Starred exercises are optional.

1. Let $A=\{a, b, c, d\}, B=\{\alpha, \beta\}, C=\{\alpha, \beta, c\}$ be sets. Let A and B be enumerated by respectively $e:\{0,1,2,3\} \rightarrow A$ defined by $0 \mapsto c, 1 \mapsto a, 2 \mapsto b, 3 \mapsto d$, and $f:\{0,1\} \rightarrow B$ defined by $0 \mapsto \beta, 1 \mapsto \alpha$. For the constructions on slides 6 and 7 of lecture 7 :
a) Give the resulting numberings of A and $A \times B$, and their cardinalities.
b) Give the resulting enumerations of $A \cup B$ and A^{B}, and their cardinalities.
c) Compute $\#(A \cup B \cup C)$ using the inclusion/exclusion principle.
2. a) Suppose to have 17 pigeons and 5 pigeon holes. Prove that, if each pigeon goes into one of the pigeon holes, there must be a pigeon hole containing at least 4 pigeons.
b) Consider the (single-elimination) knock-out tournament (e.g. like in tennis) having 16 players, whose bracket is given on https://en.wikipedia.org/wiki/Bracket_(tournament).

- Represent and draw the bracket as a tree (in the formal sense; completing outcomes of the final games as you wish), with players as leaves and games as non-leaf-nodes.
- Give a natural bijection between the nodes of the players that did not win the tournament and the game nodes, and then use double-counting to conclude (without counting!) that the tournament must have 15 games.

Generalise to conclude that in such tournaments for $n+1$ players, n games are played.
3. Let A have 6 elements and B have 10 elements.
a) How many functions $f: A \rightarrow B$ are there?
b) How many injective functions $f: A \rightarrow B$?
c) How many bijective functions $f: A \rightarrow B$?
d) How many subsets does A have?
e) How many subsets of size 7 does A have?

If we would swap A and B, would any answer remain the same?
$4 *$ - Show $\max (n, m)=(n+m)-\min (n, m)$ for all natural numbers n, m. For instance, $\max (2,7)=(2+7)-\min (2,7)=9-2=7$.

- Prove that for a collection $N=\left(n_{i}\right)_{1 \leq i \leq k}$ of k natural numbers n_{i}, and letting I range over subsets of $\{1, \ldots, k\}$:

$$
\max N=\left(\sum_{\#(I) \text { odd }} \min _{i \in I} n_{i}\right)-\left(\sum_{\#(I) \text { even, } I \text { non-empty }} \min _{i \in I} n_{i}\right)
$$

For instance, $\max (4,2,7)=(\min (4,2,7)+\min (4)+\min (2)+\min (7))-(\min (4,2)+$ $\min (2,7)+\min (7,4))=(2+4+2+7)-(2+2+4)=15-8=7$.
Hint: Cf. the inclusion/exclusion principle.
$5 *)$ (Added 15-11-2019) Let D be a domain having n elements.

- How many binary relations on D are there? How many nullary, unary, ternary?
- How many unary predicates (functions from D to booleans)? nullary, binary, ternary?

