Starred exercises are optional.

1. Consider the TM (in the format of http://morphett.info/turing/turing.html so e.g. without explicit left-end marker) with input alphabet $\{0,1\}$ and transition rules:
```
0 0 * r 0
01* r 1
0 _ * r halt-accept
10 * r 2
1 1 * r 0
1 _ * r halt-reject
2 0 * r 1
2 1 * r 2
2 _ * r halt-reject
```

Thinking of M as defining a property P of natural numbers, via their binary representations, M accepts 27 since it accepts its binary representation 11011, but rejects 14 as it rejects 1110 .

- What property P is defined by M ? That is, give a description (in natural language) of the language $L(M)$ accepted by M. To find it, run M on the successive inputs $0,1,10$, $11,100,101,110,111,1000$, and 1001 (corresponding to 1-9) and look for a pattern.
- Is M a total TM? Is the language $L(M)$ recursive? Is the property P semi-decidable?
- Construct a TM M^{\prime} from M such that $L\left(M^{\prime}\right)=\sim L(M)$, i.e. such that M^{\prime} accepts the complement of the language accepted by M.

2. Consider the TM K (for the format, see the previous exercise) having transition rules:
$00 * r 0$
$01 * * 0$
0 _ * l halt-accept
Describe the language $L=L(K) \subseteq\{0,1\}^{*}$ accepted by K, and show that the complement $\sim L=\{0,1\}^{*}-L$ of L is recursive by providing an appropriate TM (in the same format).
3. Suppose $L_{1}=L\left(M_{1}\right), L_{2}=L\left(M_{2}\right)$ for $\mathrm{TMs} M_{1}, M_{2}$ with input alphabet $\{0,1\}$. For each of the following 4 languages say whether it is recursively enumerable or not: 1) L_{1} as language over $\left.\left.\{0,1,2\}, 2) L_{1} \cup L_{2}, 3\right) L_{1} \cap L_{2}, 4\right) L_{1}-L_{2}$. For each item, in case your answer is affirmative indicate how an appropriate TM can be constructed, and in case it is negative explain why.

4* On slide 22 of lecture 12 it is checked that on inputs 10 and 001 the behaviour of the (hypothetical) TM $C D$ is as given by $c d$. Complete this check, for the other inputs as far as specified by the matrix on slide 20 .

- If we were to change the top-right t into r in (the picture of) $C D$ on slide 22 , would the proof still go through?
- Same question, but for changing the bottom-right \circlearrowright into r ?

5* Show that the membership problem MP is undecidable, by modifying the proof by diagonalisation in the slides of lecture 12 showing that the halting problem HP is undecidable.

