\square universität innsbruck

Functional Programming

Lecture 2

Cezary Kaliszyk Jonas Schöpf
Christian Sternagel Vincent van Oostrom

Department of Computer Science

Topics

abstract data types, algebraic data types, binary search trees, combinator parsing, efficiency, encoding data types as lambda-terms, evaluation strategies, formal verification, first steps, guarded recursion, Haskell introduction, higher-order functions, historical overview, induction, infinite data structures, input and output, lambda-calculus, lazy evaluation, list comprehensions, lists, modules, pattern matching, polymorphism, property-based testing, reasoning about functional programs, recursive functions, sets, strings, tail recursion, trees, tupling, type checking, type inference, types, types and type classes, unification, user-defined types

Overview

- Types and Type Classes
- Lists
- Patterns, Guards, and More
- Higher-Order Functions

Basic Concepts

- types τ are built according to grammar

$$
\tau::=\alpha|\tau \rightarrow \tau| C \tau \ldots \tau
$$

- with type variables $\alpha-\mathrm{a}, \mathrm{b}, \ldots$
- type constructors C - Bool, Int, [], (,), ...
- function type constructor $\rightarrow>$ (special case of previous item)
- -> associates to the right: $\tau \rightarrow(\tau->\tau)=\tau \rightarrow \tau \rightarrow \tau$
- as approximation types may be thought of as collections of values their inhabitants can reduce to, e.g., Bool $=\{$ True, False $\}$, reflects the intuition that every expression of type Bool reduces either to True or False (or diverges) during runtime
- type signature/constraint $e:: \tau$ means " e is of type τ "

Basic Types

- Bool - logical values (True, False)
- Char - single characters ('a', '\n', ...)
- String - sequences of characters ("abc", "1+2=3")
- Int - fixed-precision integers with at least 29 bits (-100, 0, 999)
- Integer - arbitrary-precision integers
- Float - single-precision floating-point numbers (-12.34, 3.14159)
- Double - double-precision floating-point numbers

Note - Show Types in GHCi

- Prelude> :set +t
- commands may be put inside $\sim /$.ghci (read on GHCi startup)

List Types

- type of lists with elements of type τ : [$\tau]$
- all elements are of same type
- no restriction on length of list

Tuple Types

- type of tuples with elements of types $\tau_{1}, \ldots, \tau_{n}:\left(\tau_{1}, \ldots, \tau_{n}\right)$
- length: 2 (pair), 3 (triple), 4 (quadruple), \ldots, n (n-tuple), \ldots
- elements may be of different types
- fixed number of elements

Examples

['a','b','c','d'] :: [Char]
["One","Two","Three"] :: [String]
[['a','b'],['c','d','e']] :: [[Char]]
(False,True) :: (Bool,Bool)
("Yes",True,'a') :: (String,Bool,Char)

Function Types

- type of functions from values of type τ_{1} to values of type $\tau_{2}: \tau_{1} \rightarrow \tau_{2}$
- every function takes single argument and returns single result
- simulating multiple arguments: use tuples

Examples

```
not :: Bool -> Bool
not True = False
not False = True
add :: (Int, Int) -> Int
add (x, y) = x + y
```


Currying

- transform function taking tuple as input into function returning another function as output
- in presence of partial application, curried functions are more versatile than uncurried functions

Example

```
add' :: Int -> (Int -> Int)
add' x y = x + y
-- partial application: successor function
suc = add' 1
```

Anonymous Functions - "Lambda-Abstractions"

- \x $\rightarrow e$ is function taking x and returning e

Example

add' $=$ \x \rightarrow \y $\rightarrow x+y$

Basic Functions

- Bool: "conjunction" \&\&, "disjunction" ||, negation not, equality ==, and otherwise as alias for True
- (a, b): choose first fst, choose second snd

Examples

```
not True == False
(False && x) == False
(True || x) == True
otherwise == True
```

fst (x, y) $==x$
snd $(x, y)==y$

Overloaded Types

- support standard set of operations
- use same name, independent of actual type

Realization - Class Constrains

- syntax: e :: C a $=>\tau$
- meaning: "for every type a of class C, the type of e is τ " (where τ does contain a)

Example - Addition
 (op) turns infix op into prefix

- (+) :: Num a => a -> a -> a
- "for every type a of class Num, addition has type a -> a -> a"
- since, e.g., Int is of class Num, we obtain that addition is of type Int -> Int -> Int, when used on Ints

The Eq Class - Equality

- specification, one of:

$$
\begin{aligned}
& (==):: \text { Eq a } \Rightarrow \text { a } \rightarrow \text { a } \rightarrow \text { Bool } \\
& (/=):: \text { Eq a } \Rightarrow \text { a } \rightarrow \text { a Bool }
\end{aligned}
$$

The Ord Class - Orders

- prerequisite: Eq
- specification, one of:

```
compare :: Ord a => a -> a -> Ordering
(<=) :: Ord a => a -> a -> Bool
```

- where Ordering $=\{$ LT, EQ, GT $\}$
- additional functions: (<), (>=), (>), min, max

The Read Class - "from string"

- useful functions:

```
read :: Read a => String -> a
```


The Show Class - "to string"

- specification, one of:

```
show :: Show a => a -> String
showsPrec:: Show a => Int -> a -> String -> String
```

- additional functions: showList

The Num Class - Numeric Types

- prerequisites: Eq and Show
- specification, all of:

(+)	:: Num a => a -> a ->
(*)	:: Num a => a -> a -> a
(-)	: : Num a $=>$ a $->$ a $->$ a
abs	:: Num a => a -> a
signum	: : Num a $=>$ a \rightarrow a
fromInteger	:: Num a => Integer -> a

- additional functions: negate
visit: http://haskell.org \rightarrow Documentation \rightarrow Language Report: Haskell 2010

Constructing Lists

- [a] ::= [] | a : [a]
- for given list, exactly two cases: either empty [], or contains at least one element x and a remaining list $x s(x: x s)$
- $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ abbreviates $x_{1}:\left(x_{2}:\left(\cdots:\left(x_{n}:[]\right) \cdots\right)\right)$
- ($:$) is right-associative, hence $x_{1}:\left(x_{2}: x s\right)=x_{1}: x_{2}: x s$

Examples

$$
\begin{aligned}
1:(2:(3:(4:[]))) & ==1: 2: 3: 4:[] \\
1: 2: 3: 4:[] & ==[1,2,3,4] \\
1:[2,3,4] &
\end{aligned}
$$

Accessing List Elements - Selectors

- head :: [a] -> a - extract first element (fail on empty list)
- tail : : [a] -> [a] - drop first element (fail on empty list)

A Polymorphic List Function

- polymorphic means "having many forms"
- definition

```
myReplicate n x =
    if n <= O then []
    else x : myReplicate (n - 1) x
```

- myReplicate has type (Ord t, Num t) => t -> a -> [a]
- can construct lists with elements of arbitrary type a, where length is given by some ordered numeric type t

Exercise

use equational reasoning to evaluate myReplicate 2 ' c'

Testing for Emptiness

- null :: [a] -> Bool - True iff argument is empty list

Functions on Integer Lists

```
range m n =
    if m > n then []
    else m : range (m + 1) n
mySum xs =
    if null xs then 0
    else head xs + mySum (tail xs)
prod xs =
    if null xs then 1
    else head xs * prod (tail xs)
```


Examples

$$
\begin{aligned}
& \text { range } 13=[1,2,3] \\
& \text { range } 32=[]
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{mySum}[1,2,3] & =1+2+3+0 \\
\operatorname{mySum}[] & =0
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{prod}[1,2,3] & =1 * 2 * 3 * 1 \\
\operatorname{prod}[] & =1
\end{aligned}
$$

$\operatorname{mySum}($ range 1 n$)=\sum_{i=1}^{\mathrm{n}} i$

Patterns

- used to match specific cases
- defined by

- _ matches everything and ignores the result
- x matches everything and binds the result to x
- $\mathrm{x} @\langle p a t\rangle$ matches the same as $\langle p a t\rangle$ and binds result to x
- constructor patterns match the described application of a data constructor (example constructors are (:) and [] for lists, True and False for Boolean values, ...)
- patterns may be used in arguments of function definitions and together with the case construct

The case Construct

$$
\begin{array}{ccc}
\text { case } e \text { of }\left\langle p a t_{1}\right\rangle & -> & e_{1} \\
\vdots & & \\
\left\langle p a t_{n}\right\rangle & -> & e_{n}
\end{array}
$$

- checks $\left\langle p a t_{1}\right\rangle$ to $\left\langle p a t_{n}\right\rangle$ top to bottom
- if $\left\langle p a t_{i}\right\rangle$ is first match, e_{i} is evaluated

Example - Pattern Matching

```
mySum [] = ... -- constructor pattern
fst (x, _) = x -- patterns: tuple, variable, wildcard
case xs of [x] -> ... -- patterns: list, variable
    _ -> ... -- wildcard
```


Pattern Guards

- a pattern may be followed by a guard b
- syntax: $\langle p a t\rangle$ | b
- where b is a Boolean expression

Example

f1 (x, _) | x >= 0 = x -- only if x non-negative
f2 (x:xs) | null xs = ... -- same as [x]

Refined Definitions

$$
\begin{aligned}
& \text { myReplicate } \mathrm{n} \text { x | } \mathrm{n} \text { <= } 0 \text { [] } \\
& \text { | otherwise = x : myReplicate (n - 1) x } \\
& \begin{aligned}
\text { range } m n \quad l & =[] \\
& \mid \text { otherwise }=m \text { : range }(m+1) n
\end{aligned} \\
& \text { mySum [] = } 0 \\
& \text { mySum (x:xs) }=x+m y S u m \text { xs } \\
& \text { prod [] = } 1 \\
& \text { prod (x:xs) }=x * \operatorname{prod} x s
\end{aligned}
$$

Definition

a function is of higher-order if it takes functions as arguments

Examples

twice $f x=f(f x)$-- apply f twice to x

Sections

- abbreviation for partially applied infix operators
- (x `op`) abbreviates (\y -> x `op` y)
- (`op` y) abbreviates ($\backslash \mathrm{x}$-> x `op` y)

Examples

```
ghci> twice (`2) 10
10000
```


Processing Lists - map

- possible definition

$$
\begin{aligned}
& \operatorname{map}::(\mathrm{a}->\mathrm{b})->[\mathrm{a}]-\mathrm{b}] \\
& \operatorname{map} \mathrm{f}[] \quad=[] \\
& \operatorname{map} \mathrm{f}(\mathrm{x}: \mathrm{xs})=\mathrm{f} x: \operatorname{map} \mathrm{f}
\end{aligned}
$$

- syntactic sugar map f xs $=\left[\begin{array}{l}\text { x } \mid ~ x ~<-~ x s] ~\end{array}\right.$

Examples

```
ghci> map (+1) [1,3,5,7]
[2,4,6,8]
ghci> import Data.Char
ghci> map isDigit ['a','1','b','2']
[False,True,False,True]
ghci> map reverse ["abc","def","ghi"]
["cba","fed","ihg"]
ghci> map (map (+1)) [[1,2,3],[4,5]]
[[2,3,4], [5,6]]
```


Processing Lists - filter

- possible definition

```
filter :: (a -> Bool) -> [a] -> [a]
filter p [] = []
filter p (x:xs)
    | p x = x : filter p xs
    | otherwise = filter p xs
```

- syntactic sugar filter p xs $=[\mathrm{x} \mid \mathrm{x}<-\mathrm{xs}, \mathrm{p} \mathrm{x}]$

Examples

```
ghci> filter even [1..10]
```

[2,4,6,8,10]
ghci> filter (>5) [1..10]
[6,7,8,9,10]
ghci> filter (/= ' ') "abc def ghi"
"abcdefghi"

"Fold Right" - A Very Expressive Function

- possible definition

$$
\begin{aligned}
& \text { foldr : : (a -> b -> b) }->\text { b }->\text { [a] }->\text { b } \\
& \text { foldr f b }[] \quad=b \\
& \text { foldr f b (x:xs) }=x \text { 'f` (foldr f b xs) }
\end{aligned}
$$

- b is 'base value'
- f combining function (binary)
- intuitively foldr f b $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$

$$
\begin{aligned}
& =\mathrm{foldr} \mathrm{f} \mathrm{~b} \quad\left(x_{1}:\left(x_{2}: \quad \cdots \quad\left(x_{n} \quad: \quad[]\right) \cdots\right)\right) \\
& =\quad\left(x_{1} \text { 'f }^{\prime}\left(x_{2} \text { 'f }^{\prime} \ldots \quad\left(x_{n} \text { `f` b }\right) \ldots\right)\right)
\end{aligned}
$$

This Pattern is Very General

 add dummy argument- take (+) for f and 0 for b: foldr (+) $0=$ sum
- take (*) for f and 1 for b : foldr (*) 1 = product
- take const (+1) for f and 0 for b: foldr (const (+1)) $0=$ length (where const $\mathrm{f}_{\mathrm{Z}}=\mathrm{f}$)

Homework (for November 9th)

1. Read Chapters 1 and 2 of Real World Haskell.
2. Work through lessons 4 to 5 on http://tryhaskell.org/.
3. Give the types (and class constraints) for each of:

pair $\mathrm{x} y$	$=(\mathrm{x}, \mathrm{y})$
tail2 xs	$=$ tail (tail xs)
triple x	$=\mathrm{x} * 3$
thrice $\mathrm{f} x$	$=\mathrm{f}(\mathrm{f}(\mathrm{f} x))$
mapPair $\mathrm{f}(\mathrm{x}, \mathrm{y})$	$=(\mathrm{f} x, \mathrm{f} y)$
idList	$=$ filter (const True)

4. Use equational reasoning to stepwise compute the result of filter (const False) ["a","b","c"] on paper.
5. Using foldr, give alternative definitions of two of the functions we have seen so far (excluding those that we already defined via foldr).
6. Define a function intercalate :: [a] -> [[a]] -> [a] such that intercalate xs xss inserts the list xs between the lists in xss and concatenates the result.

Example:

intercalate "; " ["one","two","six"] = "one; two; six"

