1) There are 7 steps in:

$$
\begin{array}{rll}
\left(s, \vdash 0010 \sqcup^{\infty}, 0\right) & \vec{M} \delta(s, \vdash)=(s, \vdash, R) & \left(s, \vdash 0010 \sqcup^{\infty}, 1\right) \\
& \xrightarrow{M} \delta(s, 0)=(s, 0, R) & \left(s, \vdash 0010 \sqcup^{\infty}, 2\right) \\
& \vec{M} \delta(s, 0)=(s, 0, R) & \left(s, \vdash 0010 \sqcup^{\infty}, 3\right) \\
& \xrightarrow[M]{l} \delta(s, 1)=(s, 1, R) & \left(s, \vdash 0010 \sqcup^{\infty}, 4\right) \\
& \xrightarrow[M]{M} \delta(s, 0)=(s, 1, R) & \left(s, \vdash 0010 \sqcup^{\infty}, 5\right) \\
& \xrightarrow[M]{M} \delta(s, \sqcup)=(p, \sqcup, L) & \left(p, \vdash 0010 \sqcup^{\infty}, 4\right) \\
& \xrightarrow[M]{ } \delta(p, 0)=(t, 1, L) & \left(t, \vdash 0011 \sqcup^{\infty}, 3\right)
\end{array}
$$

1. On input $\vdash 0010$, the following TN halts after 7 steps with $\vdash 0011$ on the tape.
```
0}\vdash\vdash r 0 
0 0 0 r 0
0 1 1 r 0
0 _ _ l p
p \vdash\vdash r halt
p 0 1 l halt
p 0 1 l halt
```

2) - The following TM computes n^{2} in unary, by n times copying n. In it, C marks the last copied position, the position of $K \bmod n$ is the number of the iteration (+1 if K is left of L), and L marks the leftmost bit of the working copy of n at the tail. E.g. $\vdash 11111 \mathrm{C} 1 \mathrm{~K} 11 \mathrm{~L}$ indicates that we are in the process of producing the 3rd copy of 11111 (K is left of L , at position $2 \bmod 5$), and we have just copied its leftmost symbol L (as marked by the C).
```
O \vdash r init; initialisation, detect 0,1 cases, otherwise put markers C,K,L
init _ _ * halt; 0^2 = 0
init 1 C r initC
initC _ _ l one
one C 1 r halt; 1^2 = 1
initC 1 K r appendL
shiftCright 1 C r append1; loop, shifting C to the right, stopping when K,L adjacent
shiftCright L C r appendL
shiftCright K 1 r shiftCKright
shiftCKright L 1 r append1halt; adjacent so clean up and halt
shiftCKright 1 C r append1K
left C 1 r shiftCright; searching left for marker C and then shift it to the right
left * * l left
appendL _ L l left ; appending various symbols
appendL * * r appendL
append1 _ 1 l left
append1 * * r append1
append1halt _ 1 r halt
append1halt * * r append1halt
append1K _ 1 r appendK
```

```
append1K * * r append1K
appendK _ K l left; (only called if symbol is known to be a blank)
- data Nat = Zer | Suc Nat deriving Show
square :: Nat -> Nat
square x = times x x
times, add :: Nat -> Nat -> Nat
times Zer k = Zer
times (Suc n) k = add k (times n k)
add Zer k = k
add (Suc n) k = Suc (add n k)
```

3) - Suppose there were $i \leq j$ such that $n_{i} \not \leq n_{j}$ with $j-i$ minimal. Then $j-i \geq 2(i=j$ contradicts reflexivity of \leq, and $i+1=j$ local \leq-sortedness). Hence there is $i<k<j$ with $k-i, j-k<j-i$, so $n_{i} \leq n_{k} \leq n_{j}$. But then $n_{i}<n_{j}$ by transitivity. Contradiction.

- Take $R=\{(n, n),(n, n+1),(m, n) \mid m, n \in \mathbb{N}, m>n+1\}$ and the list $[1,2,3]$. The important point is that R is not transitive: $1 R 2$ and $2 R 3$, but not $1 R 3$. (This R is even total.)
$(*)$ Suppose $l=\left[n_{1}, \ldots, n_{k}\right]$ is a locally R-sorted list with R a total relation, and that we have arrived at position $i+1$ trying to insert m, starting from the head. Because we have arrived there, we know that $m R n_{i}$, hence by totality $n_{i} R m$. If $m R n_{i+1}$, we may insert m and have local R-sortedness: $n_{i} R m R n_{i+1}$. Otherwise, we continue with $i+2$.
$4 *)$ The idea is that a base n-number is divisible by $n-1$ iff its digits sum up to $n-1$. For instance, in base- 10 the number 684 is divisible by 9 since $6+8+4=14+4=1+4+4=5+4=9$. The process only needs numbers <10; in the TM only <4, the states. The complexity is n.

```
0}\vdash\vdash\mp@code{ro
0 _ * r halt-reject
0 0 * r 0
0 1 * r 1
02*r2
0 3 * r 3
1 _ * r halt-reject
10 * r 1
1 1 * r 2
12 * r 3
1 3 * r 1
2 _ * r halt-reject
2 0 * r 2
2 1 * r 3
2 2 * r 1
2 3 * r 2
3 _ * r halt-accept
30 * r 3
3 1 * r 1
3 2 * r 2
3 3 * r 3
```

