
Discrete Structures/Mathematics LVA 703070/703015
Selected solutions 2nd PS Sheet Department of Computer Science

1) a) No, this specification does not define a function, since it does not specify what the
value of f(0) should be, i.e. there is not a unique function satisfying the specification.
For instance, both {(0, 0), (1, 1), (2, 2), (3, 3), . . .}, that is the function f(x) = x, and
{(0, 1), (1, 2), (2, 3), (3, 4), . . .}, that is the function f(x) = x+1, satisfy the specification.

b) Yes, the specification determines a unique value for every natural number. The first
conditions yields (0, 17). Using this the second condition yields (1, 17 + 1) = (1, 18).
Using it again yields (2, 18 + 1) = (2, 19). Continuing like this we obtain unique values
for every natural number in the domain: f = {(0, 17), (1, 18), (2, 19), (3, 20), . . .}, that is
the function f(x) = x+ 17.

c) No, this specification does not define a function, since repeatedly using the equations we
calculate that f(18) + 18 = f(17 + 1) + 1 + 17 = f(17) + 17 = f(16 + 1) + 1 + 16 =
f(16)+16 = . . . = f(0)+0 = 17, but there is no natural number such that when we add
18 to it, we obtain 17, i.e., there does not exist a function satisfying the specification.

d) Yes, this specification defines the function {(0, 1), (1, 1), (2, 2), (3, 3), (4, 5), (5, 8), (6, 13),
(7, 21), . . .} where a value is the sum of the previous two; the Fibonacci numbers f(i) = Fi.

e∗) Yes, this specification defines the function {(0, 1), (1, 3), (2, 7), (3, 61), (4, 222
22

22

− 3), (5,
2↑↑↑(n+ 3)− 3), . . .}. Here we used Knuth’s uparrow notation to express the extremely
large value for 5. There is no hope to compute this number and write it in digits, even
using as many resources as needed, as there are not enough atoms in the universe. That
still the specification defines a function can be seen by noting that to compute the value
of g(m,n) we only rely on earlier computed values for g, namely of values g(m′, n′) where
either m′ < m or (m′ = m and n′ < n); g is known as the Ackermann function.

f) Yes, this specification defines a function since f(n) = 1+max(fb(n), fd(n)) where fb and
fd are the functions defined in items b) and d) respectively. (In case also exercise e∗) is
included, then f(n) = 1 +max(fb(n), fd(n), fe(n)).)

g) No, this specification does not define a function, since there is more than one function
meeting it (it is not unique). For instance, both the constant 0 function f(n) = 0, that is
{(0, 0), (1, 0), (2, 0), . . .} and the constant 1 function f(n) = 1, that is {(0, 1), (1, 1), (2, 1), . . .}
satisfy the specification since 0 = 02 and 1 = 12.

2) We compute for B:

0 1 1 0

0 0 1 0

0 0 0 0

1 0 1 0



⇒
0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0



⇒
0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0



⇒
0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0



⇒
0 1 1 0

0 0 1 0

0 0 0 0

1 1 1 0




From the resulting matrix we read off that a R+ c and d R+ b hold, but c R+ a does not. The
matrices in the computation above can be obtained from the computation from B in exercise
3) of the 1st sheet as follows: map all elements with value ∞ and those on the diagonal to

1

https://en.wikipedia.org/wiki/Fibonacci_number
https://en.wikipedia.org/wiki/Knuth's_up-arrow_notation
https://en.wikipedia.org/wiki/Ackermann_function


0, and all other elements to 1. (The special treatment of the diagonal would be unnecessary
in case we would be interested in computing the reflexive–transitive closure R∗ of R; see the
slides. The special treatment of the diagonal is possible thanks to R+ being irreflexive here.)

3) • We may draw GT as

10

12

64

8

2 35 7

9

11

To see that |T is irreflexive observe that GT has no loops, and to show that it is transitive
we need to show that for every path from n to m of length 2 in GT , there is an edge from
n to m. There are only four paths of length 2 in GT , namely 2 → 4 → 8, 2 → 4 → 12,
2 → 6 → 12, 3 → 6 → 12, and since we indeed have the required edges 2 → 8, 2 → 12,
2 → 12, 3 → 12. Alternatively, we can reason algebraically: if x · x′ = y and y · y′ = z,
then x · (x′ · y′) = (x · x′) · y′ = y · y′ = z, as desired. From this we conclude, since indeed
x′ · y′ ∈ T (2 ≤ x′ · y′ since 2 ≤ x′, y′ and x′ · y′ ≤ 12 since x′ · y′ |T z ≤ 12).

• After consecutively removing the edges 2 → 8, 2 → 12, and 3 → 12, no edges can be
removed anymore, yielding the graph G′T :

10

12

64

8

2 35 7

9

11

The procedure terminates since in every iteration an edge is removed, and there were
only finitely many such. The order of removing edges e and e′ because of paths p and p′

can only matter if both e ∈ p′ and e′ ∈ p, but that is impossible as GT is acyclic. G′T is
a transitive reduct of GT : G′+T = GT but G′T is ‘nowhere’ transitive; cf. Hasse diagrams.

4∗) Consider the Haskell code:

merge l@(x:l’) m@(y:m’) = if (x < y) then x:merge l’ m else y:merge l m’
merge l m = l++m
mergeSort m = if l == 0 then m else merge (mergeSort (fst s)) (mergeSort (snd s)) where

l = length m ‘div‘ 2
s = splitAt l m

bubble x [] = (x,[])
bubble x (y:m) = (\p -> ((fst p),(max x y):(snd p))) (bubble (min x y) m)
bubbleSort (x:l) = let (y,m) = bubble x l in y:bubbleSort m
bubbleSort l = l

mergeSort and bubbleSort both implement the sorting function on lists of Ints, but their
runtimes are different. Setting :set +s in ghci, my times for sorting [1000,999..1] are 0.03
secs respectively 0.35 secs. (Their respective complexities are O(n log n) and O(n2).)

2

https://en.wikipedia.org/wiki/Transitive_reduction
https://en.wikipedia.org/wiki/Hasse_diagram

