Starred exercises are optional.

1. For each of the following functions on bit-strings $\{0,1\}^{*}$ say whether it is computable or not. If so, give an appropriate TM (or explain how it could be constructed). If not, why not?

- the function f that returns 1 if for any prefix p of the input string x the number of 1 s in p is greater than or equal to the number of 0 s in p, and 0 otherwise. For example, $f(100111)=0$ since the prefix 100 has more 0s than 1s, but $f(110101100)=1$.
- the function g that returns a string of $1 \Omega^{11}$ of length $A(n, n)$, for A the Ackermann function.
- the function h that (ignoring its input) returns 1 if one-way functions exist, and returns 0 otherwise. (Whether one-way functions exist is an unsolved problem.)

2. Let $M_{2} P=\left\{M \# x \# y \mid x, y \in\{0,1\}^{*}\right.$ are both accepted by TM $\left.M\right\}$. Show:

- $M P \leq M_{2} P$
- $M_{2} P \leq M P$

3. - Verify in detail that reduction \leq is transitive as sketched on slide 18 of lecture 13.

- Let $L=\left\{x \in\{0,1\}^{*} \mid x\right.$ contains three consecutive 1s $\}$, e.g. $111 \in L$ and $0011101111 \in$ L but $11011 \notin L$. Give a DFA D (either as graph or by a transition table) with $L(D)=L$.

4* Show that the universal halting problem $U H P=\{M \mid M$ halts on all inputs $\}$, is not recursive, by giving an appropriate reduction.

5* Argue that the diagonal language $d=\left\{x \in\{0,1\}^{*} \mid M_{x}\right.$ accepts $\left.x\right\}$ is recursively enumerable, where M_{x} is the TM having code x. Are there any requirements on the function f mapping codes to Turing machines?

[^0]
[^0]: ${ }^{1}$ updated/corrected 20-01-2020. Before it read: a string $1 . .$.

