Starred exercises are optional.

1. - Show that there is a bijection between $\mathbb{R}_{\geq 0}$ and $\mathbb{R}_{>0}$, i.e. between the sets of nonnegative, resp. positive real numbers.

- Show that there is a bijection between $(0,1) \subseteq \mathbb{R}$ and $\mathbb{R}_{>0}$, i.e. between the set of real numbers (strictly) between 0 and 1 , and the positive real numbers.
- Show that $|\mathbb{N}|<|\mathbb{R} \times \mathbb{R}|$.

2. - Show that, for $n \geq 0$, the sets $B_{n}=\left\{w \mid w \in \Sigma^{*}, \ell(w)=n\right\}$ comprising strings of length n, partition the set of strings over $\Sigma=\{0,1\}$, and give the corresponding equivalence relation on those strings. What is the cardinality of B_{n} ?

- Check that the relation on positive fractions defined by $\frac{n}{m}=\frac{n^{\prime}}{m^{\prime}}$ if $n \cdot m^{\prime}=m \cdot n^{\prime}$, is an equivalence relation, and give a system of representatives.

3. - Compute the gcd of 42 and 63 both using the subtraction-based version and the divisionbased version of Euclid's algorithm.

- Using the extended Euclid's algorithm (Bézout's lemma), compute u, v such that $u \cdot 77+$ $v \cdot 30=1$.

4*) Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be defined by $f(n)=n$, and $g: \mathbb{Z} \rightarrow \mathbb{N}$ be defined by $g(0)=0, g(x)=2^{x}$ if $x>0$, and 3^{-x} otherwise. Both f and g are injections but not bijections. However, by the (proof of the) theorem of Schröder-Bernstein (slides 11-12 of week 8) a bijection $f^{\prime}: \mathbb{N} \rightarrow \mathbb{Z}$ with inverse $g^{\prime}: \mathbb{Z} \rightarrow \mathbb{N}$ can be constructed from f and g. Describe (in words, by formulas, by drawing, or by other means), the functions f^{\prime} and g^{\prime} as constructed in that proof.
$5 *)$ From slide 28 of lecture 8 we know that $\operatorname{lcm}(n, m)=\frac{(n \cdot m)}{\operatorname{gcd}(m, n)}$ for all positive natural number n, m. For instance $\operatorname{lcm}(15,24)=\frac{15 \cdot 24}{\operatorname{gcd}(15,24)}=\frac{360}{3}=120$.
Argue that for a collection $N=\left(n_{i}\right)_{1 \leq i \leq k}$ of k positive natural numbers n_{i}, and letting I range over subsets of $\{1, \ldots, k\}$:

$$
\operatorname{lcm} N=\frac{\left(\prod_{\#(I) \text { odd }} \operatorname{gcd}_{i \in I} n_{i}\right)}{\left(\prod_{\#(I) \text { even, } \neq 0} \operatorname{gcd}_{i \in I} n_{i}\right)}
$$

$$
\text { e.g. } \operatorname{lcm}(15,24,2)=\frac{\operatorname{gcd}(15,24,2) \cdot \operatorname{gcd}(15) \cdot \operatorname{gcd}(24) \cdot \operatorname{gcd}(2)}{\operatorname{gcd}(15,24) \cdot \operatorname{gcd}(24,2) \cdot \operatorname{gcd}(2,15)}=\frac{1 \cdot 15 \cdot 24 \cdot 2}{3 \cdot 2 \cdot 1}=\frac{720}{6}=120
$$

Hint: Cf. inclusion/exclusion

