Starred exercises are optional.

- 1. Let $A = \{a, b, c, d\}$, $B = \{\alpha, \beta\}$, $C = \{\alpha, \beta, c\}$ be sets. Let A and B be enumerated by respectively $e : \{0, 1, 2, 3\} \rightarrow A$ defined by $0 \mapsto c$, $1 \mapsto a$, $2 \mapsto b$, $3 \mapsto d$, and $f : \{0, 1\} \rightarrow B$ defined by $0 \mapsto \beta$, $1 \mapsto \alpha$. For the constructions on slides 6 and 7 of lecture 7:
 - a) Give the resulting numberings of A and $A \times B$, and their cardinalities.
 - b) Give the resulting enumerations of $A \cup B$ and A^B , and their cardinalities.
 - c) Compute $\#(A \cup B \cup C)$ using the inclusion/exclusion principle.
- 2. a) Suppose to have 17 pigeons and 5 pigeon holes. Prove that, if each pigeon goes into one of the pigeon holes, there must be a pigeon hole containing at least 4 pigeons.
 - b) Consider the (single-elimination) knock-out tournament (e.g. like in tennis) having 16 players, whose bracket is given on https://en.wikipedia.org/wiki/Bracket_(tournament).
 - Represent and draw the bracket as a tree (in the formal sense; completing outcomes of the final games as you wish), with players as leaves and games as non-leaf-nodes.
 - Give a natural bijection between the nodes of the players that did not win the tournament and the game nodes, and then use double-counting to conclude (*without* counting!) that the tournament must have 15 games.

Generalise to conclude that in such tournaments for n + 1 players, n games are played.

- 3. Let A have 6 elements and B have 10 elements.
 - a) How many functions $f: A \to B$ are there?
 - b) How many *injective* functions $f : A \to B$?
 - c) How many *bijective* functions $f : A \to B$?
 - d) How many subsets does A have?
 - e) How many subsets of size 7 does A have?

If we would swap A and B, would any answer remain the same?

- Show $\max(n,m) = (n+m) \min(n,m)$ for all natural numbers n, m. For instance, $\max(2,7) = (2+7) \min(2,7) = 9 2 = 7$.
 - Prove that for a collection $N = (n_i)_{1 \le i \le k}$ of k natural numbers n_i , and letting I range over subsets of $\{1, \ldots, k\}$:

$$\max N = \left(\sum_{\#(I) \text{ odd}} \min_{i \in I} n_i\right) - \left(\sum_{\#(I) \text{ even, } I \text{ non-empty}} \min_{i \in I} n_i\right)$$

For instance, $\max(4, 2, 7) = (\min(4, 2, 7) + \min(4) + \min(2) + \min(7)) - (\min(4, 2) + \min(2, 7) + \min(7, 4)) = (2 + 4 + 2 + 7) - (2 + 2 + 4) = 15 - 8 = 7.$ *Hint*: Cf. the inclusion/exclusion principle.

- 5*) (Added 15-11-2019) Let D be a domain having n elements.
 - How many binary relations on D are there? How many nullary, unary, ternary?
 - How many unary predicates (functions from D to booleans)? nullary, binary, ternary?