\square universität innsbruck

Program Analysis

Georg Moser
cbr.uibk.ac.at

Summary of Last Lecture

Definition (type and effect system)

a type and effect system is conceivable as a combination of a

- effect system
- annotated type system
in an effect system we have judgements of the form

$$
S: \Sigma \xrightarrow{\phi} \Sigma
$$

where ϕ represents the effect of the execution of S; in an annotated type system we have

$$
S: \Sigma_{1} \rightarrow \Sigma_{2}
$$

describing that state properties have been transformed

Program Analysis, Winter 2018/19

Data Flow Analysis

Intraprocedural Analysis

Definition (initial and final labels)

we define mappings init: Stmt $\rightarrow \mathbf{L a b}$ and final: Stmt $\rightarrow \mathcal{P}(\mathbf{L a b})$ as follows

$$
\begin{array}{rlrl}
\operatorname{init}\left([x:=a]^{\ell}\right) & =\ell & \text { final }\left([x:=a]^{\ell}\right) & =\{\ell\} \\
\operatorname{init}\left([\mathbf{s k i p}]^{\ell}\right) & =\ell & \text { final }\left([\text { skip }]^{\ell}\right) & =\{\ell\} \\
\operatorname{init}\left(S_{1} ; S_{2}\right) & =\operatorname{init}\left(S_{1}\right) & \text { final }\left(S_{1} ; S_{2}\right)=\text { final }\left(S_{2}\right) \\
\operatorname{init}\left(\text { if }[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right) & =\ell & \text { final }\left(\mathbf{i f}[b]^{\ell} \text { then } S_{1} \text { else } S_{2}\right)=\text { final }\left(S_{1}\right) \cup \text { final }\left(S_{2}\right) \\
\left.\operatorname{init}(\text { while })[b]^{\ell} \text { do } S\right) & =\ell & \text { final } \left.(\mathbf{w h i l e})[b]^{\ell} \text { do } S\right)=\{\ell\}
\end{array}
$$

Definition (blocks)

we define the mapping blocks: Stmt $\rightarrow \mathcal{P}$ (Blocks) as follows

$$
\begin{aligned}
\operatorname{blocks}\left([x:=a]^{\ell}\right) & =\left\{[x:=a]^{\ell}\right\} \\
\operatorname{blocks}\left([\mathbf{s k i p}]^{\ell}\right) & =\left\{[\mathbf{s k i p}]^{\ell}\right\} \\
\operatorname{blocks}\left(S_{1} ; S_{2}\right) & =\operatorname{blocks}\left(S_{1}\right) \cup \operatorname{blocks}\left(S_{2}\right)
\end{aligned}
$$

$\operatorname{blocks}\left(\right.$ if $[b]^{\ell}$ then S_{1} else $\left.S_{2}\right)=\left\{[b]^{\ell}\right\} \cup \operatorname{blocks}\left(S_{1}\right) \cup \operatorname{blocks}\left(S_{2}\right)$

$$
\left.\operatorname{blocks}(\text { while })[b]^{\ell} \text { do } S\right)=\left\{[b]^{\ell}\right\} \cup \operatorname{blocks}(S)
$$

and the set of labels in a program

$$
\operatorname{labels}(S)=\left\{\ell \mid[B]^{\ell} \in \operatorname{blocks}(S)\right\}
$$

Definition (flows and reverse flows)

we define the function flow: Stmt $\rightarrow \mathcal{P}(\mathbf{L a b} \times \mathbf{L a b})$ as follows

$$
\begin{aligned}
\text { flow }\left([x:=a]^{\ell}\right) & =\varnothing \\
\text { flow }\left([\text { skip }]^{\ell}\right) & =\varnothing \\
\text { flow }\left(S_{1} ; S_{2}\right) & =\operatorname{flow}\left(S_{1}\right) \cup \text { flow }\left(S_{2}\right) \cup\left\{\left(\ell, \operatorname{init}\left(S_{2}\right)\right) \mid \ell \in \operatorname{final}\left(S_{1}\right)\right\}
\end{aligned}
$$

flow $\left(\right.$ if $[b]^{\ell}$ then S_{1} else $\left.S_{2}\right)=$ flow $\left(S_{1}\right) \cup$ flow $\left(S_{2}\right) \cup\left\{\left(\ell\right.\right.$, init $\left.\left.\left(S_{1}\right)\right)\right\} \cup\left\{\left(\ell\right.\right.$, init $\left.\left.\left(S_{2}\right)\right)\right\}$ flow $($ while $)[b]^{\ell}$ do $\left.S\right)=$ flow $(S) \cup\{(\ell, \operatorname{init}(S))\} \cup\left\{\left(\ell^{\prime}, \ell\right) \mid \ell^{\prime} \in\right.$ final $\left.(S)\right\}$

Definition (flows and reverse flows)

we define the function flow: Stmt $\rightarrow \mathcal{P}(\mathbf{L a b} \times \mathbf{L a b})$ as follows

$$
\begin{aligned}
\text { flow }\left([x:=a]^{\ell}\right) & =\varnothing \\
\text { flow }\left([\text { skip }]^{\ell}\right) & =\varnothing \\
\text { flow }\left(S_{1} ; S_{2}\right) & =\operatorname{flow}\left(S_{1}\right) \cup \operatorname{flow}\left(S_{2}\right) \cup\left\{\left(\ell, \operatorname{init}\left(S_{2}\right)\right) \mid \ell \in \operatorname{final}\left(S_{1}\right)\right\}
\end{aligned}
$$

flow $\left(\right.$ if $[b]^{\ell}$ then S_{1} else $\left.S_{2}\right)=$ flow $\left(S_{1}\right) \cup$ flow $\left(S_{2}\right) \cup\left\{\left(\ell\right.\right.$, init $\left.\left.\left(S_{1}\right)\right)\right\} \cup\left\{\left(\ell\right.\right.$, init $\left.\left.\left(S_{2}\right)\right)\right\}$ flow $($ while $)[b]^{\ell}$ do $\left.S\right)=$ flow $(S) \cup\{(\ell, \operatorname{init}(S))\} \cup\left\{\left(\ell^{\prime}, \ell\right) \mid \ell^{\prime} \in\right.$ final $\left.(S)\right\}$

Example

$$
[z:=1]^{1} ; \text { while }[x>0]^{2} \text { do }\left([z:=z * y]^{3} ;[x:=x-1]^{4}\right)
$$

Definition (reverse flows)

we define the function flow ${ }^{\text {R }: ~ S t m t ~} \rightarrow \mathcal{P}(\mathbf{L a b} \times \mathbf{L a b})$ as follows

$$
\operatorname{flow}^{\mathrm{R}}(S)=\left\{\left(\ell, \ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}(S)\right\}
$$

Definition (reverse flows)

we define the function flow ${ }^{\text {R }: ~ S t m t ~} \rightarrow \mathcal{P}(\mathbf{L a b} \times \mathbf{L a b})$ as follows

$$
\operatorname{flow}^{\mathrm{R}}(S)=\left\{\left(\ell, \ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}(S)\right\}
$$

Convention

- we use S_{*} to represent the program of interest
- Lab ${ }_{*}$, Var $_{*}$, Blocks $_{*}$ refer to the (finite) labels, variables, blocks in the program of interest
- $\mathbf{A E x p}_{*}$ represents the non-trivial arithemetic subexpressions in S_{*}
- we also write $\operatorname{FV}(a)$ for the set of variables occuring in a

Available Expression Analysis

For each program point, which expression must have already been computed, and not later modified, on all paths to the program pont

Available Expression Analysis

For each program point, which expression must have already been computed, and not later modified, on all paths to the program pont

Example

$$
[x:=a+b]^{1} ;[y:=a * b]^{2} ; \text { while }[y>a+b]^{3} \text { do }\left([a:=a+1]^{4} ;[x:=a+b]^{5}\right)
$$

the expression $a+b$ is available every time the execution reaches label 3

Example (continued)

$$
\begin{aligned}
\operatorname{kill}_{\mathrm{AE}}\left([x:=a]^{\ell}\right) & =\left\{a^{\prime} \in \operatorname{AExp}_{*} \mid x \in \mathrm{FV}\left(a^{\prime}\right)\right\} \\
\operatorname{kill}_{\mathrm{AE}}\left([\mathbf{s k i p}]^{\ell}\right) & =\varnothing \\
\operatorname{kill}_{\mathrm{AE}}\left([b]^{\ell}\right) & =\varnothing \\
\operatorname{gen}_{\mathrm{AE}}\left([x:=a]^{\ell}\right) & =\left\{a^{\prime} \in \operatorname{AExp}(a) \mid x \notin \mathrm{FV}\left(a^{\prime}\right)\right\} \\
\operatorname{gen}_{\mathrm{AE}}\left([\mathbf{s k i p}]^{\ell}\right) & =\varnothing \\
\operatorname{gen}_{\mathrm{AE}}\left([b]^{\ell}\right) & =\mathbf{A E x p}(b) \\
\operatorname{AE}_{\text {entry }}(\ell) & = \begin{cases}\varnothing & \text { if } \ell=\operatorname{init}\left(S_{*}\right) \\
\bigcap\left\{\operatorname{AE}_{\text {exit }}\left(\ell^{\prime}\right) \mid\left(\ell^{\prime}, \ell\right) \in \operatorname{flow}\left(S_{*}\right)\right\} & \text { otherwise }\end{cases} \\
\operatorname{AE}_{\text {exit }}(\ell) & =\left(\operatorname{AE}_{\text {entry }}(\ell) \backslash \operatorname{kill}_{\mathrm{AE}}\left(B^{\ell}\right)\right) \cup \operatorname{gen}_{\mathrm{AE}}\left(B^{\ell}\right)
\end{aligned} \$
$$

