
Discrete Structures/Mathematics LVA 703070/703015
2nd PS-Sheet for October 15th 2019 Department of Computer Science

Starred exercises are optional.

1) Which of the following specifications defines f as a (total) function on the natural numbers?
Explain why (not). In case it does, compute f(5) (you may use a program). Below, n and m
range over the set of natural numbers (which includes 0):
a) for all n, f(n+ 1) = f(n) + 1;
b) f(0) = 17 and for all n, f(n+ 1) = f(n) + 1;
c) f(0) = 17 and for all n, f(n+ 1) + 1 = f(n);
d) f(0) = 1, f(1) = 1, and for all n, f(n+ 2) = f(n) + f(n+ 1);
e∗) for all n, f(n) = g(n, n) where for all n and m, g(0, n) = n + 1, g(m + 1, 0) = g(m, 1),

and g(m+ 1, n+ 1) = g(m, g(m+ 1, n));
f) for all n, f(n) is the smallest number greater than all g(n), where g ranges over all defined

functions in the other items of this exercise;
g) for all n, f(n) = f(n)2.

2) Consider the relation R on {a, b, c, d} whose graph is
d a

bc

UseWarshall’s algorithm to compute the transitive closureR+ ofR. Read off from the resulting
matrix whether a R+ c holds, c R+ a holds, and whether d R+ b holds. How does (the matrix
of) R+ relate to the distances computed in exercise 3) of the 1st Exercise sheet?

3) Let T = {n | 2 ≤ n ≤ 12}, the set of natural numbers between 2 and 12. Let |T be the
T -divisibility relation on T defined by x |T y if for some x′ ∈ T , x · x′ = y.
• Draw the digraph GT of |T and show that |T is irreflexive and transitive.
• Repeat the following transformation on graphs, starting with GT , until no transformation

can be performed:
– if there is an edge e from n to m, and also a path from n to m not containing e, then

remove e from the graph.
Draw the final graphG′

T , and argue that the procedure terminates and the graph obtained
does not depend on the order in which edges were chosen. How does GT relate to G′

T ?

4∗) Implement some function in two distinguishable ways. More precisely, choose a function f :
D → C for some domain D and co-domain C, and implement f in two ways f1 and f2 in a
programming language of your choice, such that f1 and f2 can be distinguished from each other
by suitable experiments, i.e. by applying them to some elements c, c′, . . . of C and observing
a difference between the runtime behaviour of f1(c), f1(c′), . . . and of f2(c), f2(c′),

1

