
Discrete Structures/Mathematics LVA 703070/703015
3rd PS-Sheet for October 22th 2019 Department of Computer Science

Starred exercises are optional.

1) • Give the intermediate configurations showing that indeed

(s,`0010t∞, 0)
∗−→
M

(t,`0011t∞, 3)

as claimed on slide 11 of the lecture of week 3. How many steps were needed?
• Represent the TM on slide 9 of the lecture of week 3, as a TM in the sense of the

Turing machine simulator demonstrated in the lecture (http://morphett.info/turing/
turing.html). Using it, simulate the computation in the first item.

2) Represent the square function {(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), . . .} on natural numbers:
• either as a Turing Machine with as input alphabet Σ = {1}, that is, numbers are repre-

sented in unary, e.g. an input 9 is represented by putting 111111111 on the tape. Use the
Turing machine simulator to show that your TM is correct, in particular that on input
5, i.e. 11111, the TM halts with 25 on the tape, i.e. with the tape containing the left-end
marker followed by a string of 25 1s and then a blank.
• or as a functional program (either a Haskell program or a finite number of equations as

on slide 14 of the lecture of week 3) that instead of using some ‘built-in’ natural numbers,
uses a unary representation as ‘successors of zero’. That is, in Haskell, we could define:
data Nat = Zer | Suc Nat deriving Show

Functions can then be defined by distinguishing cases on whether the input is 0 (Zer) or
of shape 1 + n (Suc n). For instance, the doubling function may be defined by:
double Zer = Zer
double (Suc n) = Suc (Suc (double n))

Indeed double (Suc (Suc Zero)) yields Suc (Suc (Suc (Suc Zero))).
or (*) both.

3) Say a list l = [n1, . . . , nk] of natural numbers n1, . . . , nk ∈ N is locally ≤-sorted if ni ≤ ni+1,
and globally ≤-sorted if ni ≤ nj , for i, j ∈ {1, . . . , k} with i less than j (Updated 18-10-2019).
• Argue that local ≤-sortedness implies global ≤-sortedness;
• Give a counterexample showing that localR-sortedness need not imply globalR-sortedness

if we would replace the natural order ≤ in the above by an arbitrary relation R. (Give
both a suitable relation R and a list l that is locally R-sorted but not globally R-sorted.)

(∗) Argue (informally) that for insertion sort (see also this visualisation) to produce a locally
R-sorted list, it suffices that R is total in the sense that for all x, y, x R y or y R x (so
it is not necessary that R be a partial order; in particular R need not be transitive).

4∗) Write a total Turing Machine that accepts numbers written using quits (the digits until four:
0, 1, 2, 3; that is, these are base-4 numbers) that are divisible by 3, and rejects otherwise. For
instance, the number 322 corresponds to 3 ·42 +2 ·41 +2 ·40 = 58 which is not divisible by 3 so
should be rejected, but 222 is divisible by 3 as it corresponds to 2 ·42+2 ·41+2 ·40 = 42 = 14 ·3
so should be accepted. What is the complexity of your algorithm, expressed in the number n
of quits of the input?

1

http://cl-informatik.uibk.ac.at/teaching/ws19/ds/slides/3-beamer.pdf
http://cl-informatik.uibk.ac.at/teaching/ws19/ds/slides/3-beamer.pdf
http://morphett.info/turing/turing.html
http://morphett.info/turing/turing.html
http://cl-informatik.uibk.ac.at/teaching/ws19/ds/slides/3-beamer.pdf 
https://en.wikipedia.org/wiki/Insertion_sort
https://www.toptal.com/developers/sorting-algorithms
https://en.wikipedia.org/wiki/Quaternary_numeral_system

