Starred exercises are optional.

1) - Give the intermediate configurations showing that indeed

$$
\left(s, \vdash 0010 \sqcup^{\infty}, 0\right) \underset{M}{*}\left(t, \vdash 0011 \sqcup^{\infty}, 3\right)
$$

as claimed on slide 11 of the lecture of week 3. How many steps were needed?

- Represent the TM on slide 9 of the lecture of week 3, as a TM in the sense of the Turing machine simulator demonstrated in the lecture (http://morphett.info/turing/ turing.html). Using it, simulate the computation in the first item.

2) Represent the square function $\{(0,0),(1,1),(2,4),(3,9),(4,16), \ldots\}$ on natural numbers:

- either as a Turing Machine with as input alphabet $\Sigma=\{1\}$, that is, numbers are represented in unary, e.g. an input 9 is represented by putting 111111111 on the tape. Use the Turing machine simulator to show that your TM is correct, in particular that on input 5 , i.e. 11111 , the TM halts with 25 on the tape, i.e. with the tape containing the left-end marker followed by a string of 251 s and then a blank.
- or as a functional program (either a Haskell program or a finite number of equations as on slide 14 of the lecture of week 3) that instead of using some 'built-in' natural numbers, uses a unary representation as 'successors of zero'. That is, in Haskell, we could define:

```
data Nat = Zer | Suc Nat deriving Show
```

Functions can then be defined by distinguishing cases on whether the input is 0 (Zer) or of shape $1+n$ (Suc n). For instance, the doubling function may be defined by:
double Zer = Zer
double (Suc n) $=$ Suc (Suc (double n))
Indeed double (Suc (Suc Zero)) yields Suc (Suc (Suc (Suc Zero))).
or $(*)$ both.
3) Say a list $l=\left[n_{1}, \ldots, n_{k}\right]$ of natural numbers $n_{1}, \ldots, n_{k} \in \mathbb{N}$ is locally \leq-sorted if $n_{i} \leq n_{i+1}$, and globally \leq-sorted if $n_{i} \leq n_{j}$, for $i, j \in\{1, \ldots, k\}$ with i less than j (Updated 18-10-2019).

- Argue that local \leq-sortedness implies global \leq-sortedness;
- Give a counterexample showing that local R-sortedness need not imply global R-sortedness if we would replace the natural order \leq in the above by an arbitrary relation R. (Give both a suitable relation R and a list l that is locally R-sorted but not globally R-sorted.)
$(*)$ Argue (informally) that for insertion sort (see also this visualisation) to produce a locally R-sorted list, it suffices that R is total in the sense that for all $x, y, x R y$ or $y R x$ (so it is not necessary that R be a partial order; in particular R need not be transitive).
$4 *)$ Write a total Turing Machine that accepts numbers written using quits (the digits until four: $0,1,2,3$; that is, these are base-4 numbers) that are divisible by 3, and rejects otherwise. For instance, the number 322 corresponds to $3 \cdot 4^{2}+2 \cdot 4^{1}+2 \cdot 4^{0}=58$ which is not divisible by 3 so should be rejected, but 222 is divisible by 3 as it corresponds to $2 \cdot 4^{2}+2 \cdot 4^{1}+2 \cdot 4^{0}=42=14 \cdot 3$ so should be accepted. What is the complexity of your algorithm, expressed in the number n of quits of the input?

