
Discrete Structures/Mathematics LVA 703070/703015
Selected solutions 12th PS Sheet Department of Computer Science

1. • The property defined by M is that the input bit-string x is such that (x)2 ≡ 0 (mod 3),
i.e. x represents a natural number divisible by 3. (The Turing machine being in state i,
for i ∈ {0, 1, 2}, at a given moment corresponds to (y)2 ≡ i (mod 3) for y the part of the
input read until that moment.)

• M is total as can be seen from that the head moves to the right in every transition (and
from that there’s a transition for every state (0, 1, 2) and any symbol (0, 1, and blank).
Since there exists a total Turing machine, namelyM itself, accepting the language L(M),
the language is recursive. The corresponding property P , defined by P (x) if x ∈ L(M),
is therefore decidable, so certainly semi-decidable.

• For a total TM M , the language ∼L(M) can be obtained by swapping its accepting and
rejecting states, in this case by swapping halt-accept and halt-reject.

2. The language L comprises bit-strings consisting of 0s only. To show that the complement ∼L
is recursive, we exhibit a total TM K ′ such that ∼L = L(K ′):

0 0 * r 0
0 1 * * halt-accept
0 _ * l halt-reject

Note that K itself is not a total TM, so that L = L(K) does not entail that L is recursive
(although it is), and that simply swapping the accept and reject states of K would not yield
a TM accepting the complement of L (it would rather yield a TM that accepts ∅). However,
observing that K loops as soon as a 1 is detected, it suffices to let K ′ accept in such cases for
it to accept ∼L. (Alternatively, one can proceed by first ‘making’ K total as K ′′:

0 0 * r 0
0 1 * * halt-reject
0 _ * l halt-accept

observing L(K) = L(K ′′) and then swap the reject and accept states; cf. the previous exercise.)

3. a) As a language over {0, 1, 2}, L1 is recursively enumerable, as can be seen by extending
M1 with transitions rejecting in case a 2 is read.

b) L1 ∪ L2 is recursively enumerable, as can be seen by constructing a TM that simulates
running both M1 and M2 on a given input (in parallel) and accepting as soon as one of
them accepts.

c) L1∩L2 is recursively enumberable, as can be seen by constructing a TM as in the previous
item and accepting as soon as both accept. (Here one could opt to simulate one after the
other, instead of running both in parallel as in the previous item.)

d) L1−L2 is in general not recursively enumerable. For instance, letting L1 be the (recursi-
vely enumerable) set of all strings, then L1−L2 = ∼L2, with the latter being recursively
enumerable iff L2 is recursive (as L2 was assumed recursively enumerable).

4∗ Mε halts on ε, so K accepts Mε#ε, and CD loops on ε, and indeed cd(ε) = �. Proceeding in
the same way, we obtain M0(0) = � 6= ! = cd(0), M1(1) = � 6= ! = cd(1), M00(00) = ! 6= � =
cd(00), M10(10) = � 6= ! = cd(10), M11(11) = ! 6= � = cd(11), M000(000) = � 6= ! = cd(000),

1

• Changing the top–right from accepting into rejecting makes no difference, since it is
only relevant that the machine halts on x in case K loops on x, and both CD and this
modification do so.

• Changing the bottom–right from looping into rejecting breaks the proof. E.g. the so
modified version of CD would reject 00, meaning that its behaviour is to halt, which is
the same as the behaviour of K on 00, so distinct from cd(00).

5∗ First observe that if (Mx)x∈{0,1}∗ is a family comprising all Turing machines, then cd = {x ∈
{0, 1}∗ | x 6∈ L(Mx)} (i.e. cd is the complement of the diagonal language d = {x ∈ {0, 1}∗ |
x ∈ L(Mx)}) is distinct from each L(Mx), so cd is not a language accepted by a TM.

Now suppose the membership problem were decidable, i.e. there would exist a total TMK such
that L(K) = {M#x | x ∈ L(M)}. Then we could construct a TM CD1 that accepts/rejects
input x if K rejects/accepts Mx#x. Then x ∈ L(CD) iff K rejects Mx#x iff x 6∈ L(Mx) iff
x ∈ cd, hence L(CD) = cd. But, by the observation, cd is not a language accepted by any
TM, so in particular CD cannot be a TM, and this can only be because our supposition that
K be a TM was false.

1As follows: on input x we first compute the Turing machine Mx from its code x, then swap its accept and reject
states, and finally using a universal Turing machine simulate running the resulting Turing machine on input x.

2

