- a) The Hasse diagram of ≤ is, see the figure below, the graph of the relation S = {(n, n+1) | n ∈ N}, for which it is readily verified that it is irreflexive and atransitive (if x S y and y S z then not x S z), S* = ≤, and it is least: each (n, n+1) must be in any sub-relation S' of ≤ such that S'* = ≤ as n < n + 1 and there is no k such that n < k < n + 1. < is well-founded as there is no descending chain longer than n from any n. 0 is minimal.
 - b) The Hasse diagram of \geq is, see the figure, the graph of the relation $S = \{(n + 1, n) \mid n \in N\}$. This follows from the previous item and noting > is the converse of <. > is not well-founded as from any n, there is an infinite descending chain ... > n+2 > n+1 > n.
 - c) The Hasse diagram of \leq_{lex} on $\{a\}$ is, see the figure, the graph of the relation $S = \{(a^n, a^{n+1}) \mid n \in N\}$. This follows by noting that $a^n <_{\text{lex}} a^m$ iff n < m, so that the answers are 'the same' as in the first item, replacing natural numbers n by words a^n .
 - d) For the partial order \leq_{lex} on $\{a, b\}$ with $a \leq b$, there is no least relation S with $S^* = \leq_{\text{lex}}$. For a proof by contradiction, suppose such an S were to exist, and consider $a <_{\text{lex}} b$. Then $a S^* b$, and we even have $a S^+ b$ as $a \neq b$, so some path $a S \dots S w S b$. Observe that w being between a and b, it must have shape av for some word v, and thus, appending a to it, also $av <_{\text{lex}} ava <_{\text{lex}} b$ and $av S^+ ava S^+ b$. Therefore, there is an S-path of length at least 2 from av to b. As being least entails S is irreflexive, (av, b) is not used in that path, (av, b) could be removed from S without changing the reflexive–transitive closure, contradicting S being least. Since $\dots aab \leq_{\text{lex}} ab \leq_{\text{lex}} b$ well-foundedness does not hold.
 - e) For divisibility on \mathbb{R}' there is no Hasse diagram, because if x divides y, there is some z such that x divides z and z divides y (we say the relation is *dense*: between any two elements there is another one). For suppose $x \cdot z' = y$ for some z' > 1. Setting $z = x \cdot \sqrt{z'}$, we have x divides z and z divides y since $x \cdot \sqrt{z'} \cdot \sqrt{z'} = y$ and $\sqrt{z'} > 1$. Reasoning as in the previous item this contradicts existence of a suitable *least* subrelation. Repeatedly taking the square root starting from, say, 2 shows non-well-foundedness.
 - f) For divisibility on \mathbb{N}' the Hasse diagram is, see the figure, the graph of the relation $S = \{(n, p \cdot n) \mid n \in N', p \text{ a prime number}\}$, by reasoning as in the first item, since prime numbers are not further decomposable. It is well-founded as there is no descending chain longer than log n from any n. The prime numbers are minimal.

- 2) a) see the left graph below; if $P(\epsilon)$ and if for all w, P(w) entails P(0w) and P(1w), then for all w, P(w). R_1^+ is the suffix relation;
 - b) see the right graph below (where arrow-heads have been omitted at the top to avoid clutter); if $P(\epsilon)$ and if for all w_1, w_2 , $P(w_1w_2)$ entails $P(w_10w_2)$ and $P(w_11w_2)$, then for all w, P(w). R_2^+ is the subsequence relation;
 - c) see the left graph below, and reverse all words; if $P(\epsilon)$ and if for all w, P(w) entails P(w0) and P(w1), then for all w, P(w). R_3^+ is the prefix relation.

3) Postponed

4*) Let \leq be the partial order with predecessor/strict part given by 0 < 1. The predecessor/strict part of the componentwise extension \leq_{comp} of \leq relates (0, 1) to (1, 1) since $0 \leq 1$ and $1 \leq 1$ but $(0, 1) \neq (1, 1)$. However, the componentwise extension $<_{\text{comp}}$ of the predecessor/strict part < does not relate (0, 1) to (1, 1) since although 0 < 1, not 1 < 1.