
Program Analysis

Georg Moser

cbr.uibk.ac.at

cbr.uibk.ac.at


Summary of Last Lecture

Definition (type and effect system)

a type and effect system is conceivable as a combination of a

• effect system

• annotated type system

in an effect system we have judgements of the form

S : Σ
φ−→ Σ

where φ represents the effect of the execution of S; in an annotated type system we
have

S : Σ1 → Σ2

describing that state properties have been transformed

Program Analysis, Winter 2018/19 1



Data Flow Analysis

Program Analysis, Winter 2018/19 2



Intraprocedural Analysis

Definition (initial and final labels)

we define mappings init : Stmt→ Lab and final : Stmt→ P(Lab) as follows

init([x := a]`) = ` final([x := a]`) = {`}

init([skip]`) = ` final([skip]`) = {`}

init(S1; S2) = init(S1) final(S1; S2) = final(S2)

init(if [b]` then S1 else S2) = ` final(if [b]` then S1 else S2) = final(S1) ∪ final(S2)

init(while)[b]` do S) = ` final(while)[b]` do S) = {`}

Program Analysis, Winter 2018/19 3



Definition (blocks)

we define the mapping blocks : Stmt→ P(Blocks) as follows

blocks([x := a]`) = {[x := a]`}

blocks([skip]`) = {[skip]`}

blocks(S1; S2) = blocks(S1) ∪ blocks(S2)

blocks(if [b]` then S1 else S2) = {[b]`} ∪ blocks(S1) ∪ blocks(S2)

blocks(while)[b]` do S) = {[b]`} ∪ blocks(S)

and the set of labels in a program

labels(S) = {` | [B]` ∈ blocks(S)}

Program Analysis, Winter 2018/19 4



Definition (flows and reverse flows)

we define the function flow : Stmt→ P(Lab× Lab) as follows

flow([x := a]`) = ∅

flow([skip]`) = ∅

flow(S1; S2) = flow(S1) ∪ flow(S2) ∪ {(`, init(S2)) | ` ∈ final(S1)}

flow(if [b]` then S1 else S2) = flow(S1) ∪ flow(S2) ∪ {(`, init(S1))} ∪ {(`, init(S2))}

flow(while)[b]` do S) = flow(S) ∪ {(`, init(S))} ∪ {(`′, `) | `′ ∈ final(S)}

Example

[z := 1]1; while [x > 0]2 do ([z := z ∗ y]3; [x := x− 1]4)

Program Analysis, Winter 2018/19 5



Definition (flows and reverse flows)

we define the function flow : Stmt→ P(Lab× Lab) as follows

flow([x := a]`) = ∅

flow([skip]`) = ∅

flow(S1; S2) = flow(S1) ∪ flow(S2) ∪ {(`, init(S2)) | ` ∈ final(S1)}

flow(if [b]` then S1 else S2) = flow(S1) ∪ flow(S2) ∪ {(`, init(S1))} ∪ {(`, init(S2))}

flow(while)[b]` do S) = flow(S) ∪ {(`, init(S))} ∪ {(`′, `) | `′ ∈ final(S)}

Example

[z := 1]1; while [x > 0]2 do ([z := z ∗ y]3; [x := x− 1]4)

Program Analysis, Winter 2018/19 5



Definition (reverse flows)

we define the function flowR : Stmt→ P(Lab× Lab) as follows

flowR(S) = {(`, `′) | (`′, `) ∈ flow(S)}

Convention

• we use S∗ to represent the program of interest

• Lab∗, Var∗, Blocks∗ refer to the (finite) labels, variables, blocks in the program of
interest

• AExp∗ represents the non-trivial arithemetic subexpressions in S∗

• we also write FV(a) for the set of variables occuring in a

Program Analysis, Winter 2018/19 6



Definition (reverse flows)

we define the function flowR : Stmt→ P(Lab× Lab) as follows

flowR(S) = {(`, `′) | (`′, `) ∈ flow(S)}

Convention

• we use S∗ to represent the program of interest

• Lab∗, Var∗, Blocks∗ refer to the (finite) labels, variables, blocks in the program of
interest

• AExp∗ represents the non-trivial arithemetic subexpressions in S∗

• we also write FV(a) for the set of variables occuring in a

Program Analysis, Winter 2018/19 6



Available Expression Analysis

For each program point, which expression must have already been
computed, and not later modified, on all paths to the program pont

Example

[x := a + b]1; [y := a ∗ b]2; while [y > a + b]3 do ([a := a + 1]4; [x := a + b]5)

the expression a + b is available every time the execution reaches label 3

Program Analysis, Winter 2018/19 7



Available Expression Analysis

For each program point, which expression must have already been
computed, and not later modified, on all paths to the program pont

Example

[x := a + b]1; [y := a ∗ b]2; while [y > a + b]3 do ([a := a + 1]4; [x := a + b]5)

the expression a + b is available every time the execution reaches label 3

Program Analysis, Winter 2018/19 7



Example (continued)

killAE([x := a]`) = {a′ ∈ AExp∗ | x ∈ FV(a′)}
killAE([skip]`) = ∅

killAE([b]`) = ∅

genAE([x := a]`) = {a′ ∈ AExp(a) | x 6∈ FV(a′)}
genAE([skip]`) = ∅

genAE([b]`) = AExp(b)

AEentry(`) =

{
∅ if ` = init(S∗)⋂
{AEexit(`

′) | (`′, `) ∈ flow(S∗)} otherwise

AEexit(`) =
(

AEentry(`) \ killAE(B`)
)
∪ genAE(B`)

where B` ∈ blocks(S∗)
Program Analysis, Winter 2018/19 8


	Summary of Last Lecture

