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-) a) By mathematical induction we show ∀n. . . .
• base case:

∑0
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i = 0 = 21 − 1; otherwise

•
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i = (

∑n−1
i=1 2i)+2n =IH (2n−1)+2n = 2n+1−1, for IH

∑n−1
i=1 2i = 2n+1−1−1.

b) By well-founded induction on {(A, {a} ∪A) | A a finite set , a 6∈ A} we show ∀A. . . .
• base case: the empty set ∅ has one subset (itself) and 1 = 20 = 2|∅|.

• we can write a finite set A as {a}∪A′ for some finite set A′ and a 6∈ A′. The number
of subsets of {a} ∪ A is the twice that of A′ since we can adjoin a to each of the
latter. From this we conclude since by the IH the number of subsets of A′ is 2|A

′|,
and 2 · 2|A′| = 21+|A

′| = 2|A|.

c) By mathematical induction we show ∀n . . . .
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, if 0 < k < n, applying the IH twice for n− 1.

• otherwise k = 0 or n = k and n!
0!n! =

n!
n!0! = 1.

d) By well-founded induction on {(l, l′) | `(l) < `(l′)} (comparing length) we show ∀l . . . .
• base case: then `(l) = 0, then x does not occur in l and bs x [] = False.

• if `(l) = 1, l =[ y ]. If x occurs in l, bs x [y] = x == y = True, otherwise False.

• otherwise `(l) > 1, and 0 < h = b`(l)/2c < `(l), and accordingly we split l =
[l0, . . . , l`(l)−1] into shorter lists lt = [l0, . . . , lh−1] and ld = [lh, . . . l`(l)−1], both of
which are ≤-sorted again. if x < lt then by ≤-sortedness of l, x occurs in l iff it
occurs in lt (as x does not occur in ld), and we conclude by the IH for lt as then
bs x l = bs x (take h l) = bs x lt. Otherwise, x occurs in l iff it occurs in ld
and we conclude by the IH for ld as then bs x l = bs x (drop h l) = bs x ld.

1) • See the figure below, where the rule applied to obtain an element is indicated by labels
a–d (on the arrow(s)) below them.
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• The well-founded induction principle for the relation RW = {(w, 0w1), (w, 1ww0) | w ∈
W} on W is:
If (P (0110), and P (ε), and if for all w ∈ W if P (w) then P (0w1), and if for all w ∈ W
if P (w) then P (1ww0)), then for all w ∈W , P (w).

• We check the four cases, two base cases and two step cases, corresponding to the four
clauses, as in the induction principle in the previous item, for the property P (w) = w
has the same number of 0s and 1s.

– P (0110) holds since there are two 0s and two 1s in 0110;

– P (ε) holds since there are zero 0 and zero 1s in ε;

– Suppose w ∈ W has the same number n of 0s and 1s (the IH). Then so does 0w1,
namely n+ 1 of each.

– Suppose w ∈W has the same number n of 0s and 1s (the IH). Then so does 1ww0,
namely 2n+ 1 of each.

2) We make a random instructive selection.

a) Let f be the relation {(1, 0), (0, 0)} on the set of bits {0, 1}. It is a function since both
inputs 0, 1 have a unique output, 0. However, its inverse f−1 = {(0, 1), (0, 0)} is not a
function on bits, even for two reasons: there is no output for the input 1, and the input
0 has two outputs 1 and 0;

b) Let f = {(0, 0), (1, 1)} and g = {(0, 1), (1, 0)}. Both are functions on bits, but their
intersection f ∩ g = ∅ is not, as there is no output for 0 (nor for 1);

c) The relations ≤ = {(0, 0), (0, 1), (1, 1)} and v = {(0, 0), (1, 0), (1, 1)} are partial orders
on bits, but their union ≤ ∪ v = {(0, 0), (0, 1), (1, 0), (1, 1)} is not since anti-symmetry
fails: (0, 1) and (1, 0) are in ≤ ∪v but 0 6= 1;

d) The composition of the above partial orders yields ≤ ;v = {(0, 0), (0, 1), (1, 0), (1, 1)},
i.e. the same relation as the intersection which we already know not to be anti-symmetric.

e) The union R ∪ S = {(0, 1), (1, 0)} of the well-founded relations R = {(0, 1)} and S =
{(1, 0)} is not well-founded, since we have the infinite descending chain . . . 0 (R ∪ S)
1 (R ∪ S) 0.

4) A solution is to take the function f that maps n ∈ N to −n
2 if n is even and to n+1

2 if n is
odd. For instance 0 7→ 0, 1 7→ 1, 2 7→ −1, 3 7→ 2, . . . . The inverse function defined to map
an integer x ∈ Z to −2x if x is not positive, and to 2x− 1 otherwise, is easily checked to be
the inverse f−1 of f by cases, e.g. in case n ∈ N is odd, then f−1(f(n)) = 2(n+1

2 )− 1 = n as
desired, and in case x ∈ Z is not positive, then f(f−1(x)) = −−2x2 = x. Defining for x, y ∈ Z,
x v y if f−1(x) ≤ f−1(y) works, for f as above, or in fact for any bijection f between N
and Z , since all properties of ≤ carry over: E.g. to check anti-symmetry of v, suppose x v y
and y v x, then f−1(x) ≤ f−1(y) and f−1(y) ≤ f−1(x), so by anti-symmetry of ≤, we have
f−1(x) = f−1(y), so also f(f−1(x)) = f(f−1(y)) hence x = y by f being a bijective function.
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