Starred exercises are optional.
-) Exercise 3 of the previous sheet. (The crosses you already put, you keep; but everyone now has an opportunity to add to what he/she already had.)

1) Let the set W of words over $\Sigma=\{0,1\}$ be inductively defined by the following four clauses:

- $0110 \in W$;
- $\epsilon \in W$;
- if $w \in W$, then $0 w 1 \in W$;
- if $w \in W$ then $1 w w 0 \in W$.

That is, W is the least set satisfying these four clauses.

- For the well-founded sub-word relation R_{W} on words in W induced by the clauses of this inductive definition (see slide 10 of week 5), draw the graph of R_{W} for words in W up to (and including) length 6;
- Give the well-founded induction principle for words in W, corresponding to R_{W};
- Show, using that principle, that for all $w \in W, w$ has the same number of 0 s and 1 s .

2) For 5 cases (your choice) in which the operations on relations (slide 17 of week 5 of the slides of the lecture) fail to preserve being a function (slide 18), a partial order (slide 19), or a wellfounded relation (slide 20), as indicated by a cross behind them, give an example illustrating how preservation fails.
3) Show that the sets of integers \mathbb{Z} and of natural numbers \mathbb{N} are equinumerous by giving an appropriate bijection. The less-than-or-equal relation \leq is not a well-order on \mathbb{Z}, but can you think of a well-order \sqsubseteq on \mathbb{Z} that is isomorphic to the less-than-or-equal well-order \leq on \mathbb{N} ? If so, give both the bijection and \sqsubseteq. Otherwise, explain why not.
