ...
- elements may be of different types
- fixed number of elements

List Types

- type of lists with elements of type τ : [τ]
- all elements are of same type
- no restriction on length of list

Tuple Types

- type of tuples with elements of types τ_1, \ldots, τ_n : (τ_1, \ldots, τ_n)
- length: 2 (pair), 3 (triple), 4 (quadruple), ..., n (n-tuple), ...
- elements may be of different types
- fixed number of elements

Examples

```
['a','b','c','d'] :: [Char]
["One","Two","Three"] :: [String]
[['a','b'],['c','d','e']] :: [[Char]]
(False,True) :: (Bool,Bool)
("Yes",True,'a') :: (String,Bool,Char)
```

Function Types

- type of functions from values of type τ_1 to values of type τ_2 : $\tau_1 \rightarrow \tau_2$
- every function takes single argument and returns single result
- simulating multiple arguments: use tuples

Function Types

- type of functions from values of type τ_1 to values of type τ_2 : $\tau_1 \rightarrow \tau_2$
- every function takes single argument and returns single result
- simulating multiple arguments: use tuples

Function Types

- type of functions from values of type τ_1 to values of type τ_2 : $\tau_1 \rightarrow \tau_2$
- every function takes single argument and returns single result
- simulating multiple arguments: use tuples

Examples

```
not True = False
not False = True
add :: (Int, Int) -> Int
add (x, y) = x + y
```

not :: Bool -> Bool

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Example

```
add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: successor function
suc = add' 1
```

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Example

```
add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: successor function
suc = add' 1
```

Anonymous Functions – "Lambda-Abstractions"

• $\xspace \xspace \x$

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Example

```
add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: successor function
suc = add' 1
```

Anonymous Functions – "Lambda-Abstractions"

• $\xspace \xspace \x$

Example

```
add' = \x -> \y -> x + y
```

Basic Functions

• Bool: "conjunction" &&, "disjunction" ||, negation not, equality ==, and otherwise as alias for True

Basic Functions

- Bool: "conjunction" &&, "disjunction" ||, negation not, equality ==, and otherwise as alias for True
- (a, b): choose first fst, choose second snd

Basic Functions

- Bool: "conjunction" &&, "disjunction" ||, negation not, equality ==, and otherwise as alias for True
- (a, b): choose first fst, choose second snd

Examples

```
not True == False
(False && x) == False
(True || x) == True
otherwise == True

fst (x, y) == x
snd (x, y) == y
```

- support standard set of operations
- use same name, independent of actual type

- support standard set of operations
- use same name, independent of actual type

Realization - Class Constrains

- syntax: $e :: C = \tau$
- meaning: "for every type ${\bf a}$ of class C, the type of e is τ " (where τ does contain ${\bf a}$)

- support standard set of operations
- use same name, independent of actual type

Realization - Class Constrains

- syntax: e :: C a => τ
- meaning: "for every type \mathbf{a} of class C, the type of e is τ " (where τ does contain \mathbf{a})

Example – Addition

- (+) :: Num a => a -> a -> a
- "for every type a of class Num, addition has type a -> a -> a"
- since, e.g., Int is of class Num, we obtain that addition is of type
 Int -> Int -> Int, when used on Ints

- support standard set of operations
- use same name, independent of actual type

Realization - Class Constrains

- syntax: e :: C a => τ
- meaning: "for every type \mathbf{a} of class C, the type of e is τ " (where τ does contain \mathbf{a})

Example – Addition

(op) turns infix op into prefix

- (+) :: Num a => a -> a -> a
- "for every type a of class Num, addition has type a -> a -> a"
- since, e.g., Int is of class Num, we obtain that addition is of type
 Int -> Int -> Int, when used on Ints

The Eq Class – Equality

specification, one of:
 (==) :: Eq a => a -> a -> Bool
 (/=) :: Eq a => a -> a -> Bool

The Eq Class – Equality

• specification, one of: (==) :: Eq a => a -> a -> Bool (/=) :: Eq a => a -> a -> Bool

The Ord Class - Orders

- prerequisite: Eq
- specification, one of:

```
compare :: Ord a => a -> a -> Ordering
(<=) :: Ord a => a -> a -> Bool
```

- (\-) .. UIU a -> a -> a
- where $Ordering = \{LT, EQ, GT\}$
- additional functions: (<), (>=), (>), min, max

The Eq Class – Equality

```
• specification, one of:

(==) :: Eq a => a -> a -> Bool

(/=) :: Eq a => a -> a -> Bool
```

The Ord Class - Orders

- prerequisite: Eq
- specification, one of:

```
compare :: Ord a => a -> a -> Ordering
(<=) :: Ord a => a -> a -> Bool
```

- where Ordering = {LT, EQ, GT}
- additional functions: (<), (>=), (>), min, max

The Read Class - "from string"

- useful functions:
 - read :: Read a => String -> a

The Show Class - "to string"

• specification, one of:
 show :: Show a => a -> String

showsPrec:: Show $a \Rightarrow Int \rightarrow a \rightarrow String \rightarrow String$

• additional functions: showList

The Show Class – "to string"

specification, one of: :: Show a => a -> String showsPrec:: Show a => Int -> a -> String -> String additional functions: showList

The Num Class – Numeric Types

- prerequisites: Eq and Show
- specification, all of:

```
(+)
       :: Num a => a -> a -> a
(*)
         :: Num a => a -> a -> a
(-)
             :: Num a \Rightarrow a \rightarrow a \rightarrow a
abs :: Num a \Rightarrow a \rightarrow a
signum :: Num a \Rightarrow a \rightarrow a
fromInteger :: Num a => Integer -> a
```

additional functions: negate

The Show Class – "to string"

- specification, one of:
 show :: Show a => a -> String
 showsPrec:: Show a => Int -> a -> String -> String
- additional functions: showList

The Num Class - Numeric Types

- prerequisites: Eq and Show
- specification, all of:
 - (+) :: Num a => a -> a -> a
 - (*) :: Num a => a -> a -> a
 - (-) :: Num a => a -> a -> a abs :: Num a => a -> a
 - signum :: Num a => a -> a
 - fromInteger :: Num a => Integer -> a
- additional functions: negate

 $\textbf{visit:} \ \texttt{http://haskell.org} \rightarrow \texttt{Documentation} \rightarrow \texttt{Language} \ \texttt{Report:Haskell} \ \ \texttt{2010}$

Lists

Constructing Lists

- [a] ::= [] | a : [a]
- for given list, exactly two cases: either empty [], or contains at least one element x and a remaining list xs (x:xs)
- $[x_1, x_2, \ldots, x_n]$ abbreviates $x_1 : (x_2 : (\cdots : (x_n : []) \cdots))$
- (:) is right-associative, hence $x_1:(x_2:x_3)=x_1:x_2:x_3$

Constructing Lists

- [a] ::= [] | a : [a]
- for given list, exactly two cases: either empty [], or contains at least one element x and a remaining list xs (x: xs)
- $[x_1, x_2, \ldots, x_n]$ abbreviates $x_1 : (x_2 : (\cdots : (x_n : []) \cdots))$
- (:) is right-associative, hence $x_1:(x_2:x_3)=x_1:x_2:x_3$

Examples

```
1 : (2 : (3 : (4 : []))) == 1 : 2 : 3 : 4 : []

1 : 2 : 3 : 4 : [] == [1,2,3,4]

1 : [2,3,4] == [1,2,3,4]
```

- head :: [a] -> a extract first element (fail on empty list)
- tail :: [a] -> [a] drop first element (fail on empty list)

- head :: [a] -> a extract first element (fail on empty list)
- tail :: [a] -> [a] drop first element (fail on empty list)

A Polymorphic List Function

- polymorphic means "having many forms"
- definition

```
myReplicate n x =
  if n <= 0 then []
  else x : myReplicate (n - 1) x</pre>
```

- myReplicate has type (Ord t, Num t) => t -> a -> [a]
- can construct lists with elements of arbitrary type a, where length is given by some ordered numeric type t

- head :: [a] -> a extract first element (fail on empty list)
- tail :: [a] -> [a] drop first element (fail on empty list)

A Polymorphic List Function

- polymorphic means "having many forms"
- definition

```
myReplicate n x =
  if n <= 0 then []
  else x : myReplicate (n - 1) x</pre>
```

- myReplicate has type (Ord t, Num t) => t -> a -> [a]
- can construct lists with elements of arbitrary type a, where length is given by some ordered numeric type t

- head :: [a] -> a extract first element (fail on empty list)
- tail :: [a] -> [a] drop first element (fail on empty list)

A Polymorphic List Function

- polymorphic means "having many forms"
- definition

```
myReplicate n x =
  if n <= 0 then []
  else x : myReplicate (n - 1) x</pre>
```

- myReplicate has type (Ord t, Num t) => t -> a -> [a]
- can construct lists with elements of arbitrary type a, where length is given by some ordered numeric type t

Exercise

use equational reasoning to evaluate myReplicate 2 'c'

Testing for Emptiness

• null :: [a] -> Bool - True iff argument is empty list

Testing for Emptiness

```
• null :: [a] -> Bool - True iff argument is empty list
```

Functions on Integer Lists

```
range m n =
  if m > n then []
 else m : range (m + 1) n
mySum xs =
  if null xs then 0
  else head xs + mySum (tail xs)
prod xs =
  if null xs then 1
  else head xs * prod (tail xs)
```

Examples

range 1 3 = [1,2,3]

range 3 2 = []

mySum [1,2,3] = 1 + 2 + 3 + 0

mySum [] = 0

prod [1,2,3] = 1 * 2 * 3 * 1

prod [] = 1

mySum (range 1 n) =
$$\sum_{i=1}^{n} i$$

Patterns, Guards, and More

• used to match specific cases

- used to match specific cases
- defined by

```
⟨pat⟩ ::= _
                                                 wildcard
                                                 variable pattern
                 \mathbf{x} @ \langle pat \rangle "as" pattern
            [\langle pat \rangle, \dots, \langle pat \rangle] list pattern
            |\langle pat \rangle, \ldots, \langle pat \rangle| tuple pattern
                 C \langle pat \rangle \dots \langle pat \rangle constructor pattern
```

- used to match specific cases

_ matches everything and ignores the result

 $C \langle pat \rangle \dots \langle pat \rangle$ constructor pattern

- used to match specific cases
- defined by $\langle pat \rangle ::=$ wildcard | x variable pattern | x @ $\langle pat \rangle$ "as" pattern | [$\langle pat \rangle, \ldots, \langle pat \rangle$] list pattern | ($\langle pat \rangle, \ldots, \langle pat \rangle$) tuple pattern

 $C \langle pat \rangle \dots \langle pat \rangle$ constructor pattern

- _ matches everything and ignores the result
- x matches everything and binds the result to x

- used to match specific cases

- _ matches everything and ignores the result
- x matches everything and binds the result to x
- $\mathbf{x} \otimes \langle pat \rangle$ matches the same as $\langle pat \rangle$ and binds result to \mathbf{x}

- used to match specific cases
- defined by

- _ matches everything and ignores the result
- x matches everything and binds the result to x
- $\mathbf{x} \otimes \langle pat \rangle$ matches the same as $\langle pat \rangle$ and binds result to \mathbf{x}
- constructor patterns match the described application of a data constructor (example constructors are (:) and [] for lists, True and False for Boolean values, ...)

- used to match specific cases
- defined by

- _ matches everything and ignores the result
- x matches everything and binds the result to x
- $\mathbf{x} \otimes \langle pat \rangle$ matches the same as $\langle pat \rangle$ and binds result to \mathbf{x}
- constructor patterns match the described application of a data constructor (example constructors are (:) and [] for lists, True and False for Boolean values, ...)
- patterns may be used in arguments of function definitions and together with the case construct

The case Construct

case
$$e$$
 of $\langle pat_1 \rangle$ -> e_1
 \vdots
 $\langle pat_n \rangle$ -> e_n

- checks $\langle pat_1 \rangle$ to $\langle pat_n \rangle$ top to bottom
- if $\langle pat_i \rangle$ is first match, e_i is evaluated

The case Construct

case
$$e$$
 of $\langle pat_1 \rangle$ -> e_1
 \vdots
 $\langle pat_n \rangle$ -> e_n

- checks $\langle pat_1 \rangle$ to $\langle pat_n \rangle$ top to bottom
- if $\langle pat_i \rangle$ is first match, e_i is evaluated

Example – Pattern Matching

 \bullet a pattern may be followed by a guard b

- \bullet a pattern may be followed by a guard b
- syntax: $\langle pat \rangle \mid b$

- \bullet a pattern may be followed by a guard b
- syntax: $\langle pat \rangle \mid b$
- ullet where b is a Boolean expression

- ullet a pattern may be followed by a guard b
- syntax: $\langle pat \rangle \mid b$
- where b is a Boolean expression

Example

```
f1 (x, _) | x \ge 0 = x -- only if x non-negative f2 (x:xs) | null xs = ... -- same as [x]
```

Refined Definitions

```
myReplicate n x | n \le 0 = []
               | otherwise = x : myReplicate (n - 1) x
range m n \mid m > n = []
         | otherwise = m : range (m + 1) n
mySum [] = 0
mySum (x:xs) = x + mySum xs
prod [] = 1
prod (x:xs) = x * prod xs
```

Higher-Order Functions

a function is of higher-order if it takes functions as arguments

a function is of higher-order if it takes functions as arguments

Examples

twice f x = f (f x) -- apply f twice to x

a function is of higher-order if it takes functions as arguments

Examples

```
twice f x = f (f x) -- apply f twice to x
```

Sections

- abbreviation for partially applied infix operators
- (x `op`) abbreviates (\y -> x `op` y)
- (`op` y) abbreviates (\x -> x `op` y)

a function is of higher-order if it takes functions as arguments

Examples

```
twice f x = f (f x) -- apply f twice to x
```

Sections

- abbreviation for partially applied infix operators
- (x `op`) abbreviates (\y -> x `op` y)
- (`op` y) abbreviates (\x -> x `op` y)

Examples

```
ghci> twice (^2) 10
10000
```

Processing Lists - map

possible definition

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs
```

• syntactic sugar map f xs = [f x | x < -xs]

Processing Lists - map

possible definition
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x:xs) = f x : map f xs

• syntactic sugar map f xs = [f x | x < - xs]

Examples

```
ghci> map (+1) [1,3,5,7]
[2,4,6,8]
ghci> import Data.Char
ghci> map isDigit ['a','1','b','2']
[False,True,False,True]
ghci> map reverse ["abc","def","ghi"]
["cba","fed","ihg"]
ghci> map (map (+1)) [[1,2,3],[4,5]]
[[2,3,4],[5,6]]
```

Processing Lists - filter

Processing Lists - filter

Examples

```
ghci> filter even [1..10]
[2,4,6,8,10]
ghci> filter (>5) [1..10]
[6,7,8,9,10]
ghci> filter (/= ' ') "abc def ghi"
"abcdefghi"
```

"Fold Right" - A Very Expressive Function

possible definition
 foldr :: (a -> b -> b) -> b -> [a] -> b
 foldr f b [] = b
 foldr f b (x:xs) = x `f` (foldr f b xs)
 b is 'base value'
 f combining function (binary)
 intuitively foldr f b [x₁,x₂,...,x_n]
 = foldr f b (x₁ : (x₂ : ... (x_n : [])...))
 = (x₁ `f` (x₂ `f` ... (x_n `f` b)...))

"Fold Right" - A Very Expressive Function

- possible definition
 foldr :: (a -> b -> b) -> b -> [a] -> b
 foldr f b [] = b
 foldr f b (x:xs) = x `f` (foldr f b xs)
- b is 'base value'
- **f** combining function (binary)
- intuitively foldr f b $[x_1, x_2, \ldots, x_n]$

$$= \text{ foldr } \mathbf{f} \ \mathbf{b} \ (x_1 : (x_2 : \cdots (x_n : []) \cdots))$$

$$= (x_1 \mathbf{f} (x_2 \mathbf{f} \ldots (x_n \mathbf{f} \mathbf{b}) \ldots))$$

This Pattern is Very General

- take (+) for f and f for f foldr (+) f = sum
- take (*) for f and 1 for b: foldr (*) 1 = product
- take const (+1) for f and 0 for b:
 foldr (const (+1)) 0 = length (where const f _ = f)

"Fold Right" - A Very Expressive Function

- possible definition
 foldr :: (a -> b -> b) -> b -> [a] -> b
 foldr f b [] = b
 foldr f b (x:xs) = x `f` (foldr f b xs)
- b is 'base value'
- f combining function (binary)
- intuitively foldr f b $[x_1, x_2, \ldots, x_n]$

$$= \text{ foldr } \mathbf{f} \mathbf{b} \quad (x_1 : (x_2 : \cdots (x_n : []) \cdots))$$

$$= (x_1 \mathbf{f} (x_2 \mathbf{f} \ldots (x_n \mathbf{f} \mathbf{b}) \ldots))$$

This Pattern is Very General

add dummy argument

- take (+) for f and f for f foldr (+) f = sum
- take (*) for f and 1 for b: foldr (*) 1 = product
- take const (+1) for f and 0 for b:
 foldr (const (+1)) 0 = length (where const f _ = f)

Homework (for November 9th) 1. Read Chapters 1 and 2 of Real World Haskell.

- 2. Work through lessons 4 to 5 on http://tryhaskell.org/.
- 3. Give the types (and class constraints) for each of:

```
pair x y = (x, y)
```

```
tail2 xs = tail (tail xs)

triple x = x * 3
```

thrice
$$f x = f (f (f x))$$

mapPair $f (x, y) = (f x, f y)$

- idList = filter (const True)
- 4. Use equational reasoning to stepwise compute the result of filter (const False) ["a","b","c"] on paper.
- 5. Using foldr, give alternative definitions of two of the functions we
- have seen so far (excluding those that we already defined via foldr).

 6. Define a function intercalate :: [a] -> [[a]] -> [a] such that intercalate xs xss inserts the list xs between the lists in xss and concatenates the result.

Evample

Example:
intercalate "; " ["one","two","six"] = "one; two; six"