
WS 2018/2019

Functional Programming
Lecture 2

Cezary Kaliszyk Jonas Schöpf
Christian Sternagel Vincent van Oostrom

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws18/fp/
http://cl-informatik.uibk.ac.at/~griff
http://informatik.uibk.ac.at/

Topics

abstract data types, algebraic data types, binary search trees,
combinator parsing, efficiency, encoding data types as lambda-terms,
evaluation strategies, formal verification, first steps, guarded recursion,
Haskell introduction, higher-order functions, historical overview,
induction, infinite data structures, input and output, lambda-calculus,
lazy evaluation, list comprehensions, lists, modules, pattern matching,
polymorphism, property-based testing, reasoning about functional
programs, recursive functions, sets, strings, tail recursion, trees,
tupling, type checking, type inference, types, types and type classes,
unification, user-defined types

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 2/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Overview

• Types and Type Classes

• Lists

• Patterns, Guards, and More

• Higher-Order Functions

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 3/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

Basic Concepts

• types τ are built according to grammar

τ ::= α | τ -> τ | C τ . . . τ

• with type variables α – a, b, . . .

• type constructors C – Bool, Int, [], (,), . . .

List
Pair

• function type constructor -> (special case of previous item)

• -> associates to the right: τ -> (τ -> τ) = τ -> τ -> τ

• as approximation types may be thought of as collections of values
their inhabitants can reduce to, e.g., Bool = {True, False}, reflects
the intuition that every expression of type Bool reduces either to
True or False (or diverges) during runtime

• type signature/constraint e :: τ means “e is of type τ”

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 4/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

Basic Types

• Bool – logical values (True, False)

• Char – single characters ('a', '\n', . . .)

• String – sequences of characters ("abc", "1+2=3")

syntactic sugar for list
of characters, e.g.,
['a','b','c']

• Int – fixed-precision integers with at least 29 bits (-100, 0, 999)

• Integer – arbitrary-precision integers

• Float – single-precision floating-point numbers (-12.34, 3.14159)

• Double – double-precision floating-point numbers

Note – Show Types in GHCi

• Prelude> :set +t

• commands may be put inside ~/.ghci (read on GHCi startup)

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 5/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

List Types

• type of lists with elements of type τ : [τ]

• all elements are of same type

• no restriction on length of list

Tuple Types

• type of tuples with elements of types τ1, . . . , τn: (τ1, . . . ,τn)

• length: 2 (pair), 3 (triple), 4 (quadruple), . . . , n (n-tuple), . . .

• elements may be of different types

• fixed number of elements

Examples

['a','b','c','d'] :: [Char]

["One","Two","Three"] :: [String]

[['a','b'],['c','d','e']] :: [[Char]]

(False,True) :: (Bool,Bool)

("Yes",True,'a') :: (String,Bool,Char)

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 6/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

Function Types

• type of functions from values of type τ1 to values of type τ2: τ1 -> τ2
• every function takes single argument and returns single result

• simulating multiple arguments: use tuples

Examples

not :: Bool -> Bool

not True = False

not False = True

add :: (Int, Int) -> Int

add (x, y) = x + y

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 7/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

Currying

• transform function taking tuple as input into function returning
another function as output

• in presence of partial application, curried functions are more versatile
than uncurried functions

Example

add' :: Int -> (Int -> Int)

add' x y = x + y

-- partial application: successor function

suc = add' 1

Anonymous Functions – “Lambda-Abstractions”

• \x -> e is function taking x and returning e

Example

add' = \x -> \y -> x + y

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 8/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

Basic Functions

• Bool: “conjunction” &&, “disjunction” ||, negation not, equality ==,
and otherwise as alias for True

• (a, b): choose first fst, choose second snd

Examples

not True == False

(False && x) == False

(True || x) == True

otherwise == True

fst (x, y) == x

snd (x, y) == y

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 9/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

Overloaded Types

• support standard set of operations

• use same name, independent of actual type

Realization – Class Constrains

• syntax: e :: C a => τ

• meaning: “for every type a of class C, the type of e is τ”
(where τ does contain a)

Example – Addition

• (+) :: Num a => a -> a -> a

• “for every type a of class Num, addition has type a -> a -> a”

• since, e.g., Int is of class Num, we obtain that addition is of type
Int -> Int -> Int, when used on Ints

(op) turns infix op into prefix

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 10/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

The Eq Class – Equality

• specification, one of:
(==) :: Eq a => a -> a -> Bool

(/=) :: Eq a => a -> a -> Bool

The Ord Class – Orders

• prerequisite: Eq

• specification, one of:
compare :: Ord a => a -> a -> Ordering

(<=) :: Ord a => a -> a -> Bool

• where Ordering = {LT, EQ, GT}
• additional functions: (<), (>=), (>), min, max

The Read Class – “from string”

• useful functions:
read :: Read a => String -> a

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 11/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Types and Type Classes

The Show Class – “to string”

• specification, one of:
show :: Show a => a -> String

showsPrec:: Show a => Int -> a -> String -> String

• additional functions: showList

The Num Class – Numeric Types

• prerequisites: Eq and Show

• specification, all of:
(+) :: Num a => a -> a -> a

(*) :: Num a => a -> a -> a

(-) :: Num a => a -> a -> a

abs :: Num a => a -> a

signum :: Num a => a -> a

fromInteger :: Num a => Integer -> a

• additional functions: negate

visit: http://haskell.org → Documentation → Language Report: Haskell 2010

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 12/25

http://haskell.org
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lists

Constructing Lists

• [a] ::= [] | a : [a]

• for given list, exactly two cases: either empty [], or contains at least
one element x and a remaining list xs (x : xs)

• [x1,x2, . . . ,xn] abbreviates x1 : (x2 : (· · · : (xn : []) · · ·))
• (:) is right-associative, hence x1 : (x2 : xs) = x1 : x2 : xs

Examples

1 : (2 : (3 : (4 : []))) == 1 : 2 : 3 : 4 : []

1 : 2 : 3 : 4 : [] == [1,2,3,4]

1 : [2,3,4] == [1,2,3,4]

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 13/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lists

Accessing List Elements – Selectors

• head :: [a] -> a – extract first element (fail on empty list)

• tail :: [a] -> [a] – drop first element (fail on empty list)

A Polymorphic List Function

• polymorphic means “having many forms”

• definition
myReplicate n x =

if n <= 0 then []

else x : myReplicate (n - 1) x

• myReplicate has type (Ord t, Num t) => t -> a -> [a]

• can construct lists with elements of arbitrary type a, where length is
given by some ordered numeric type t

Exercise

use equational reasoning to evaluate myReplicate 2 'c'

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 14/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lists

Testing for Emptiness

• null :: [a] -> Bool – True iff argument is empty list

Functions on Integer Lists

range m n =

if m > n then []

else m : range (m + 1) n

mySum xs =

if null xs then 0

else head xs + mySum (tail xs)

prod xs =

if null xs then 1

else head xs * prod (tail xs)

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 15/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Lists

Examples

range 1 3 = [1,2,3]

range 3 2 = []

mySum [1,2,3] = 1 + 2 + 3 + 0

mySum [] = 0

prod [1,2,3] = 1 * 2 * 3 * 1

prod [] = 1

mySum (range 1 n) =
n∑

i=1

i

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 16/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Patterns, Guards, and More

Patterns

• used to match specific cases

• defined by
〈pat〉 ::= _ wildcard

| x variable pattern
| x @ 〈pat〉 “as” pattern
| [〈pat〉, . . . ,〈pat〉] list pattern
| (〈pat〉, . . . ,〈pat〉) tuple pattern
| C 〈pat〉 . . . 〈pat〉 constructor pattern

• _ matches everything and ignores the result

• x matches everything and binds the result to x

• x @ 〈pat〉 matches the same as 〈pat〉 and binds result to x

• constructor patterns match the described application of a data
constructor (example constructors are (:) and [] for lists, True and
False for Boolean values, . . .)

• patterns may be used in arguments of function definitions and
together with the case construct

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 17/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Patterns, Guards, and More

The case Construct

case e of 〈pat1〉 -> e1
...

〈patn〉 -> en

• checks 〈pat1〉 to 〈patn〉 top to bottom

• if 〈pati〉 is first match, ei is evaluated

Example – Pattern Matching

mySum [] = ... -- constructor pattern

fst (x, _) = x -- patterns: tuple, variable, wildcard

case xs of [x] -> ... -- patterns: list, variable

_ -> ... -- wildcard

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 18/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Patterns, Guards, and More

Pattern Guards

• a pattern may be followed by a guard b

• syntax: 〈pat〉 | b
• where b is a Boolean expression

Example

f1 (x, _) | x >= 0 = x -- only if x non-negative

f2 (x:xs) | null xs = ... -- same as [x]

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 19/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Patterns, Guards, and More

Refined Definitions

myReplicate n x | n <= 0 = []

| otherwise = x : myReplicate (n - 1) x

range m n | m > n = []

| otherwise = m : range (m + 1) n

mySum [] = 0

mySum (x:xs) = x + mySum xs

prod [] = 1

prod (x:xs) = x * prod xs

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 20/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order Functions

Definition

a function is of higher-order if it takes functions as arguments

Examples

twice f x = f (f x) -- apply f twice to x

Sections

• abbreviation for partially applied infix operators

• (x `op`) abbreviates (\y -> x `op` y)

• (`op` y) abbreviates (\x -> x `op` y)

Examples

ghci> twice (^2) 10

10000

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 21/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order Functions

Processing Lists – map

• possible definition
map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

• syntactic sugar map f xs = [f x | x <- xs]

Examples

ghci> map (+1) [1,3,5,7]

[2,4,6,8]

ghci> import Data.Char

ghci> map isDigit ['a','1','b','2']
[False,True,False,True]

ghci> map reverse ["abc","def","ghi"]

["cba","fed","ihg"]

ghci> map (map (+1)) [[1,2,3],[4,5]]

[[2,3,4],[5,6]]

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 22/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order Functions

Processing Lists – filter

• possible definition
filter :: (a -> Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

| p x = x : filter p xs

| otherwise = filter p xs

• syntactic sugar filter p xs = [x | x <- xs, p x]

Examples

ghci> filter even [1..10]

[2,4,6,8,10]

ghci> filter (>5) [1..10]

[6,7,8,9,10]

ghci> filter (/= ' ') "abc def ghi"

"abcdefghi"

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 23/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Higher-Order Functions

“Fold Right” – A Very Expressive Function
• possible definition
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f b [] = b

foldr f b (x:xs) = x `f` (foldr f b xs)

• b is ‘base value‘

• f combining function (binary)

• intuitively foldr f b [x1,x2, . . . ,xn]

= foldr f b (x1 : (x2 : · · · (xn : []) · · ·))
= (x1 `f` (x2 `f` . . . (xn `f` b) . . .))

This Pattern is Very General

• take (+) for f and 0 for b: foldr (+) 0 = sum

• take (*) for f and 1 for b: foldr (*) 1 = product

• take const (+1) for f and 0 for b:
foldr (const (+1)) 0 = length (where const f _ = f)

add dummy argument

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 24/25

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

Homework (for November 9th)
1. Read Chapters 1 and 2 of Real World Haskell.

2. Work through lessons 4 to 5 on http://tryhaskell.org/.

3. Give the types (and class constraints) for each of:
pair x y = (x, y)

tail2 xs = tail (tail xs)

triple x = x * 3

thrice f x = f (f (f x))

mapPair f (x, y) = (f x, f y)

idList = filter (const True)

4. Use equational reasoning to stepwise compute the result of
filter (const False) ["a","b","c"] on paper.

5. Using foldr, give alternative definitions of two of the functions we
have seen so far (excluding those that we already defined via foldr).

6. Define a function intercalate :: [a] -> [[a]] -> [a] such
that intercalate xs xss inserts the list xs between the lists in
xss and concatenates the result.
Example:
intercalate "; " ["one","two","six"] = "one; two; six"

CK,JS,CS,VvO (DCS @ UIBK) lecture 2 25/25

http://book.realworldhaskell.org/read/
http://tryhaskell.org/
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Overview
	
	Types and Type Classes
	
	Lists
	
	Patterns, Guards, and More
	
	Higher-Order Functions
	

