Starred exercises are optional.

1) Which of the following specifications defines f as a (total) function on the natural numbers? Explain why (not). In case it does, compute $f(5)$ (you may use a program). Below, n and m range over the set of natural numbers (which includes 0):
a) for all $n, f(n+1)=f(n)+1$;
b) $f(0)=17$ and for all $n, f(n+1)=f(n)+1$;
c) $f(0)=17$ and for all $n, f(n+1)+1=f(n)$;
d) $f(0)=1, f(1)=1$, and for all $n, f(n+2)=f(n)+f(n+1)$;
e*) for all $n, f(n)=g(n, n)$ where for all n and $m, g(0, n)=n+1, g(m+1,0)=g(m, 1)$, and $g(m+1, n+1)=g(m, g(m+1, n))$;
f) for all $n, f(n)$ is the smallest number greater than all $g(n)$, where g ranges over all defined functions in the other items of this exercise;
g) for all $n, f(n)=f(n)^{2}$.
2) Consider the relation R on $\{a, b, c, d\}$ whose graph is

Use Warshall's algorithm to compute the transitive closure R^{+}of R. Read off from the resulting matrix whether $a R^{+} c$ holds, $c R^{+} a$ holds, and whether $d R^{+} b$ holds. How does (the matrix of) R^{+}relate to the distances computed in exercise 3) of the 1st Exercise sheet?
3) Let $T=\{n \mid 2 \leq n \leq 12\}$, the set of natural numbers between 2 and 12 . Let $\left.\right|_{T}$ be the T-divisibility relation on T defined by $\left.x\right|_{T} y$ if for some $x^{\prime} \in T, x \cdot x^{\prime}=y$.

- Draw the digraph G_{T} of $\left.\right|_{T}$ and show that $\left.\right|_{T}$ is irreflexive and transitive.
- Repeat the following transformation on graphs, starting with G_{T}, until no transformation can be performed:
- if there is an edge e from n to m, and also a path from n to m not containing e, then remove e from the graph.
Draw the final graph G_{T}^{\prime}, and argue that the procedure terminates and the graph obtained does not depend on the order in which edges were chosen. How does G_{T} relate to G_{T}^{\prime} ?

4*) Implement some function in two distinguishable ways. More precisely, choose a function f : $D \rightarrow C$ for some domain D and co-domain C, and implement f in two ways f_{1} and f_{2} in a programming language of your choice, such that f_{1} and f_{2} can be distinguished from each other by suitable experiments, i.e. by applying them to some elements c, c^{\prime}, \ldots of C and observing a difference between the runtime behaviour of $f_{1}(c), f_{1}\left(c^{\prime}\right), \ldots$ and of $f_{2}(c), f_{2}\left(c^{\prime}\right), \ldots$.

