

WS 2018/2019



# **Functional Programming**

Lecture 7

Cezary Kaliszyk Jonas Schöpf Christian Sternagel Vincent van Oostrom

Department of Computer Science

# **Topics**

abstract data types, algebraic data types, binary search trees, combinator parsing, efficiency, encoding data types as lambda-terms, evaluation strategies, formal verification, first steps, guarded recursion, Haskell introduction, higher-order functions, historical overview, induction, infinite data structures, input and output, lambda-calculus, lazy evaluation, list comprehensions, lists, modules, pattern matching, polymorphism, property-based testing, reasoning about functional programs, recursive functions, sets, strings, tail recursion, trees, tupling, type checking, type inference, types, types and type classes, unification, user-defined types

# Overview

- Mathematical Induction
- Induction over Lists
- Structural Induction
- Formal Verification of Functional Programs

# When to use Mathematical Induction?

- prove some property P for all natural numbers
- more formally, prove:

 $\forall n. P(n)$  (where  $n \in \mathbb{N}$ )

# How is it Applied?



### Why does this Work?

- have two facts:
  - 1. P true for 0
  - 2. for arbitrary  $k, \mbox{ if } P \mbox{ true for } k \mbox{ then } P \mbox{ true for } k+1$
- want to show P for every natural number  $(\forall n. P(n))$

# Example – P(3)

- have P(0)
- and  $P(0) \longrightarrow P(1)$
- thus P(1)
- with  $P(1) \longrightarrow P(2)$
- have P(2)
- with  $P(2) \longrightarrow P(3)$
- have P(3)

Idea

- reach arbitrary n s.t. P(n)
- hence,  $\forall n. P(n)$

# **Domino Effect**

- 1. first domino falls
- 2. if domino falls, right neighbor falls



### What is a "Property"?

- anything that depends on some input and is either true or false
- that is, some function p :: a -> Bool

### Remark

- base case may be changed
- e.g., if base case  $P(1), \mbox{ property holds for all } n \geq 1$

# **Induction Principle**

 $\left(P(m) \land \forall k \geq m. \left(P(k) \longrightarrow P(k+1)\right)\right) \longrightarrow \forall n \geq m. \ P(n)$ 

#### Example – Gauß's Formula

• 
$$P(x) = (1 + 2 + \dots + x = \frac{x(x+1)}{2})$$

• base case:  $P(0) = (1 + 2 + \dots + 0 = 0 = \frac{0(0+1)}{2})$ 

• step case: 
$$P(k) \longrightarrow P(k+1)$$
  
IH:  $P(k) = (1+2+\cdots+k = \frac{k(k+1)}{2})$   
show:  $P(k+1)$ 

$$1 + 2 + \dots + (k+1) = (1 + 2 + \dots + k) + (k+1)$$
$$\stackrel{\text{\tiny IH}}{=} \frac{k(k+1)}{2} + (k+1)$$
$$= \frac{(k+1)(k+2)}{2}$$

# Algebraic Data Type of Lists data [a] = [] | (:) a [a]

#### Notes

- lists are recursive structures
- non-recursive constructor (base case): []
- recursive constructor (step case): x : xs

### Induction Principle for Lists – Informally

- to show P(xs) for all lists xs
- show base case: P([])
- show step case:  $P(xs) \longrightarrow P(x : xs)$  for arbitrary x and xs

Induction Principle for Lists – Formally

$$(P(\texttt{[]}) \land \forall x. \forall xs. (P(xs) \longrightarrow P(x : xs))) \longrightarrow \forall xs. P(xs)$$

Remark

• for lists, P can be seen as function p :: [a] -> Bool

### Exercise – Nil is right identity of append

- definition of append
   [] ++ ys = ys
   (x:xs) ++ ys = x : (xs ++ ys)
- prove that [] is right identity of ++, that is,

xs ++ [] = xs

#### Exercise – Append is associative

- recall
   [] ++ ys = ys
   (x:xs) ++ ys = x : (xs ++ ys)
- prove that ++ is associative, that is,

$$(xs ++ ys) ++ zs = xs ++ (ys ++ zs)$$

# Exercise – Length and append

- definition length [] = 0 length (\_:xs) = 1 + length xs
- prove that length of combined list is sum of lengths, that is,

length (xs ++ ys) = length xs + length ys

#### **Example – Terms**

**General Structures – Induction Principle** 

- for every non-recursive constructor, show base case
  - base case: P(Var x)
- for every recursive constructor, show step case
  - step case 1:  $(P(\mathbf{s}) \land P(\mathbf{t})) \longrightarrow P(\operatorname{App} \mathbf{s} \mathbf{t})$
  - step case 2:  $P(t) \longrightarrow P(Abs x t)$

# Example - Binary Trees data BTree a = Empty | Node a (BTree a) (BTree a)

### **Induction Principle for Binary Trees**

 $(P(\texttt{Empty}) \land \forall x. \forall l. \forall r. ((P(l) \land P(r)) \longrightarrow P(\texttt{Node} \ x \ l \ r))) \longrightarrow \forall t. \ P(t) \land P(t$ 

#### **Exercise – Perfect Binary Trees**

 a binary tree is perfect if all leaf nodes have same depth perfect Empty = True perfect (Node \_ l r) = height l == height r && perfect l && perfect r

```
height Empty = 0
height (Node _ l r) =
  max (height l) (height r) + 1
```

- size Empty = 0
  size (Node \_ l r) = size l + size r + 1
- lemma: a perfect binary tree t of height n has exactly  $2^n-1$  nodes, that is,

$$P(t) = \left(\texttt{perfect} \ t \longrightarrow \texttt{size} \ t = 2^{\texttt{height} \ t} - 1\right)$$

CK, JS, CS, VvO (DCS @ UIBK)

# Isabelle/HOL in a Nutshell

#### **Obvious question:**

• What is Isabelle?

#### Common answer:

• An LCF-style proof assistant.

#### Typical follow-up questions:

- What is a proof assistant?
- What does LCF-style mean?

• . . .

# What is a Proof Assistant?

- combination of automated theorem prover (ATP) and proof checker
- some subproofs are found automatically
- others are user-supplied but checked rigorously

# Example

- automatic methods: logical reasoning (blast), equational reasoning (simp), combination of former (auto), ...
- manual steps: induction (induct), case analysis (cases), ...

#### What does LCF-style mean?

• theorems represented by abstract data type (thm)

certified term

- set of (basic) logical inferences provided as interface (trusted kernel)
- strong typing guarantees that there is no other way to create theorems (values of type thm)

# Example

- functions assume : cterm -> thm and implies\_elim : thm -> thm -> thm
- implement inference rules

$$\frac{}{A \vdash A} \qquad \frac{\Gamma \vdash A \Longrightarrow B \quad \Delta \vdash A}{\Gamma, \Delta \vdash B}$$

# Higher-Order Logic

- HOL = Functional Programming + Logic
- data types (datatype)
- recursive functions (fun)
- logical operators ( $\land$ ,  $\lor$ ,  $\longrightarrow$ ,  $\forall$ ,  $\exists$ , ...)

#### **Example – Insertion Sort**



### **A Functional Implementation**

inserting an element into a sorted list

```
insert x [] = [x]
insert x (y:ys) =
    if x <= y then x : y : ys
    else y : insert x ys</pre>
```

 sorting by repeatedly inserting elements into the empty list insertionSort = foldr insert []

# Exercise - Insertion sort is a valid sorting algorithm

- prove that result after applying insertion sort is sorted
- prove that all values occur exactly the same number of times in input and output
- see Insertion\_Sort.thy

Homework (for December 14th)

- 1. Read the lecture notes on reasoning about functional programs.
- 2. Prove map  $f \pmod{g} xs = \max(f \circ g) xs$  for map f [] = [] map f (x:xs) = f x : map f xs
- 3. Prove filter p (map f xs) = map f (filter (p o f) xs) for
  filter p [] = []
  filter p (x:xs) | p x = x : filter p xs
  | otherwise = filter p xs
- 4. Prove map f (xs ++ ys) = map f xs ++ map f ys for
  [] ++ ys = ys
  (x:xs) ++ ys = x : (xs ++ ys)
- 5. Prove  $\forall xs. take \ n \ (map \ f \ xs) = map \ f \ (take \ n \ xs) \ for take \ n \ (x:xs) \ | \ n > 0 = x \ : take \ (n 1) \ xs take \_ = []$

Homework (for December 14th, continued)

6. Prove ∀xs.take n xs ++ drop n xs = xs for drop n (\_:xs) | n > 0 = drop (n - 1) xs drop \_ xs = xs

Alternatively

Choose two of the previous exercises and prove them with  $\mathsf{Isabelle}/\mathsf{HOL}$  using the custom type

datatype 'a lst = NIL | CONS 'a "'a lst"

and your own implementations of the relevant functions among

```
map :: "('a => 'b) => 'a lst => 'b lst"
filter :: "('a => bool) => 'a lst => 'a lst"
app :: "'a lst => 'a lst => 'a lst"
take :: "nat => 'a lst => 'a lst"
drop :: "nat => 'a lst => 'a lst"
```