Starred exercises are optional.

- 1. Read the description of public key cryptography and Sections 1–3.5, 4.1, 5.1, and 5.2 of RSA, on wikipedia. Describe the role of 3 of the following algorithms/results from elementary number theory, in RSA:
 - a) Euclid's gcd algorithm;
 - b) Bézout's lemma;
 - c) Fast exponentiation;
 - d) Chinese remainder theorem; and
 - e) Fermat's little theorem.
 - (*) if you describe all 5 of them.

2. Compute the following:

- the gcd of $\frac{2^3 \cdot 3^1 \cdot 2^5 \cdot 5^4}{5^3}$ and $2 \cdot 3^7 \cdot 5^2$;
- integers u and v such that $2 = u \cdot 60 + v \cdot 14$;
- the inverse of 9 modulo 11; and
- a natural number $0 \le x < 9 \cdot 11$ such that $x \equiv 4 \pmod{9}$ and $x \equiv 5 \pmod{11}$.
- 3. For each of the following, describe how to compute it efficiently, and compute it.
 - the inverse of 2016 modulo 2017;
 - 2015^{2016} ;
 - $2015^{2016} \mod 2017$; and
 - $2014^{(2015^{2016})} \mod 2017.$

You may use that 2017 is a prime number, and you may make use of the following Haskell implementation **fe** of fast exponentiation:

fe :: Integer -> Integer -> Integer
fe a n = if n > 1 then high * low else low where
high = (fe a (n 'div' 2))^2
low = if (n 'mod' 2) == 1 then a else 1

Hint: Think for each 'modulo'-item whether/how FLT can be used.

4*) Let \sim_1 and \sim_2 be equivalence relations on a set A. Is $(\sim_1)^{-1}$ an equivalence relation? If so, show this. If not, give a counterexample. Same question for $\sim_1 \cup \sim_2$, for $\sim_1 \cap \sim_2$, and for \sim_1^* .