
Discrete Structures/Mathematics LVA 703070/703015
10th PS-Sheet for December 10th 2019 Department of Computer Science

Starred exercises are optional.

1. For the prime numbers p = 195931 and q = 2106945901 and e = 65537 do, using RSA as on
slide 10 of week 9, the following:

a) Compute an inverse d of e modulo n = (p− 1) · (q − 1).

b) Give the RSA-codes resulting from (publicly) encrypting the messages “cat” and “mouse”,
and check that (privately) decrypting their codes yields the original messages again.

Here strings of letters over the English alphabet are encoded as natural numbers by
viewing them as base-26 numbers (with a = 0 and z = 25) with a leading 1. For instance,
the string "abc" is viewed as the integer ((1 · 26 + 0) · 26 + 1) · 26 + 2 = 17604.

c) How long can messages we want to encrypt be (roughly), with this encryption scheme
(for these p, q)? What goes wrong for longer messages?

d∗) Replace encryption and decryption in the Haskell program with more efficient versions
based on the Chinese remainder theorem.

For all items, you may use/supplement the Haskell program on the flip side.

2. Let f(n) = n log n and g(n) = n2 + 2n + 1. Compute lim supn→∞
f(n)
g(n) and lim supn→∞

g(n)
f(n)

and use this to determine whether f ∈ O(g),Ω(g),Θ(g), o(g) and/or vice versa.
(f and g can e.g. be thought of as complexities of merge sort and bubble sort respectively.)

3. Suppose f, g ∈ O(h), for f, g, h functions from N to [0,∞). Determine for both of the following
functions whether or not it is in O(h). If so, prove it. If not, give a counterexample.

a) f + g, i.e. the function that maps n to f(n) + g(n);

b) f · g, i.e. the function that maps n to f(n) · g(n).

4∗) Give functions f and g such that neither f ∈ O(g) nor g ∈ O(f), and argue why this is the
case.

5∗) Alice and Bob, far removed from each other, want to construct a number they both know but
no one else knows, based on a prime number p and primitive root r of p already known to
them. A primitive root r of p is such that {r1 mod p, r2 mod p, . . . , rp−1 mod p} comprises the
numbers 1 to p− 1 (up to order). For instance, 3 is a primitive root of 7 since {3, 2, 6, 4, 5, 1}
comprises all numbers 1–6, but since {2, 4, 1, 2, 4, 1} does not, 2 is not a primitive root of 7.

They go about as follows:

a) Alice selects some number 0 < a < p and sends ra mod p to Bob;

b) Bob selects some number 0 < b < p and sends rb mod p to Alice;

Argue that the following are true for the number n = ra·b mod p:

• Both Alice and Bob can compute n easily;

• For people other than Alice and Bob it is hard to find the number n, even if they have
eavesdropped on the two messages sent between Alice and Bob.

1



expmod :: Integer -> Integer -> Integer -> Integer
expmod a n m = if n > 1 then (high * low) ‘mod‘ m else low where

high = ((expmod a (n ‘div‘ 2) m)^2) ‘mod‘ m
low = if (n ‘mod‘ 2) == 1 then a else 1

bezout :: Integer -> Integer -> (Integer,Integer,Integer)
bezout a b = if a > b then swap (bezout b a) else aux a b 1 0 0 1 where

swap (g,u,v) = (g,v,u)
aux a b ua va ub vb = if m == 0 then (a,ua,va) else aux m a um vm ua va where

dm = divMod b a
d = fst dm
m = snd dm
um = ub - ua*d
vm = vb - va*d

invmod :: Integer -> Integer -> Integer
invmod a n = let (g,u,_) = bezout a n in

if g == 1 then u ‘mod‘ n else error "no inverse"

primep = 195931
primeq = 2106945901
numbere = 65537
publickey :: (Integer,Integer)
publickey = (0,0) -- to be determined as on slide 10 week 9
privatekey :: Integer
privatekey = 0 -- to be determined as on slide 10 week 9

encode :: String -> Integer
encode = foldl (\y x -> 26 * y + toInteger (x - fromEnum ’a’)) 1 . map fromEnum

decode :: Integer -> String
decode x = if x<=1 then "" else let (d,m) = divMod x 26 in

decode d ++ [toEnum (fromEnum ’a’ + fromInteger m)]

encrypt :: String -> Integer
encrypt m = expmod (encode m) (fst publickey )(snd publickey)

decrypt :: Integer -> String
decrypt c = decode $ expmod c privatekey (snd publickey)

2


