
Discrete Structures/Mathematics LVA 703070/703015
Selected solutions 13th PS Sheet Department of Computer Science

1. Each of the three functions is computable.

• Having a counter for the number of 1s minus the number of 0s encountered thus far,
and checking that the counter is never negative, works for implementing f . (Note that
something like this is required for parsing programs in most programming languages, e.g.
thinking of 1 as an opening parenthesis and 0 as a closing parenthesis.)

• In an earlier lecture, we have given a (functional) program for computing A(x, y), so g
is computable. (As noted, although A is computable, it is not primitive recursive, i.e. to
define it a definition scheme more powerful than primitive recursion is needed.)

• Either the TM M writing a 1 on the tape and then halting, or the TM M ′ writing a 0
on the tape and then halting, computes h, depending on whether the answer to the open
problem is yes or no, respectively. (Although currently we don’t know which of M and
M ′ is the right one, one of them surely is.)

2. • To show MP ≤ M2P . Define f(M#x) = M#x#x. f is obviously computable (just
duplicate the string the string after the #). Then M#x ∈ MP iff M accepts x iff (M
accepts x andM accepts x) iffM#x#x ∈M2P iff f(M#x) ∈M2P . (Knowing/assuming
MP is not recursive, it follows neither is M2P .)

• To show M2P ≤MP . Define g(M#x#y) =M ′#y, where M ′ is a TM that first behaves
as M on x and (only) if that results in acceptance it continues and subsequently behaves
asM .1 g is obviously computable. ThenM#x#y ∈M2P iffM accepts x andM accepts
y iff M ′ accepts y iff M ′#y ∈ MP iff g(M#x#y) ∈ MP, where the second iff is proven
by distinguishing cases on whether or not M accepts x: if it does then M ′ accepts y iff
M accepts y, and if it does not then neither does M ′ accept y, so that indeed M ′ accepts
y iff M accepts x and y. (Knowing/assuming M2P is not recursive, it follows neither is
MP .)

3. • Suppose P ≤ Q and Q ≤ R. That is, there are computable functions f and g such that
x ∈ P iff f(x) ∈ Q and y ∈ Q iff g(y) ∈ R, say computed by TMsM and N , respectively.
Define h = f ;g, the composition of f and g, i.e. h(x) = (f ;g)(x) = g(f(x)). Then x ∈ P
iff f(x) ∈ Q iff g(f(x)) ∈ R iff h(x) ∈ R. To see that h is computable, i.e. that there is
a total TM K that for input x writes g(f(x)) on the tape, define the TM K to first run
M and then run N . By assumption on M , running it on input x halts and leaves f(x)
on the tape, so subsequently running N halts by assumption on N and leaves g(f(x)) on
the tape.

• We take a DFA with four states q0, q1 q2, qf with the idea being that the DFA is in state
qi for i ∈ {0, . . . , 2} iff no three consecutive 1 have been encountered yet and i is the
number of 1s the string read thus far ends in, and in (final) state qf iff three consecutive
1s have been encountered already. The initial state is q0 and the transition function δ is

1One can think of M ′ as being constructed ‘by partial application’: M ′ can be obtained from M by first construc-
ting a machine M2 that runs M on a first input and if that accepts runs M on a second input, and partially
applying M2 on x (yielding a TM taking one input only).

1



defined by the following table:

δ q0 q1 q2 qf
0 q0 q0 q0 qf
1 q1 q2 qf qf

4∗ To show HP ≤ UHP . Define h(M#x) = M ′ where M ′ is a TM behaves as M does on x
(that is, it ignores any input that is on the tape). h is easily seen to be computable (by a
program that first overwrites whatever is on the tape with x and subsequently runs M). Then
M#x ∈ HP iff M halts on x iff M ′ halts on all inputs iff h(M#x) halts on all inputs iff
h(M#x) ∈ UHP . (Knowing/assuming HP is not recursive, it follows neither is UHP .)

5∗ To show the diagonal language d = {x ∈ {0, 1}∗ |Mx accepts x} is recursively enumerable, is
to give a TM M such that L(M) = d. A TM M can be constructed that first transforms x
into x#x and then runs the universal TM U on that input, simulating running Mx (the TM
corresponding to code x) on x. The coding of TMs should be simple enough that we indeed
can decide whether x is the code of some TM and, if so find and execute its instructions, and
if not, to replace it with some arbitrary, fixed, TM. The coding suggested on the slides of
lecture 12 satisfies these conditions.

2


