Starred exercises are optional.

1. Read the description of public key cryptography and Sections 1-3.5, 4.1, 5.1, and 5.2 of RSA, on wikipedia. Describe the role of 3 of the following algorithms/results from elementary number theory, in RSA:
a) Euclid's gcd algorithm;
b) Bézout's lemma;
c) Fast exponentiation;
d) Chinese remainder theorem; and
e) Fermat's little theorem.
(*) if you describe all 5 of them.
2. Compute the following:

- the gcd of $\frac{2^{3} \cdot 3^{1} \cdot 2^{5} \cdot 5^{4}}{5^{3}}$ and $2 \cdot 3^{7} \cdot 5^{2}$;
- integers u and v such that $2=u \cdot 60+v \cdot 14$;
- the inverse of 9 modulo 11 ; and
- a natural number $0 \leq x<9 \cdot 11$ such that $x \equiv 4(\bmod 9)$ and $x \equiv 5(\bmod 11)$.

3. For each of the following, describe how to compute it efficiently, and compute it.

- the inverse of 2016 modulo 2017;
- 2015^{2016};
- $2015^{2016} \bmod 2017$; and
- $2014^{\left(2015^{2016}\right)} \bmod 2017$.

You may use that 2017 is a prime number, and you may make use of the following Haskell implementation fe of fast exponentiation:

```
fe :: Integer -> Integer -> Integer
fe a n = if n > 1 then high * low else low where
    high = (fe a (n 'div' 2))^2
    low = if (n 'mod' 2) == 1 then a else 1
```

Hint: Think for each 'modulo'-item whether/how FLT can be used.
$4 *$) Let \sim_{1} and \sim_{2} be equivalence relations on a set A. Is $\left(\sim_{1}\right)^{-1}$ an equivalence relation? If so, show this. If not, give a counterexample. Same question for $\sim_{1} \cup \sim_{2}$, for $\sim_{1} \cap \sim_{2}$, and for \sim_{1}^{*}.

