Starred exercises are optional.

1. Give a closed-form expression for each of the following recurrences (11), (2), and (3), for $n>1$:

$$
\begin{align*}
& T_{1}(n)=3 \cdot T_{1}\left(\frac{n}{3}\right)+n^{2} \tag{1}\\
& T_{2}(n)=100 \cdot T_{2}\left(\frac{n}{4}\right)+5 \cdot n^{3} \tag{2}\\
& T_{3}(n)=T_{3}\left(\frac{n}{5}\right) \tag{3}
\end{align*}
$$

2. For the recurrence $T(n)=T(n-1)+2 \cdot n-1$ if $n>0$ and 0 otherwise, specifying some function $\mathbb{N} \rightarrow \mathbb{N}$ whose closed form is to be determined:

- substitute the equation a number of times in itself, describe the pattern you find, and determine the number of iterations k after which the base case is reached.
- compute the values of T on inputs $0, \ldots, 4$.
- based on the previous items, guess a closed-form solution, i.e. some function $f: \mathbb{N} \rightarrow \mathbb{N}$, for the recurrence and verify its correctness by substitution.

3. A famous algorithm for finding the median of a list is the so-called median-of-medians algorithm. Let the recurrence for its time-complexity be given by $T(n)=c \cdot n$ for $1 \leq n<21$, and otherwise by:

$$
T(n)=T\left(\left\lceil\frac{2}{10} \cdot n\right\rceil\right)+T\left(\left\lceil\frac{7}{10} \cdot n\right\rceil\right)+c \cdot n
$$

Argue why a closed-form for this recurrence cannot be found by the Master theorem. Then prove that in fact $\forall n>0, T(n) \leq 12 \cdot c \cdot n$, by well-founded induction on n ordered by $<$. Conclude that the median-of-medians algorithm is linear, i.e. in $\mathrm{O}(n)$.

4*) The Fibonacci numbers are specified by the recurrence on slide 8 of the lecture of week 11 . Verify that their closed-form definition, given later on the same slide, is a solution for the recurrence, by substitution. Is induction needed to prove this?
$5 *)$ Guess/find a closed-form for the function $\mathbb{N} \rightarrow \mathbb{N}$ specified by $T(n)=T(n-1)+3 \cdot n^{2}-3 \cdot n-1$ if $n>1$ and 0 otherwise, and verify the guess is correct by substitution. Hint: Guess it is a polynomial.

