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Starred exercises are optional.

1. Read the description of public key cryptography and Sections 1–3.5, 4.1, 5.1, and 5.2 of RSA,
on wikipedia. Describe the role of 3 of the following algorithms/results from elementary number
theory, in RSA:

a) Euclid’s gcd algorithm;

b) Bézout’s lemma;

c) Fast exponentiation;

d) Chinese remainder theorem; and

e) Fermat’s little theorem.

(∗) if you describe all 5 of them.

2. Compute the following:

• the gcd of 23·31·25·54
53

and 2 · 37 · 52;
• integers u and v such that 2 = u · 60 + v · 14;
• the inverse of 9 modulo 11; and

• a natural number 0 ≤ x < 9 · 11 such that x ≡ 4 (mod 9) and x ≡ 5 (mod 11).

3. For each of the following, describe how to compute it efficiently, and compute it.

• the inverse of 2016 modulo 2017;

• 20152016;

• 20152016 mod 2017; and

• 2014(2015
2016) mod 2017.

You may use that 2017 is a prime number, and you may make use of the following Haskell
implementation fe of fast exponentiation:

fe :: Integer -> Integer -> Integer
fe a n = if n > 1 then high * low else low where

high = (fe a (n ‘div‘ 2))^2
low = if (n ‘mod‘ 2) == 1 then a else 1

Hint : Think for each ‘modulo’-item whether/how FLT can be used.

4∗) Let ∼1 and ∼2 be equivalence relations on a set A. Is (∼1)
−1 an equivalence relation? If so,

show this. If not, give a counterexample. Same question for ∼1 ∪∼2, for ∼1 ∩∼2, and for ∼∗
1.
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https://en.wikipedia.org/wiki/Public-key_cryptography
https://en.wikipedia.org/wiki/RSA_(cryptosystem)

