
Discrete Structures/Mathematics LVA 703070/703015
Selected solutions 10th PS Sheet Department of Computer Science

1) a) Calling invmod numbere ((primep-1)*(primeq-1)) in ghci after loading the supplied
program yields 391800632124473. To verify it is correct, one may then proceed with
computing it * numbere ‘mod‘ ((primep-1)*(primeq-1)) which indeed yields 1.

b) We first supplement the Haskell program with the two lines corresponding to the slides:

publickey = (numbere,primep*primeq)
privatekey = invmod numbere ((primep-1)*(primeq-1))

Calling encrypt "cat" then yields 189056892230455, upon which decrypt it yields
"cat" again, as desired. This makes use of that encode "cat" yields 18947, which is
verified to be correct by computing decode it, which yields "cat" again.

Calling encrypt "mouse" yields 3899450432642, upon which decrypt it yields "mouse"
as desired. This makes uses of that encode "mouse" yields 17625144, which is verified
to be correct by computing decode it, yielding "mouse" again.

Note that since the word "mouse" is longer than the word "cat", the code of the former
is longer than the code of the latter, but the same does not hold for their encryptions,
due to the modular arithmetic.

c) Encryption gives unique numbers modulo p · q. Since the latter is a 15-digit number here,
codes should be no longer than 15 digits, corresponding roughly to 10 letters (≈ 15

log10 26
).1

For longer codes, i.e. on a larger domain, encrypting is not injective so different strings
may be encrypted as the same number and are (incorrectly) decrypted as the same string.

d∗) The idea of using the Chinese remainder theorem is to replace computations modulo
(the larger number) p · q by computations modulo (the much smaller) p and q separately.
We implement this in its basic form, as explained on wikipedia (accessed 9–12–2019). In
particular, we supplement the Haskell program with:

numberdp = invmod numbere (primep-1)
numberdq = invmod numbere (primeq-1)
invqp = invmod primeq primep
decryptcrt :: Integer -> String
decryptcrt c = decode (mq + h * primeq) where

mp = expmod c numberdp primep
mq = expmod c numberdq primeq
h = invqp * (mp - mq) ‘mod‘ primep

This results in the same decryptions as in the second item.

2) By definition lim supn→∞
f(n)
g(n) = limn→∞(sup{f(n)g(n) | m ≥ n}). We first show that if n tends

to ∞, the latter suprema tend to 0. By high school math, we have f(n)
g(n) ≤

logn
n ≤

√
n
n = 1√

n
.

Using this and that for any ε > 0 there is an n such that 1
n < ε, we have for all m ≥ n2 that

1Because we switch from a base-10 (the digits) to a base-26 (the alphabet) representation. This analogous to
asking how many bits one needs to store arbitrary numbers < 10100, where the answer is 100 · (log2 10) with
the factor log2 10 ≈ 3.322 reflecting the increase in length incurred by switching from base-10 to base-2.

1

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Using_the_Chinese_remainder_algorithm


f(m)
g(m) ≤

1√
m
≤ 1√

n2
= 1

n < ε, from which we conclude. From this we see f ∈ o(g) and, using
the theorem on slide 10 of week 10, also f ∈ O(g) and therefore g ∈ Ω(f). Note that for any
f , g it holds f ∈ O(g) iff g ∈ Ω(f).

The converse is analogous, rewriting the first inequality above into
√
n ≤ g(n)

f(n) to see that the

suprema tend to ∞, concluding that lim supn→∞
g(n)
f(n) =∞. We have g 6∈ o(f) and, using the

theorem on slide 10 of week 10 again, also g 6∈ O(f), and therefore f 6∈ Ω(g).

Combining both we have f 6∈ Θ(g) which is equivalent to g 6∈ Θ(f).

3) Unfolding the definition of O in the assumption f, g ∈ O(h), for f, g, h functions from N to
[0,∞), gives positive real numbers c, c′ and natural numbers m,m′ such that for all n ≥ m,
f(n) ≤ c · h(n) and for all n′ ≥ m′, f(n′) ≤ c′ · h(n′). means

a) Intuitively, since comparison of functions using O is up to some factor, choosing the
factor large enough can compensate for adding the function values. Formally, we claim
f + g ∈ O(h). To see this, we set m′′ to max(m,m′) and c′′ to c+ c′, and verify that for
all n′′ ≥ m′′, (f + g)(n′′) ≤ c′′ · h(n′′) by computation:

(f+g)(n′′) =def f(n′′)+g(n′′) ≤ass (2x) (c·h(n′′))+(c′·h(n′′)) =distr (c+c′)·h(n′′) =def c
′′·h(n′′)

where both assumptions may be applied because n′′ ≥ m′′ = max(m,m′) ≥ m,m′.
b) Intuitively, taking a product of function values should yield a greater function; e.g. it

allows to go from linear to quadractic. Formally, we claim there are functions f, g, h from
N to [0,∞), such that f ·g 6∈ O(h). To see this, set each of f, g, h to the identity function
(all linear functions) mapping n ∈ N to n ∈ [0,∞). We indeed have f, g ∈ O(h), since,
more generally f ∈ O(f) for any function function f (set m to 0 and c to 1). To see that
(f ·g) 6∈ O(h), suppose there were a positive real number c′′ and natural number m′′ such
that for all n′′ ≥ m′′, it holds n′′ · n′′ = (f · g)(n′′) ≤ c′′ · h(n′′) = n′′. This is impossible:
taking n′′ large enough, in particular setting n′′ = max(m′′, c′′) + 1, we would then have:

(f · g)(n′′) =def f(n′′) · g(n′′) =def (max(m′′, c′′) + 1) · (max(m′′, c′′) + 1) >
c′′ · (max(m′′, c′′) + 1) =def c

′′ · h(n′′)

Contradiction.

4∗) Take f(n) = 1 if n even, and 0 otherwise, and set g(n) = 1− f(n). If f ∈ O(g) were the case,
there would be a real number c and natural number m such that f(n) ≤ c ·g(n) for all n ≥ m,
then choosing n ≥ m even we would have f(n) = 1 6≤ 0 = c · 0 = c · (1 − f(n) = c · g(n),
contradicting f ∈ O(g). Symmetrically g 6∈ O(f). In general, any pair of functions f, g such
that always eventually the one ‘by far exceeds’ the other and vice versa, will do.

5∗) • Alice and Bob compute n by modular exponentiation as (ra)b mod p and (rb)a mod p
respectively, using that (ra)b = ra·b = rb·a = (rb)a.

• Given r, p and re mod p there is no method known to find the exponent e, that is essen-
tially better than enumerating all possibilities. That is, knowing each of r, p, ra mod p
and rb mod p does not help to find a and b. (Note we can easily compute ra · rb mod p,
i.e. the number ra+b mod p having the sum of the exponents a and b, but for n we would
need their product.)

2


