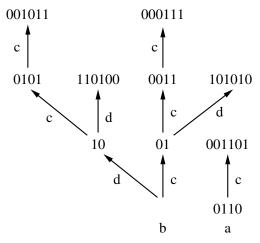
- -) a) By mathematical induction we show $\forall n \dots$
 - base case: $\sum_{i=1}^{0} 2^{i} = 0 = 2^{1} 1$; otherwise
 - $\sum_{i=1}^{n} 2^i = (\sum_{i=1}^{n-1} 2^i) + 2^n =_{IH} (2^n 1) + 2^n = 2^{n+1} 1$, for IH $\sum_{i=1}^{n-1} 2^i = 2^{n+1-1} 1$.
 - b) By well-founded induction on $\{(A, \{a\} \cup A) \mid A \text{ a finite set }, a \notin A\}$ we show $\forall A \dots$
 - base case: the empty set \emptyset has one subset (itself) and $1 = 2^0 = 2^{|\emptyset|}$.
 - we can write a finite set A as $\{a\} \cup A'$ for some finite set A' and $a \notin A'$. The number of subsets of $\{a\} \cup A$ is the twice that of A' since we can adjoin a to each of the latter. From this we conclude since by the IH the number of subsets of A' is $2^{|A'|}$, and $2 \cdot 2^{|A'|} = 2^{1+|A'|} = 2^{|A|}$.
 - c) By mathematical induction we show $\forall n \dots$
 - $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{(n-1)!(n-k)}{k!(n-k)!} + \frac{(n-1)!k}{k!(n-k)!} = \frac{(n-1)!}{k!((n-1)-k)!} + \frac{(n-1)!}{(k-1)!((n-1)-(k-1))!} =_{IH} \binom{n-1}{k} + \binom{n-1}{k-1},$ if 0 < k < n, applying the IH twice for n-1.
 - otherwise k = 0 or n = k and $\frac{n!}{0!n!} = \frac{n!}{n!0!} = 1$.
 - d) By well-founded induction on $\{(l, l') \mid \ell(l) < \ell(l')\}$ (comparing length) we show $\forall l \dots$
 - base case: then $\ell(l) = 0$, then x does not occur in l and bs x [] = False.
 - if $\ell(l) = 1$, l = [y]. If x occurs in l, bs x [y] = x = y =True, otherwise False.
 - otherwise $\ell(l) > 1$, and $0 < h = \lfloor \ell(l)/2 \rfloor < \ell(l)$, and accordingly we split $l = [l_0, \ldots, l_{\ell(l)-1}]$ into shorter lists $lt = [l_0, \ldots, l_{h-1}]$ and $ld = [l_h, \ldots l_{\ell(l)-1}]$, both of which are \leq -sorted again. if x < lt then by \leq -sortedness of l, x occurs in l iff it occurs in lt (as x does not occur in ld), and we conclude by the IH for lt as then bs $x \ l = bs \ x$ (take $h \ l) = bs \ x \ lt$. Otherwise, x occurs in l iff it occurs in ld and we conclude by the IH for ld as then bs $x \ l = bs \ x \ (drop \ h \ l) = bs \ x \ ld$.
- See the figure below, where the rule applied to obtain an element is indicated by labels a-d (on the arrow(s)) below them.



- The well-founded induction principle for the relation $R_W = \{(w, 0w1), (w, 1ww0) \mid w \in W\}$ on W is: If $(P(0110), \text{ and } P(\epsilon), \text{ and if for all } w \in W \text{ if } P(w) \text{ then } P(0w1), \text{ and if for all } w \in W \text{ if } P(w) \text{ then } P(1ww0)), \text{ then for all } w \in W, P(w).$
- We check the four cases, two base cases and two step cases, corresponding to the four clauses, as in the induction principle in the previous item, for the property P(w) = w has the same number of 0s and 1s.
 - P(0110) holds since there are two 0s and two 1s in 0110;
 - $P(\epsilon)$ holds since there are zero 0 and zero 1s in ϵ ;
 - Suppose $w \in W$ has the same number n of 0s and 1s (the IH). Then so does 0w1, namely n + 1 of each.
 - Suppose $w \in W$ has the same number n of 0s and 1s (the IH). Then so does 1ww0, namely 2n + 1 of each.
- 2) We make a random instructive selection.
 - a) Let f be the relation $\{(1,0), (0,0)\}$ on the set of bits $\{0,1\}$. It is a *function* since both inputs 0, 1 have a unique output, 0. However, its *inverse* $f^{-1} = \{(0,1), (0,0)\}$ is not a function on bits, even for two reasons: there is *no* output for the input 1, and the input 0 has *two* outputs 1 and 0;
 - b) Let $f = \{(0,0), (1,1)\}$ and $g = \{(0,1), (1,0)\}$. Both are functions on bits, but their intersection $f \cap g = \emptyset$ is not, as there is *no* output for 0 (nor for 1);
 - c) The relations $\leq = \{(0,0), (0,1), (1,1)\}$ and $\sqsubseteq = \{(0,0), (1,0), (1,1)\}$ are partial orders on bits, but their union $\leq \cup \sqsubseteq = \{(0,0), (0,1), (1,0), (1,1)\}$ is not since anti-symmetry fails: (0,1) and (1,0) are in $\leq \cup \sqsubseteq$ but $0 \neq 1$;
 - d) The composition of the above partial orders yields $\leq ; \equiv = \{(0,0), (0,1), (1,0), (1,1)\}$, i.e. the same relation as the intersection which we already know not to be anti-symmetric.
 - e) The union $R \cup S = \{(0,1), (1,0)\}$ of the well-founded relations $R = \{(0,1)\}$ and $S = \{(1,0)\}$ is not well-founded, since we have the infinite descending chain ... $0 \ (R \cup S)$ $1 \ (R \cup S) \ 0.$
- 4) A solution is to take the function f that maps $n \in \mathbb{N}$ to $-\frac{n}{2}$ if n is even and to $\frac{n+1}{2}$ if n is odd. For instance $0 \mapsto 0, 1 \mapsto 1, 2 \mapsto -1, 3 \mapsto 2, \ldots$. The inverse function defined to map an integer $x \in \mathbb{Z}$ to -2x if x is not positive, and to 2x 1 otherwise, is easily checked to be the inverse f^{-1} of f by cases, e.g. in case $n \in \mathbb{N}$ is odd, then $f^{-1}(f(n)) = 2(\frac{n+1}{2}) 1 = n$ as desired, and in case $x \in Z$ is not positive, then $f(f^{-1}(x)) = -\frac{-2x}{2} = x$. Defining for $x, y \in Z$, $x \sqsubseteq y$ if $f^{-1}(x) \leq f^{-1}(y)$ works, for f as above, or in fact for any bijection f between \mathbb{N} and \mathbb{Z} , since all properties of \leq carry over: E.g. to check anti-symmetry of \sqsubseteq , suppose $x \sqsubseteq y$ and $y \sqsubseteq x$, then $f^{-1}(x) \leq f^{-1}(y)$ and $f^{-1}(y) \leq f^{-1}(x)$, so by anti-symmetry of \leq , we have $f^{-1}(x) = f^{-1}(y)$, so also $f(f^{-1}(x)) = f(f^{-1}(y))$ hence x = y by f being a bijective function.