1) a) The Hasse diagram of \leq is, see the figure below, the graph of the relation $S=\{(n, n+1) \mid$ $n \in N\}$, for which it is readily verified that it is irreflexive and atransitive (if $x S y$ and $y S z$ then not $x S z), S^{*}=\leq$, and it is least: each $(n, n+1)$ must be in any sub-relation S^{\prime} of \leq such that $S^{\prime *}=\leq$ as $n<n+1$ and there is no k such that $n<k<n+1 .<$ is well-founded as there is no descending chain longer than n from any n. 0 is minimal.
b) The Hasse diagram of \geq is, see the figure, the graph of the relation $S=\{(n+1, n) \mid$ $n \in N\}$. This follows from the previous item and noting $>$ is the converse of $<.>$ is not well-founded as from any n, there is an infinite descending chain $\ldots>n+2>n+1>n$.
c) The Hasse diagram of $\leq_{\text {lex }}$ on $\{a\}$ is, see the figure, the graph of the relation $S=$ $\left\{\left(a^{n}, a^{n+1}\right) \mid n \in N\right\}$. This follows by noting that $a^{n}<_{\text {lex }} a^{m}$ iff $n<m$, so that the answers are 'the same' as in the first item, replacing natural numbers n by words a^{n}.
d) For the partial order $\leq_{\operatorname{lex}}$ on $\{a, b\}$ with $a \leq b$, there is no least relation S with $S^{*}=\leq_{\text {lex }}$. For a proof by contradiction, suppose such an S were to exist, and consider $a<_{\text {lex }} b$. Then $a S^{*} b$, and we even have $a S^{+} b$ as $a \neq b$, so some path $a S \ldots S w S b$. Observe that w being between a and b, it must have shape $a v$ for some word v, and thus, appending a to it, also $a v<_{\text {lex }} a v a<_{\text {lex }} b$ and $a v S^{+}$ava $S^{+} b$. Therefore, there is an S-path of length at least 2 from $a v$ to b. As being least entails S is irreflexive, $(a v, b)$ is not used in that path, ($a v, b$) could be removed from S without changing the reflexive-transitive closure, contradicting S being least. Since $\ldots a a b \leq_{\text {lex }} a b \leq_{\text {lex }} b$ well-foundedness does not hold.
e) For divisibility on \mathbb{R}^{\prime} there is no Hasse diagram, because if x divides y, there is some z such that x divides z and z divides y (we say the relation is dense: between any two elements there is another one). For suppose $x \cdot z^{\prime}=y$ for some $z^{\prime}>1$. Setting $z=x \cdot \sqrt{z^{\prime}}$, we have x divides z and z divides y since $x \cdot \sqrt{z^{\prime}} \cdot \sqrt{z^{\prime}}=y$ and $\sqrt{z^{\prime}}>1$. Reasoning as in the previous item this contradicts existence of a suitable least subrelation. Repeatedly taking the square root starting from, say, 2 shows non-well-foundedness.
f) For divisibility on \mathbb{N}^{\prime} the Hasse diagram is, see the figure, the graph of the relation $S=\left\{(n, p \cdot n) \mid n \in N^{\prime}, p\right.$ a prime number $\}$, by reasoning as in the first item, since prime numbers are not further decomposable. It is well-founded as there is no descending chain longer than $\log n$ from any n. The prime numbers are minimal.

2) a) see the left graph below; if $P(\epsilon)$ and if for all $w, P(w)$ entails $P(0 w)$ and $P(1 w)$, then for all $w, P(w) . R_{1}^{+}$is the suffix relation;
b) see the right graph below (where arrow-heads have been omitted at the top to avoid clutter); if $P(\epsilon)$ and if for all $w_{1}, w_{2}, P\left(w_{1} w_{2}\right)$ entails $P\left(w_{1} 0 w_{2}\right)$ and $P\left(w_{1} 1 w_{2}\right)$, then for all $w, P(w) . R_{2}^{+}$is the subsequence relation;
c) see the left graph below, and reverse all words; if $P(\epsilon)$ and if for all $w, P(w)$ entails $P(w 0)$ and $P(w 1)$, then for all $w, P(w) . R_{3}^{+}$is the prefix relation.

3) Postponed

4*) Let \leq be the partial order with predecessor/strict part given by $0<1$. The predecessor/strict part of the componentwise extension $\leq_{\text {comp }}$ of \leq relates $(0,1)$ to $(1,1)$ since $0 \leq 1$ and $1 \leq 1$ but $(0,1) \neq(1,1)$. However, the componentwise extension $<_{\text {comp }}$ of the predecessor/strict part $<$ does not relate $(0,1)$ to $(1,1)$ since although $0<1$, not $1<1$.

