Starred exercises are optional.

- 1) Which of the following specifications defines f as a (total) function on the natural numbers? Explain why (not). In case it does, compute f(5) (you may use a program). Below, n and m range over the set of natural numbers (which includes 0):
 - a) for all n, f(n+1) = f(n) + 1;
 - b) f(0) = 17 and for all n, f(n+1) = f(n) + 1;
 - c) f(0) = 17 and for all n, f(n+1) + 1 = f(n);
 - d) f(0) = 1, f(1) = 1, and for all n, f(n+2) = f(n) + f(n+1);
 - e*) for all n, f(n) = g(n, n) where for all n and m, g(0, n) = n + 1, g(m + 1, 0) = g(m, 1),and g(m + 1, n + 1) = g(m, g(m + 1, n));
 - f) for all n, f(n) is the smallest number greater than all g(n), where g ranges over all defined functions in the other items of this exercise;
 - g) for all $n, f(n) = f(n)^2$.
- 2) Consider the relation R on $\{a, b, c, d\}$ whose graph is

Use Warshall's algorithm to compute the transitive closure R^+ of R. Read off from the resulting matrix whether $a R^+ c$ holds, $c R^+ a$ holds, and whether $d R^+ b$ holds. How does (the matrix of) R^+ relate to the distances computed in exercise 3) of the 1st Exercise sheet?

- 3) Let $T = \{n \mid 2 \leq n \leq 12\}$, the set of natural numbers between 2 and 12. Let $|_T$ be the *T*-divisibility relation on *T* defined by $x |_T y$ if for some $x' \in T$, $x \cdot x' = y$.
 - Draw the digraph G_T of $|_T$ and show that $|_T$ is irreflexive and transitive.
 - Repeat the following transformation on graphs, starting with G_T , until no transformation can be performed:
 - if there is an edge e from n to m, and also a path from n to m not containing e, then remove e from the graph.

Draw the final graph G'_T , and argue that the procedure terminates and the graph obtained does not depend on the order in which edges were chosen. How does G_T relate to G'_T ?

4*) Implement some function in two distinguishable ways. More precisely, choose a function $f : D \to C$ for some domain D and co-domain C, and implement f in two ways f_1 and f_2 in a programming language of your choice, such that f_1 and f_2 can be distinguished from each other by suitable experiments, i.e. by applying them to some elements c, c', \ldots of C and observing a difference between the runtime behaviour of $f_1(c), f_1(c'), \ldots$ and of $f_2(c), f_2(c'), \ldots$