
Discrete Structures/Mathematics WS 2019/2020 LVA 703070/703015

EXAM 1 January 29th, 2020

This exam consists of three regular exercises (1–3) each worth 20 points.
The time available is 1 hour and 45 minutes (105 minutes). The available
points for each item are written in the margin. There are 60 points in
total for the regular exercises. In addition, there are bonus exercises
(4∗, 5∗) each worth 15 points. You need at least 30 points to pass.

1 Let the weighted directed graph G with set of vertices V = {v1, v2, v3, v4, v5} be:
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Let R be the relation on vertices of graph G.

(a) Give the Hasse diagram of R and show that R is a strict order.[6]

The Hasse diagram H for a strict order is obtained by omitting transitive edges that
can be reconstructed, i.e. we need a minimal subrelation/graph whose transitive closure
is R. E.g. v5→ v1 is omitted because of v5→ v4→ v1. Continuing like this yields:
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A strict order is irreflexive and transitive. Irreflexivity was observed above. Alterna-
tively, irreflexivity follows from the absence of infinite paths. Transitivity holds since
ordering the nodes as v5, v4, v1, v3, v2 R contains all edges from a node to a node later
in the order.



(b) Compute a shortest path from v5 to v2 in G using an algorithm of your preference.
Indicate the algorithm used and give at least 2 intermediate stages of the algorithm.[7]

From R in the previous item being a strict order, it follows that G is in fact a dag.
That is, the shortest path algorithm for dags can be applied. Indicating the (labelled)
edges with their current predecessor and weight, and underlining definitive weights of
nodes, the stages are:

• → v5, 0

• v5→ v1, 5, v5→ v2, 9, v5→ v3, 8, v5→ v4, 4

• v5→ v1, 5, v5→ v2, 9, v4→ v3, 6

• v1→ v2, 8, v4→ v3, 6

• v3→ v2, 7

From which we read off that the shortest path is v5→ v4→ v3→ v2 with weight 7.

Alternatively, Floyd’s algorithm for directed graphs may be applied. Ordering nodes
as v5, v4, v1, v3, v2, G is represented by the matrix:

0 4 5 8 9
∞ 0 7 2 6
∞ ∞ 0 10 3
∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ 0


This ordering of nodes makes the matrix an ‘upper triangular’ matrix in the sense that
all entries below the diagonal are∞, which is convenient as this makes that executing
Floyd’s algorithm only ever changes the ‘1st quadrant’, in particular leaving all ∞s
unchanged. As a consequence the first and last iterations do not change the matrix.
In the 2nd iteration, v5→ v3 is updated from 8 to 6 via v4:

0 4 5 6 9
∞ 0 7 2 6
∞ ∞ 0 10 3
∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ 0


In the 3rd iteration, v5 to v2 is updated from 9 to 8 via v1:

0 4 5 6 8
∞ 0 7 2 6
∞ ∞ 0 10 3
∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ 0


In the 4th iteration, v5 to v2 is updated from 8 to 7, and v4 to v2 from 6 to 3, both
via v3 

0 4 5 6 7
∞ 0 7 2 3
∞ ∞ 0 10 3
∞ ∞ ∞ 0 1
∞ ∞ ∞ ∞ 0


Thus we find the same shortest path of weight 7 as above.

(c) Write a recursive specification for the function f mapping a node v in G to the sum
of the weights of all paths from v to v2. For instance, evaluating f(v1) should result[7]

in 14. Your specification should not use any concrete weights in G, but be stated in
terms of the function w assigning weights to edges. Using your recursive specification,
stepwise evaluate f(v4).



Observe that if there is an edge from v to v′ with weight w, then f(v) = f(v′)+w times
the number of paths from v′ to v2. Specifying the latter by means of a function n, we
accordingly we define f(v) =

∑
vRv′ w(v, v′) · n(v′) + f(v′) where n(v) =

∑
vRw n(w) is

the number of paths from v to v2. We first compute n and then f , both starting from
v2 (i.e. from right to left/bottom–up).

v5 v4 v1 v3 v2
n 8 = 4 + 2 + 1 + 1 4 = 2 + 1 + 1 2 1 1
f 95 = (4 · 4 + 37) + (5 · 2 + 14) + (8 + 1) + 9 37 = (7 · 2 + 14) + (2 + 1) + 6 14 2 0

That is, the total weight of the paths from v4 to v2 is 37.

Alternatively, instead of working backward from v2, one can work forward from a given
note using an accumulator s initially set to 0, defining g(v, s) =

∑
vRv′ g(v, s+w(v, v′))

if v 6= v2, and s otherwise, and defining f(v) = g(v, 0). We then compute f(v4) =
g(v4, 0) = g(v1, 7) + g(v3, 2) + 6 = g(v3, 17) + 10 + 3 + 6 = 18 + 19 = 37.

2 (a) Compute 7100 mod 11, and compute an inverse of 12 modulo 17 and verify that it
indeed is inverse. Justify the steps taken to compute the results.[5]

Since 11 is a prime number, we have by Fermat’s little theorem that a10 ≡ 1 (mod 11)
so that 7100 ≡ 7100 mod 10 ≡ 70 ≡ 1 mod 11.

Alternatively, one can evaluate by means of fast exponentiation: 7100 ≡ (750)2 ≡
((724)2 · 7)2 ≡ . . . ≡ (((((72 · 7)2)2)2 · 7)2)2 ≡ ((((22)2)2 · 7)2)2 ≡ ((52 · 7)2)2 ≡ (102)2 ≡
1 mod 11.

Computing by 100 times multiplying by 7, modulo 11, is in principle possible but leads
to an unnecessarily long and time-consuming computation.

Since gcd(12, 17) = 1, there are u and v such that 1 = u ·17+v ·12 by Bézout’s lemma,
from which it then follows that v is the inverse of 12 modulo 17, as 1 ≡ u ·17 +v ·12 ≡
v · 12 (mod 17) To compute u and v we use Euclid’s extended gcd algorithm:

17 = 1 · 17 + 0 · 12

12 = 0 · 17 + 1 · 12

5 = 1 · 17− 1 · 12

2 = −2 · 17 + 3 · 12

1 = 5 · 17− 7 · 12

That is v = −7, which is the same as 10 modulo 17. Verification: 10 · 12 = 120 =
7 · 17 + 1, so 10 · 12 ≡ 1 (mod 17).

Alternatively, since the inverse must exists by gcd(12, 17) = 1, one can find it by trying
out all products v · 12 for 0 ≤ v < 17, yielding the same result.

(b) Let R be the relation on pairs of natural numbers defined by: (n,m) R (n′,m′) if
n + m′ = n′ + m. For instance, (5, 3) R (2, 0) since 5 + 0 = 5 = 2 + 3, but not
(5, 3) R (0, 2) since 5 + 2 = 7 6= 3 = 0 + 3. Show that R is an equivalence relation,[5]

and give 4 elements of the R-equivalence class [(0, 2)] of (0, 2).

For R to be an equivalence relation, it must be reflexive, symmetric and transitive.
We verify them in turn:

• (n,m) R (n,m) since n+m = n+m.

• if (n,m) R (n′,m′), then n + m′ = n′ + m. Therefore n′ + m = n + m′, hence
(n′,m′) R (n,m).

• if (n,m) R (n′,m′) R (n′′,m′′), then n+m′ = n′+m and n′+m′′ = n′′+m′. Adding
these yields n+m′+n′+m′′ = n′+m+n′′+m′, from which we obtain n+m′′ = n′′+m
by cancelling n′, m′ and reordering summands, hence (n,m) R (n′′,m′′).

Alternatively, one can observe that (n,m) R (n′,m′) iff m − n = m′ − n′, for −
subtraction on integers, and then use that any relation R specified in such a way,



namely by x R y if f(x) = f(y) for some function f (here f((n,m)) = m − n) is an
equivalence relation (because equality =, is an equivalence relation).

We have [(0, 2)] = [(0, 2), (1, 3), (2, 4), (3, 5), (4, 6), . . .], or in general, all pairs of natural
numbers (n,m) such that m− n = 2 are in the equivalence class.

(c) Suppose the complexity T of some algorithm A, as a function of the size n of its input,
is an increasing function that satisfies T (n) = 4 · T

(
n
2

)
+ 2 · n2 if n = 2k for some

positive natural number k, and 2 if n = 1. Determine a closed-form expression e such[5]

that T (n) ∈ Θ(e), and explain what the latter notation means.

We see that we have an instance of the Master theorem with a = 4, b = 2, c = 2, and
s = 2. Since a = 4 = bs, we are in the second case, hence T (n) ∈ Θ(n2 log n). That is,
the complexity function T of algorithm A is asymptotically bounded both from below
and above by a constant (not necessarily the same) times n2 log n.

(d) Show that the set {M#x | TM M loops on input x} is not recursive, where you may[5]

assume that (the code of) M and x are bit-strings.

Let LP = {M#x | TM M loops on input x}. The idea is that LP is ∼HP except
that LP contains only those strings y ∈ ∼HP that have shape M#x, i.e. the bit-string
of the code of a TM followed by a hash-symbol followed by another bit-string.

Accordingly we show ∼HP ≤ LP by a function f that first disposes of such garbage
strings, strings not of the right shape. More precisely, we let f map a string y to itself
if y has shape M#x for some TM M and bit-string x, and otherwise to M ′#x′ for a
fixed TM M ′ and bit-string x′ such that M ′ loops on x′. The function f is easily seen
to be computable (by first testing y to be two bits-strings separated by a hash, and
then trying to decompile the left bit-string into a TM).

• If y ∈ ∼HP , then either y has shape M#x for some TM M and bit-string x but
M does not halt on x so M loops on x and f(y) = y = M#x ∈ LP , or y is garbage
so f(y) = M ′#x′ ∈ LP per construction of M ′ and x′.

• If y 6∈ ∼HP , then y ∈ HP so has shape M#x for some TM M and bit-string x
such that M halts on x, hence f(y) = y ∈ HP , so f(y) 6∈ LP .

Alternatively, we can diagonalise directly: Suppose LP = L(K) for some total TM K.

• Define the behaviour of a TM M on input x to be ∞ (looping) if M loops on x,
and ↓ (halting) otherwise. and let cd be the complement of the behaviours of TM
Mx on x, for the usual enumeration ε, 0, 1, 00, . . . of the bit-strings. Then cd is
distinct from the behaviour of any TM (it is distinct from TM Mx at input x; from
which we conclude since each TM occurs in the enumeration Mε,M0,M1,M00, . . .

• Let CD be the TM that first transforms an input x into Mx#x and feeds that to
K. If K accepts, i.e. if Mx loops on x, then CD halts, and if K rejects, then CD
loops.

Then CD exhibits behaviour cd: if CD loops/halts on x, then Mx halts/loops on x,
so the complement of that behaviour is loop/halting. Therefore, CD cannot be a TM,
so the assumption that LP = L(K) for some total TM K must have been false, so LP
is not recursive.



3 Determine whether the following statements are true or false. Every correct answer is[20]

worth 2 points. For every wrong answer 1 point is subtracted, provided the total number
of points is non-negative.

statement

For every partial order ≤ on A, its complement ∼(≤) = (A× A)−≤ is a partial order.

False. For instance, for the partial order ≤ on {a, b, c} defined by a ≤ a ≤ b ≤ b, the
relation ∼(≤) is neither reflexive (not a ∼(≤) a), nor transitive (although a ∼(≤) c ∼(≤) b,
not a ∼(≤) b), nor anti-symmetric (although b ∼(≤) c ∼(≤) b, not b = c).

For every regular language L over Σ, its complement ∼L = Σ∗ − L is regular.

True.

For every recursively enumerable language L over Σ, its complement ∼L = Σ∗ − L is recur-
sively enumerable.

False. The complement ∼HP of the halting problem HP is not r.e. (as otherwise both
would be recursive).

For every set B and countable subset A ⊂ B, its complement ∼A = B − A is countable.

False. For instance, take A = ∅ and B the set of real numbers.

The specification f(x) = f(x) · 2 defines a function f : N→ N.

True. The unique solution to y = y ·2 on the natural numbers is y = 0, so the specification
defines the constant-0 function; ∀n ∈ N, f(n) = 0.

Let N2 = N− {0, 1}. For every n ∈ N2, n is prime iff n is minimal w.r.t. divisibility in N2.

True. One of the given characterisations of primality is not being divisible by smaller
numbers.

The function mapping n to the pair (n mod 10, n mod 7) is a bijection between {0, . . . , 69}
and the set of pairs of natural numbers {(x, y) | 0 ≤ x < 10, 0 ≤ y < 7}.

True. A direct consequence of the Chinese Remainder Theorem, since gcd(10, 7) = 1.

For all natural numbers a, b, if gcd(a, b) = 1, then a1, a2, . . . , ab are all distinct modulo b.

False. For instance, although gcd(2, 3) = 1 for a = 2, b = 3, we have 21 ≡ 2 ≡ 23 (mod 3),
(It is almost true though: a1, a2, . . . , ab−1 are all distinct modulo b.)

If f : A→ B, g : B → C, h : C → A are injective functions, then A and B are equinumerous.

True. Since injective functions are closed under composition, h◦ g : B → A is an injection,
from which we conclude by the theorem of Schröder–Bernstein that there exists a bijection
between A and B.



statement

For every DFA A and each of its states q, there exist strings x, y such that δ̂(q, x) = δ̂(q, y)
and x 6= y.

True. By the idea of the pumping lemma: If A has n states then starting from any state q,
an input string x of length n+ 2, makes the automaton A go through more than n states, so
some state is repeated, and the corresponding non-empty substring y of x, can be pumped
arbitrarily often.

4∗ Let v be the lexicographic order on pairs of natural numbers, with @ its strict part. For
instance, (3, 5) @ (5, 3) @ (5, 5) v (5, 5). Let R be the relation on pairs of natural numbers
defined in Exercise 2(b).

(a) Show that v is a total relation on pairs of natural numbers.[5]

For v to be total we must have for all pairs (n,m) and (n′,m′) that either (n,m) v
(n′,m′) or (n′,m′) v (n,m). Since ≤ is a total relation on natural numbers, either
n < n′ or n = n′ or n′ < n. In the first case (n,m) v (n′,m′), and in the last
case (n′,m′) v (n,m′), both by definition of the lexicographic order. If n = n′, then
m ≤ m′ or m′ ≤ m (or both) again by ≤ being total. Thence, (n,m) v (n,m′) or
(n,m′) v (n,m). More generally, if the two components orders are total, as is the case
here for ≤ on the natural numbers, then their lexicographic product is total, by the
reasoning given.

Alternatively, we can use that the lexicographic order is total on all sequences, so
certainly on pairs.

(b) Show that each R-equivalence class has a unique v-minimal element, give such v-
minimal elements for [(3, 5)], [(5, 3)], and [(5, 5)], and argue that taking v-minimal
elements yields a system of representatives of R.[5]

The lexicographic order on pairs of natural numbers is a well-founded partial order.
Elements of shape (0,m) or (n, 0) are even v-least in their R-equivalence classes.
If (0,m) R (n′,m′) that holds since either 0 < n′, or 0 = n′ and n = m′. If
(n, 0) R (n′,m′) that holds since either n = n′ and m′ = 0 or n < n′ (uniqueness
of representatives). Moreover, every element (n′,m′) is R-equivalent to (0,m′ − n′) if
n′ ≤ m′ and to (n′−m′, 0) otherwise (existence of representatives). Thus, the elements
of shapes (0,m) or (n, 0) give rise to a system of representatives.

The v-minimal elements are, respectively (0, 2), (2, 0), and (0, 0).

(c) Show that there is a bijection between the set of integers Z and the set of equivalence[5]

classes of R.

The function f that maps −n to [(n, 0)] and n to [(0, n)] for n ∈ N, is a bijection.
Injectivity is clear (noting that 0 is mapped to [(0, 0)] either way), and that its inverse
is injective follows from the previous item.

5∗ (a) Show that for any n, there is a dag having n nodes and n·(n−1)
2

edges. (Cf. the graph

G of Exercise 1, which has 5 nodes and 5·4
2

= 10 edges),[5]

For a given n, let the directed graph Gn have as nodes {1, . . . , n}, and as edges {(i, j) |
i < j}. Gn trivially is acyclic, so a dag. Taking the sum over all nodes of the number
of edges to that node, we obtain (double counting) that the total number of edges of

Gn is
∑n

i=1 i− 1 =
∑n−1

i=0 i = n·(n−1)
2

as desired.

(b) Show that the number given in the previous item is maximal, i.e. show that there are[5]

no dags having n nodes and more than n·(n−1)
2

edges.

We prove the claim by induction on the number of nodes. The base case (no nodes)
is trivial. Suppose G is a dag having n > 0 nodes. For a G-minimal node v (it exists
by acyclicity), let G′ be obtained from G by removing v and all k edges connecting



it. Then G′ is a dag having n − 1 nodes, so has at most (n−1)·(n−2)
2

edges. By choice
of v, all edges connecting v to G′ are edges from v, so k ≤ n− 1. We conclude, since
(n−1)·(n−2)

2
+ n− 1 = n·(n−1)

2
.

Alternatively, for a proof without induction, first observe that in a dag Gn on n nodes
having a maximal number of edges, there is at least one edge between any pair of
distinct nodes v, v′. This holds, since either there is a path from one to the other, say
w.l.o.g. from v to v′, or there is no such path, and in both cases an edge from one to
the other (from v to v′) can be adjoined (if it was not there yet) without creating a
cycle. Moreover, there is at most one edge between any pair of distinct nodes, since
if there were two, they would be in opposite direction forming a cycle. Computing

as above, the number of edges of Gn is found to be n·(n−1)
2

, the number of unordered
pairs of distinct nodes, i.e. n2 (the number of ordered pairs) minus n (for distinctness)
divided by 2 (for unorderedness).

(c) Give a maximal spanning tree T of the undirected graph U corresponding to the
directed graph G of Exercise 1, i.e. a spanning tree having maximal weight among all[5]

spanning trees. Argue why your tree T is indeed a maximal spanning tree.

A maximal spanning tree of G is v2 ←9 v5 →8 v3 ←10 v1 ←7 v4 with weight 34, It
is maximal since it must be spanning and connect 5 nodes, so must have 4 edges, and
the weights of the edges selected are greater than all other edge weights.

More generally, the maximal spanning tree of an undirected weighted graph U can
be obtained by first negating all the weights to yield an undirected weighted graph
−U , then applying Kruskal’s algorithm to yield a minimal spanning tree −T of −U ,
and then negating the weights in −T to yield a tree T . That T then is a spanning
tree of U is immediate, since only the weights differ between T and −T , and U and
−U . That T is maximal holds, since if there were a spanning tree T ′ having greater
weight, then the tree −T ′ with negated weights would be a spanning tree of −U have
smaller weight than −T . Formally, this is based on that w < w′ iff −w′ < −w so that
max(w,w′) = −min(−w,−w′), and

∑
i−wi = −

∑
iwi so that w(T ) = −w(−T ). It

easily checked that applying this procedure to G yields the tree given above.


