
Discrete Structures/Mathematics WS 2019/2020 LVA 703070/703015

EXAM Test. (Each exercise corresponds to 1 cross in the PS) January 22nd, 2020

This exam consists of three regular exercises (1–3). The time available
is 1 hour and 45 minutes (105 minutes). The available points for each
item are written in the margin. There are 60 points in total for the
regular exercises. In addition, there is a bonus exercise (4∗) worth 20
points. You need at least 30 points to pass.

1 Let the weighted directed graph G with set of vertices V = {a, b, c, d, e, f, g, h} be:
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(a) Give a matrix representation M of G.

Taking nodes in alphabetic order of their names, we obtain (the rather sparse) matrix
A where Aij is the weight of the edge from vertex vi to vj:[5] 

0 1 0 0 0 0 8 7
0 0 10 0 0 4 0 0
0 0 0 6 3 0 0 0
0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 1 0 2 0
0 0 0 2 0 0 0 0
0 0 4 0 0 0 0 0


(b) Compute a shortest path π from node a to node d using the shortest path algorithm

for dags, giving at least two intermediate stages of the algorithm.[5]

We give the stages in order, listing the nodes with their predecessor and distance from
a in the shortest path until then, and underlining the next selected node (in topological
order):

• a : 0;

• a→ b : 1, a→ h : 7, a→ g : 8;

• a→ h : 7, a→ g : 8, b→ c : 11, b→ f : 5;

• a→ g : 8, b→ c : 11, b→ f : 5;

• a→ g : 8, b→ f : 5, c→ e : 14, c→ d : 17;



• f → g : 7, f → e : 6, c→ d : 17;

• f → g : 7, e→ d : 8;

• e→ d : 8;

from which we read off that a → b → f → e → d is the shortest path from a to d,
with weight 8.

(c) Let R be the binary relation R on V underlying graph G, and let the function f : V →
N be defined by f(v) = ΣwRvf(w), i.e. the f -value of node v is the sum of the f -values[5]

of all nodes R-related to v. Give R (as set of pairs), explain why f is a well-defined
function, and compute f(e).

R = {(a, h), (a, b), (a, g), (h, c), (b, c), (b, f), (c, d), (c, e), (f, e), (f, g), (e, d), (g, d)}. Since
R does not have infinite descending chains, it is well-founded, allowing to define
functions by well-founded recursion on R. In this case, the f -value of a node only
depends on the values R-related to the node, so f is well-defined. In particular
f(a) = ΣwRaf(w) = 0, since there is no w such that w R a. It easily follows (formally:
using a proof by well-founded induction) from this that in fact f(w) = 0 for all w. In
particular f(e) = 0.

Alternatively, without using the observation, one can directly compute f(e) = f(c) +
f(f) = f(h) + f(b) + f(b) = 3 · f(a) = 3 · 0 = 0.

(d) Let U be the undirected graph associated to G, obtained by forgetting the direction of
the edges of G. Compute a minimal spanning tree T of U using Kruskal’s algorithm,[5]

giving at least two intermediate stages of the algorithm.

We list the stages (partitionings of the set of nodes) of the algorithm, after adjoining
(in order of increasing weight) edges:

• {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}};
• {{a−1 b}, {c}, {d}, {e−1 f}, {g}, {h}};
• {{a−1 b}, {c}, {e−1 f −2 g −2 d}, {h}};
• {{a−1 b}, {c−3 e−1 f −2 g −2 d}, {h}};
• {{a−1 b−4 f andh−4 c−3 e−1 f −2 g −2 d}};

Note the solution is not unique. E.g. the edge between g and d can be exchanged for
the edge between e and d (of the same weight, so not changing the overall weight).

2 (a) Let A = {a, b, c, d, e} and B = {0, 1}. Compute the number s of subsets of A, the[5]

number t of subsets of size 2 of A, and the number f of (total) functions from A to
B. (Note that the number of partial functions from A to B, i.e. functions where f is
undefined on some inputs, is 35, as we then have one extra option for every input.)

s = 25 = 32, t =
(
5
2

)
= 5!

3!·2! = 10, f = 25 = 32.

(b) Let p = 17, q = 12, a = 3 and b = 4. Compute the inverse p′ of p modulo q, and an
x such that x ≡ a (mod p) and x ≡ b (mod q). Indicate which algorithm(s) you use[5]

and give at least two intermediate stages for both computations.

Since the gcd of 17 and 12 is 1 (17 is a prime number), we may compute p′ using
Bézout’s lemma and the gcd algorithm:

17 = 1 · 17 + 0 · 12

12 = 0 · 17 + 1 · 12

5 = 1 · 17− 1 · 12

2 = −2 · 17 + 3 · 12

1 = 5 · 17− 7 · 12

computing modulo 12 the right-hand side simplifies to 5 · 17, so we see that 1 ≡
5 · 17 (mod 12), hence p′ = 5 is inverse to 17 modulo 12. Using this inverse we may
compute, using the RSA-version of the Chinese Remainder Theorem, directly that
x = 3 + 17 · (5 · (4 − 3) mod 12) = 88. One easily verifies that 17 · 5 ≡ 1 (mod 12),
and 88 ≡ 3 (mod 17), and 88 ≡ 4 (mod 12), as desired.



(c) Suppose the complexity T of some algorithm A, as a function of the size n of its input,
is given by T (n) = T

(
n
2

)
+ 4 · n if n > 4, and 5 otherwise. Determine a closed-form[5]

expression e such that T (n) ∈ Θ(e), and explain what the latter notation means.

The Master theorem applies with a = 1, b = 2 and s = 1. By the third case of the
theorem, we have e = n and T (n) ∈ Θ(n). The notation means that the asymptotic
complexity T is linear, i.e. T is asymptotically bounded both from below and above
by a function linear in n.

(d) Show that the set {M#x | TM M rejects input x} is not recursive, where you may[5]

assume that (the code of) M and x are bit-strings.

Let A = {M#x | TM M rejects input x}. By a reduction from the membership
problem MP , i.e. we show MP ≤ A. We let the reduction f map M#x to M ′#x where
the TM M ′ is obtained from M by swapping its reject and accept states. Then M#x ∈
MP iff M accepts x iff M ′ rejects x iff M#x ∈ {M#x | TM M rejects input x}.
(More explicitly, distinguishing cases on whether the string is or is not in MP : if
M#x ∈MP then M accepts x, hence M ′ rejects x by definition of M ′, so M ′#x ∈ A,
i.e. f(M#x) ∈ A. if M#x 6∈ MP then M rejects or loops on x, hence M ′ accepts
resp. loops on x by definition of M ′, so M ′#x 6∈ A, i.e. f(M#x) 6∈ A.)

Alternatively, we can adapt the proof by ‘diagonalising away’ as given for HP and
MP to show that A is not recursive. That is, first one defines a behaviour of a TM
to be either rejecting or not rejecting. so that the complement cd of the behaviour of
the diagonal is not the behaviour of any TM, and next one shows that if there were
some total TM K such that L(K) = A, then we could build a TM CD (using K as a
component) exhibiting behaviour cd. More precisely, we may construct CD such that
on input x it feeds Mx#x into K and if that accepts (i.e. if Mx rejects x) then CD
accepts, and otherwise (i.e. if Mx accepts or loops on x) then CD rejects. Thus, if
Mx rejects x then CD does not reject x (it accepts it), and if Mx does not reject x (it
accepts or loops on it) then CD rejects it, i.e. CD would exhibit behaviour CD.

3 Determine whether the following statements are true or false. Every correct answer is[20]

worth 2 points. For every wrong answer 1 point is subtracted, provided the total number
of points is non-negative.

statement

(A`)ii is the number of cycles of length ` on node vi, for A the adjacency matrix of a directed
graph with nodes v1, . . . , vn.

Well-founded orders are closed under union.

For a partial order, every minimal element is least.

The specification f(0) = 1 and f(n) = f(f(n−1))−1 if n > 0, defines a function f : N→ N,
with − the usual subtraction of integers.

By inclusion/exclusion, #(
⋃k

i=1Ai) ≤
∑

I ⊆ {1, . . . , k}, #(I) odd #(
⋂

i∈I Ai), for sets (Ai)1≤i≤k.

If c · a ≡ c · b mod n, then a ≡ b mod n, for all natural numbers a, b, c, n ≥ 2.

For all functions f, g on N, f ∈ O(g) or g ∈ O(f) or both.

If there is an injective function from A to the set {n ∈ N | n ≥ 10}, then A is finite.

If L = L(M) for some TM M , then L or ∼L is recursive.

For all DFAs A there exist strings x, y and a state q such that δ̂(q, x) = δ̂(q, y) and x 6= y.



YES, NO, NO, NO, YES, NO, NO, NO, NO, YES.

4∗ (a) Let f : N→ N be defined by f(0) = 0 and and f(n) = f(n− 1) + 3 · n · (n− 1) + 1 if
n ≥ 1. Show that ∀n ∈ N, f(n) = n3.[10]

Since n − 1 < n and < is well-founded, it suffices to verify that the equalities hold,
when substituting n 7→ n3 for f . This is trivial for the first and easy for the second:
n3 = n3 − 3 · n2 + 3 · n− 1 + 3 · n · (n− 1) + 1 = (n− 1)3 + 3 · n · (n− 1) + 1.

Alternatively, it can be proven by induction on n, or also by repeated expansion and
seeing a pattern.

(b) Prove that there is a bijection between the set N of natural numbers and the set P
of palindromes over {0, 1}, i.e. P contains all bit-strings x that are the same as their[10]

reverse.

The function mapping n to the palindrome 0n is an injection, and so is the function
mapping a palindrome x to (1x)2, the value of the bit-string 1x. We conclude by the
theorem of Schröder–Bernstein.

(Note that there are many possibilities for the injections. For instance, n→ 1n for the
former and x → (x[0:=2])3 for the latter, where x[0:=2] denotes the string obtained
from x by replacing all 0s by 2s and (y)3 denotes the value of the string y in ternary.)


