## universität innsbruck

LVA 703070/703015

This exam consists of three regular exercises (1-3) each worth 20 points. The time available is 1 hour and 45 minutes ( 105 minutes). The available points for each item are written in the margin. There are 60 points in total for the regular exercises. In addition, there are bonus exercises $(4 *, 5 *)$ each worth 15 points. You need at least 30 points to pass.

11 Let the weighted directed graph $G$ with set of vertices $V=\{v 1, v 2, v 3, v 4, v 5\}$ be:


Let $R$ be the relation on vertices of graph $G$.

2 (a) Compute $7^{100} \bmod 11$, and compute an inverse of 12 modulo 17 and verify that it indeed is inverse. Justify the steps taken to compute the results.
(b) Let $R$ be the relation on pairs of natural numbers defined by: $(n, m) R\left(n^{\prime}, m^{\prime}\right)$ if $n+m^{\prime}=n^{\prime}+m$. For instance, $(5,3) R(2,0)$ since $5+0=5=2+3$, but not
(a) Give the Hasse diagram of $R$ and show that $R$ is a strict order.
(b) Compute a shortest path from $v 5$ to $v 2$ in $G$ using an algorithm of your preference.
(c) Write a recursive specification for the function $f$ mapping a node $v$ in $G$ to the sum of the weights of all paths from $v$ to $v 2$. For instance, evaluating $f(v 1)$ should result in 14. Your specification should not use any concrete weights in $G$, but be stated in terms of the function $w$ assigning weights to edges. Using your recursive specification, stepwise evaluate $f(v 4)$. $(5,3) R(0,2)$ since $5+2=7 \neq 3=0+3$. Show that $R$ is an equivalence relation, and give 4 elements of the $R$-equivalence class $[(0,2)]$ of $(0,2)$.
(c) Suppose the complexity $T$ of some algorithm $A$, as a function of the size $n$ of its input, is an increasing function that satisfies $T(n)=4 \cdot T\left(\frac{n}{2}\right)+2 \cdot n^{2}$ if $n=2^{k}$ for some positive natural number $k$, and 2 if $n=1$. Determine a closed-form expression $e$ such that $T(n) \in \Theta(e)$, and explain what the latter notation means.
] (d) Show that the set $\{M \# x \mid$ TM $M$ loops on input $x\}$ is not recursive, where you may assume that (the code of) $M$ and $x$ are bit-strings.

3 Determine whether the following statements are true or false. Every correct answer is worth 2 points. For every wrong answer 1 point is subtracted, provided the total number of points is non-negative.

## statement

For every partial order $\leq$ on $A$, its complement $\sim(\leq)=(A \times A)-\leq$ is a partial order.
For every regular language $L$ over $\Sigma$, its complement $\sim L=\Sigma^{*}-L$ is regular.
For every recursively enumerable language $L$ over $\Sigma$, its complement $\sim L=\Sigma^{*}-L$ is recursively enumerable.

For every set $B$ and countable subset $A \subset B$, its complement $\sim A=B-A$ is countable.
The specification $f(x)=f(x) \cdot 2$ defines a function $f: \mathbb{N} \rightarrow \mathbb{N}$.
Let $\mathbb{N}_{2}=\mathbb{N}-\{0,1\}$. For every $n \in \mathbb{N}_{2}, n$ is prime iff $n$ is minimal w.r.t. divisibility in $\mathbb{N}_{2}$.
The function mapping $n$ to the pair $(n \bmod 10, n \bmod 7)$ is a bijection between $\{0, \ldots, 69\}$ and the set of pairs of natural numbers $\{(x, y) \mid 0 \leq x<10,0 \leq y<7\}$.

For all natural numbers $a, b$, if $\operatorname{gcd}(a, b)=1$, then $a^{1}, a^{2}, \ldots, a^{b}$ are all distinct modulo $b$.
If $f: A \rightarrow B, g: B \rightarrow C, h: C \rightarrow A$ are injective functions, then $A$ and $B$ are equinumerous.
For every DFA $A$ and each of its states $q$, there exist strings $x, y$ such that $\hat{\delta}(q, x)=\hat{\delta}(q, y)$ and $x \neq y$.

4* Let $\sqsubseteq$ be the lexicographic order on pairs of natural numbers, with $\sqsubset$ its strict part. For instance, $(3,5) \sqsubset(5,3) \sqsubset(5,5) \sqsubseteq(5,5)$. Let $R$ be the relation on pairs of natural numbers defined in Exercise 2(b).
(a) Show that $\sqsubseteq$ is a total relation on pairs of natural numbers.
(b) Show that each $R$-equivalence class has a unique $\sqsubseteq$-minimal element, give such $\sqsubseteq$ minimal elements for $[(3,5)]$, $[(5,3)]$, and $[(5,5)]$, and argue that taking $\sqsubseteq$-minimal
(c) Show that there is a bijection between the set of integers $\mathbb{Z}$ and the set of equivalence classes of $R$.

5* (a) Show that for any $n$, there is a dag having $n$ nodes and $\frac{n \cdot(n-1)}{2}$ edges. (Cf. the graph $G$ of Exercise 1, which has 5 nodes and $\frac{5 \cdot 4}{2}=10$ edges),
(b) Show that the number given in the previous item is maximal, i.e. show that there are no dags having $n$ nodes and more than $\frac{n \cdot(n-1)}{2}$ edges.
(c) Give a maximal spanning tree $T$ of the undirected graph $U$ corresponding to the directed graph $G$ of Exercise 1, i.e. a spanning tree having maximal weight among all spanning trees. Argue why your tree $T$ is indeed a maximal spanning tree.

