
Discrete Structures LVA 703070
Selected solutions 1st PS Sheet Institut für Informatik

1) • We may draw G as

Enumerating vertices and edges clockwise, starting from the top–right vertex, as vi re-
spectively ei, the graph may be represented as ({vi | 0 ≤ i < 4}, {(vi, vi+1 (mod 4)) | 0 ≤
i < 4}) with src((v, v′)) = v and tgt((v, v′)) = v′.

• B =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 or in a drawing . There is an edge in the graph

represented by the adjacency matrix B if and only if there is a path of length 2 in
the graph represented by A; this is because AikAkj = 1 iff there is a path of shape
((vi, vk), (vk, vj)), so that max4k=1AikAkj = 1 iff there is such a path for some k.

Generalising this to arbitrary n, we see that there is an edge (v, w) in the n-fold ‘matrix
product’ iff there is a path from v to w of length n in A. To make this hold also in case

n = 0, we define the 0-fold ‘matrix product’ to be the identity matrix


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.

2) • Let p be the shortest path from a to c taken. That the path goes via b means p is the
composition of paths q from a to b and r from b to c. By definition of weight/length,
then w(p) = w(q) + w(r).

For a proof by contradiction, suppose there were a shorter path from a to b, say path
q′ with weight w(q′) < w(q). Then the composition p′ of q′ and r would be a path from
a to c having weight w(p′) = w(q′) + w(r) < w(q) + w(r) = w(p), contradicting our
assumption that p is the shortest path from a to c.

• For a proof by contradiction, suppose G has n nodes and that p = (e0, . . . , e`−1) of length
` ≥ n is a shortest path from a to b in G. By definition of path there are nodes v0, . . . , v`
such that v0 = a, v` = b, and for all 0 ≤ i < `, vi = src(ei) and tgt(ei) = vi+1. Because
the sequence v0, . . . , v` of nodes has length `+ 1 > ` ≥ n and there are only n nodes, at
least one node must occur more than once in it, i.e. vi = vj for some 0 ≤ i < j ≤ `. But
then the path p′ = (e0, . . . , ei−1, ej , . . . , e`−1) is also a path from a to b (note that indeed
tgt(ei−1) = vi = vj = src(ej)), and shorter than p since w(p′) = i+(`− j) = `− (j− i) <
` = w(p), contradicting our supposition that p is the shortest such.

1



3) We compute for B:

0 1 3 ∞
∞ 0 1 ∞
∞ ∞ 0 ∞
1 ∞ 5 0



⇒
0 1 3 ∞
∞ 0 1 ∞
∞ ∞ 0 ∞
1 2 4 0



⇒
0 1 2 ∞
∞ 0 1 ∞
∞ ∞ 0 ∞
1 2 3 0



⇒
0 1 2 ∞
∞ 0 1 ∞
∞ ∞ 0 ∞
1 2 3 0



⇒
0 1 2 ∞
∞ 0 1 ∞
∞ ∞ 0 ∞
1 2 3 0




and for B′:

0 1 ∞ ∞
∞ 0 ∞ ∞
∞ 5 0 1

1 3 ∞ 0



⇒
0 1 ∞ ∞
∞ 0 ∞ ∞
∞ 5 0 1

1 2 ∞ 0



⇒
0 1 ∞ ∞
∞ 0 ∞ ∞
∞ 5 0 1

1 2 ∞ 0



⇒
0 1 ∞ ∞
∞ 0 ∞ ∞
∞ 5 0 1

1 2 ∞ 0



⇒
0 1 ∞ ∞
∞ 0 ∞ ∞
2 3 0 1

1 2 ∞ 0




We obtain the same distances. More precisely, just like B is obtained by ‘rotating’ the columns
of B left and the rows up, the same holds for their distance matrices resulting from Floyd.
(But note that this, in general, does not hold at the various intermediate stages!) This holds
by correctness of Floyd’s algorithm, since distances are unique, for any pair of nodes.

4∗) • Since an n by n matrix over {0, 1} has n2 entries and each entry may take 2 values, the
number of such matrices is 2n2 . Fixing the natural order on the nodes {1, . . . , n}, every
digraph on these nodes can be made to correspond to an adjacency matrix, unique for
the given order, and vice versa. Hence there are 2n

2 such digraphs.

• Consider the Haskell program:

digraphs :: Int -> Int
digraphs n = 2 ^ n ^ 2
subsets :: Int -> [[Int]]
subsets 0 = [[]]
subsets n = s ++ map ([n]++) s

where s = subsets (n-1)
digraphslist :: Int -> [[(Int,Int)]]
digraphslist 0 = [[]]
digraphslist n = [ (map (\z->(n,z)) xl)++(map (\z->(z,n)) xr)++y |

xl <- subsets n, xr <- subsets (n-1), y <- digraphslist (n-1) ]

Although the function digraphs produces all the graphs for a given number of nodes
implicitly, by returning the number of such, digraphslist produces them explicitly as
lists of edges (still leaving the set of vertices implicit). Testing it in ghci yields:

*Main> digraphs 2
16
*Main> digraphslist 2
[[],[(1,1)],[(1,2)],[(1,2),(1,1)],[(2,1)],[(2,1),(1,1)],[(2,1),(1,2)],[(2,1),
(1,2),(1,1)],[(2,2)],[(2,2),(1,1)],[(2,2),(1,2)],[(2,2),(1,2),(1,1)],[(2,2),(
2,1)],[(2,2),(2,1),(1,1)],[(2,2),(2,1),(1,2)],[(2,2),(2,1),(1,2),(1,1)]]
*Main> length it
16

For 3 nodes there are already 512 graphs and for 4 we have 65536 of them.

2


