
WS 2018/2019

Functional Programming
Lecture 7

Cezary Kaliszyk Jonas Schöpf
Christian Sternagel Vincent van Oostrom

Department of Computer Science

https://uibk.ac.at
http://cl-informatik.uibk.ac.at/teaching/ws18/fp/
http://cl-informatik.uibk.ac.at/~griff
http://informatik.uibk.ac.at/


Topics

abstract data types, algebraic data types, binary search trees, combinator
parsing, efficiency, encoding data types as lambda-terms, evaluation
strategies, formal verification, first steps, guarded recursion, Haskell
introduction, higher-order functions, historical overview, induction,
infinite data structures, input and output, lambda-calculus, lazy
evaluation, list comprehensions, lists, modules, pattern matching,
polymorphism, property-based testing, reasoning about functional
programs, recursive functions, sets, strings, tail recursion, trees, tupling,
type checking, type inference, types, types and type classes, unification,
user-defined types

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 2/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Overview

• Mathematical Induction

• Induction over Lists

• Structural Induction

• Formal Verification of Functional Programs

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 3/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Mathematical Induction

When to use Mathematical Induction?

• prove some property P for all natural numbers

• more formally, prove:

∀n. P (n) (where n ∈ N)

How is it Applied?

• mathematical induction consists of two steps:

1. prove base case
P (0)

show property for 0

2. prove step case
∀k. (P (k) −→ P (k + 1))

assume P (k) (induction hypothesis), show P (k + 1)

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 4/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Mathematical Induction

Why does this Work?

• have two facts:

1. P true for 0
2. for arbitrary k, if P true for k then P true for k + 1

• want to show P for every natural number (∀n. P (n))

Example – P (3)

• have P (0)

• and P (0) −→ P (1)

• thus P (1)

• with P (1) −→ P (2)

• have P (2)

• with P (2) −→ P (3)

• have P (3)

Idea

• reach arbitrary n s.t. P (n)

• hence, ∀n. P (n)

Domino Effect

1. first domino falls

2. if domino falls, right
neighbor falls

· · ·

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 5/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Mathematical Induction

What is a “Property”?

• anything that depends on some input and is either true or false

• that is, some function p :: a -> Bool

Remark

• base case may be changed

• e.g., if base case P (1), property holds for all n ≥ 1

Induction Principle

(P (m) ∧ ∀k ≥ m. (P (k) −→ P (k + 1))) −→ ∀n ≥ m.P (n)

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 6/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Mathematical Induction

Example – Gauß’s Formula

• P (x) = (1 + 2 + · · ·+ x = x(x+1)
2 )

• base case: P (0) = (1 + 2 + · · ·+ 0 = 0 = 0(0+1)
2 )

• step case: P (k) −→ P (k + 1)

IH: P (k) = (1 + 2 + · · ·+ k = k(k+1)
2 )

show: P (k + 1)

1 + 2 + · · ·+ (k + 1) = (1 + 2 + · · ·+ k) + (k + 1)

IH
=

k(k + 1)

2
+ (k + 1)

=
(k + 1)(k + 2)

2

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 7/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Induction over Lists

Algebraic Data Type of Lists

data [a] = [] | (:) a [a]

Notes

• lists are recursive structures

• non-recursive constructor (base case): []

• recursive constructor (step case): x : xs

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 8/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Induction over Lists

Induction Principle for Lists – Informally

• to show P (xs) for all lists xs

• show base case: P ([])

• show step case: P (xs) −→ P (x : xs) for arbitrary x and xs

Induction Principle for Lists – Formally

(P ([]) ∧ ∀x. ∀xs. (P (xs) −→ P (x : xs))) −→ ∀xs. P (xs)

Remark

• for lists, P can be seen as function p :: [a] -> Bool

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 9/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Induction over Lists

Exercise – Nil is right identity of append

• definition of append
[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

• prove that [] is right identity of ++, that is,

xs ++ [] = xs

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 10/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Induction over Lists

Exercise – Append is associative

• recall
[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

• prove that ++ is associative, that is,

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 11/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Induction over Lists

Exercise – Length and append

• definition
length [] = 0

length (_:xs) = 1 + length xs

• prove that length of combined list is sum of lengths, that is,

length (xs ++ ys) = length xs + length ys

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 12/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Structural Induction

Example – Terms

type Id = String

data Term = Var Id

| App Term Term

| Abs Id Term

General Structures – Induction Principle

• for every non-recursive constructor, show base case
• base case: P (Var x)

• for every recursive constructor, show step case
• step case 1: (P (s) ∧ P (t)) −→ P (App s t)
• step case 2: P (t) −→ P (Abs x t)

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 13/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Structural Induction

Example – Binary Trees

data BTree a = Empty

| Node a (BTree a) (BTree a)

Induction Principle for Binary Trees

(P (Empty) ∧ ∀x.∀l.∀r. ((P (l) ∧ P (r)) −→ P (Node x l r))) −→ ∀t. P (t)

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 14/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Structural Induction

Exercise – Perfect Binary Trees

• a binary tree is perfect if all leaf nodes have same depth

perfect Empty = True

perfect (Node _ l r) =

height l == height r && perfect l && perfect r

height Empty = 0

height (Node _ l r) =

max (height l) (height r) + 1

size Empty = 0

size (Node _ l r) = size l + size r + 1

• lemma: a perfect binary tree t of height n has exactly 2n − 1 nodes,
that is,

P (t) =
(
perfect t −→ size t = 2height t − 1

)
CK,JS,CS,VvO (DCS @ UIBK) lecture 7 15/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Formal Verification of Functional Programs

Isabelle/HOL in a Nutshell

Obvious question:

• What is Isabelle?

Common answer:

• An LCF-style proof assistant.

Typical follow-up questions:

• What is a proof assistant?

• What does LCF-style mean?

• . . .

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 16/23

http://isabelle.in.tum.de
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Formal Verification of Functional Programs

What is a Proof Assistant?

• combination of automated theorem prover (ATP) and proof checker

• some subproofs are found automatically

• others are user-supplied but checked rigorously

Example

• automatic methods: logical reasoning (blast), equational reasoning
(simp), combination of former (auto), . . .

• manual steps: induction (induct), case analysis (cases), . . .

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 17/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Formal Verification of Functional Programs

What does LCF-style mean?

• theorems represented by abstract data type (thm)

• set of (basic) logical inferences provided as interface (trusted kernel)

• strong typing guarantees that there is no other way to create
theorems (values of type thm)

Example

• functions assume : cterm -> thm and
implies_elim : thm -> thm -> thm

certified term

• implement inference rules

A ` A

Γ ` A =⇒ B ∆ ` A

Γ,∆ ` B

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 18/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Formal Verification of Functional Programs

Higher-Order Logic

• HOL = Functional Programming + Logic

• data types (datatype)

• recursive functions (fun)

• logical operators (∧, ∨, −→, ∀, ∃, . . . )

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 19/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Formal Verification of Functional Programs

Example – Insertion Sort

4
♣

4
♣

2
♣

2
♣

7
♣

7
♣

5
♣

5
♣

3
♣

3
♣

6
♣

6
♣

6
♣

6
♣

3
♣

3
♣

7
♣

7
♣

6
♣

6
♣

5
♣

5
♣

6
♣

6
♣

7
♣

7
♣

5
♣

5
♣

7
♣

7
♣

3
♣

3
♣

5
♣

5
♣

7
♣

7
♣

2
♣

2
♣

7
♣

7
♣

6
♣

6
♣

5
♣

5
♣

4
♣

4
♣

7
♣

7
♣

6
♣

6
♣

5
♣

5
♣

4
♣

4
♣

3
♣

3
♣

4
♣

4
♣

2
♣

2
♣

4
♣

4
♣

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 20/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Formal Verification of Functional Programs

A Functional Implementation

• inserting an element into a sorted list

insert x [] = [x]

insert x (y:ys) =

if x <= y then x : y : ys

else y : insert x ys

• sorting by repeatedly inserting elements into the empty list

insertionSort = foldr insert []

Exercise – Insertion sort is a valid sorting algorithm

• prove that result after applying insertion sort is sorted

• prove that all values occur exactly the same number of times in input
and output

• see Insertion_Sort.thy

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 21/23

http://cl-informatik.uibk.ac.at/teaching/ws18/fp/src/07.tgz
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Homework (for December 14th)
1. Read the lecture notes on reasoning about functional programs.

2. Prove map f (map g xs) = map (f ◦ g) xs for
map f [] = []

map f (x:xs) = f x : map f xs

3. Prove filter p (map f xs) = map f (filter (p ◦ f) xs) for
filter p [] = []

filter p (x:xs) | p x = x : filter p xs

| otherwise = filter p xs

4. Prove map f (xs ++ ys) = map f xs ++ map f ys for
[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

5. Prove ∀xs. take n (map f xs) = map f (take n xs) for
take n (x:xs) | n > 0 = x : take (n - 1) xs

take _ _ = []

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 22/23

http://cl-informatik.uibk.ac.at/teaching/ws18/fp/pdfs/reasoning.pdf
http://informatik.uibk.ac.at/
http://www.uibk.ac.at/


Homework (for December 14th, continued)
6. Prove ∀xs. take n xs ++ drop n xs = xs for

drop n (_:xs) | n > 0 = drop (n - 1) xs

drop _ xs = xs

Alternatively

Choose two of the previous exercises and prove them with Isabelle/HOL
using the custom type

datatype 'a lst = NIL | CONS 'a "'a lst"

and your own implementations of the relevant functions among

map :: "('a => 'b) => 'a lst => 'b lst"

filter :: "('a => bool) => 'a lst => 'a lst"

app :: "'a lst => 'a lst => 'a lst"

take :: "nat => 'a lst => 'a lst"

drop :: "nat => 'a lst => 'a lst"

CK,JS,CS,VvO (DCS @ UIBK) lecture 7 23/23

http://informatik.uibk.ac.at/
http://www.uibk.ac.at/

	
	Overview
	
	Mathematical Induction
	
	Induction over Lists
	
	Structural Induction
	
	Formal Verification of Functional Programs
	

