Starred exercises are optional.

1) For the partial orders corresponding to the following strict orders R draw (an illustrative part of) its Hasse diagram, i.e. the smallest subrelation S (if it exists) with it as reflexive-transitive closure, and argue whether or not R is well-founded. Argue why there is (no) infinite descending chain. If there is, draw it. Otherwise, describe the minimal elements. (Updated 24-10)
a) less-than $<$ on the natural numbers;
b) greater-than $>$ on the natural numbers;
c) the lexicographic order $<_{\text {lex }}$ on $\{a\}$;
d) the lexicographic order $<_{\text {lex }}$ on $\{a, b\}$ with $a<b$;
e) divisibility $\left\{(x, z) \mid x, z \in \mathbb{R}^{\prime} \wedge \exists y \in \mathbb{R}^{\prime}, x \cdot y=z\right\}$ on the real numbers greater than 1 , where $\mathbb{R}^{\prime}=\{x \in \mathbb{R} \mid x>1\}$;
f) divisibility $\left\{(n, k) \mid n, k \in \mathbb{N}^{\prime} \wedge \exists m \in \mathbb{N}^{\prime}, n \cdot m=k\right\}$ on the natural numbers greater than 1 , where $\mathbb{N}^{\prime}=\left\{n \in \mathbb{N}^{\prime} \mid n>1\right\}$.
2) For each of the following well-founded relations R_{i} on the set Σ^{*} of words over $\Sigma=\{0,1\}$,

- draw the graph of R_{i} for words up to (and including) length 3;
- state the well-founded induction principle for R_{i}, considering base cases separately; and
- describe the transitive closure R_{i}^{+}in your own words.
a) $R_{1}=\left\{(w, a w) \mid a \in \Sigma, w \in \Sigma^{*}\right\}$;
b) $R_{2}=\left\{\left(w_{1} w_{2}, w_{1} a w_{2}\right) \mid a \in \Sigma, w_{1}, w_{2} \in \Sigma^{*}\right\}$.
c) $R_{3}=\left\{(w, w a) \mid a \in \Sigma, w \in \Sigma^{*}\right\}$;

3) Prove one of the following (a (*) for every extra one) by well-founded induction. Clearly state the well-founded relation R you use in your well-founded induction, and what are the induction hypotheses you use (for the cases considered).
a) Prove that for all natural numbers $n, \sum_{i=1}^{n} 2^{i}=2^{n+1}-1$.
b) Prove that every finite set A, has exactly $2^{|A|}$ subsets, where $|A|$ denotes the size of A, i.e. its number of elements (Updated 24-10).
c) Prove that for all natural numbers n, k with $k \leq n,\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$ if $0<k<n$ and 1 otherwise, where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$, the binomial coeffient.
d) Prove that for all natural numbers x and \leq-sorted lists l of natural numbers, bs $\mathrm{x} l$ is True if x occurs in l, and False otherwise. (Look up !!, take, drop in a Haskell manual.)
bs x[]$=$ False
bs $\mathrm{x}[\mathrm{y}]=\mathrm{x}=\mathrm{y}$
bs x l = if $\mathrm{x}<(\mathrm{l}!!\mathrm{h})$ then bs x (take h l) else bs x (drop h l) where h = length 1 'div' 2
$4 *$) Show that taking the predecessor of the componentwise extension of a partial order is different from taking the componentwise extension of its predecessor.
