1) - The functions $f: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{>0}$ defined by $f(x)=x+1$, and $g: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ defined by $g(x)=x$, are clearly injections. Therefore, by the theorem of Schröder-Bernstein, there exists a bijection between $\mathbb{R}_{\geq 0}$ and $\mathbb{R}_{>0}{ }^{1}$ Note that there are infinitely (uncountably) many possible solutions, e.g. $f(x)=x+\epsilon$ works for any $\epsilon>0$.

- The functions $f:(0,1) \rightarrow \mathbb{R}_{>0}$ defined by $f(x)=x$, and $g: \mathbb{R} \rightarrow(0,1)$ defined by $g(x)=\frac{1}{1+x}$, are clearly injections. Therefore, by the theorem of Schröder-Bernstein, there exists a bijection between $(0,1)$ and $\mathbb{R}>0 \square^{2}$
- Since we know $|\mathbb{N}|<|\mathbb{R}|$ and trivially $|\mathbb{R}| \leq|\mathbb{R} \times \mathbb{R}|$, e.g. $x \mapsto(x, x)$ is an injection, we have by \leq being a partial order, that $|\mathbb{N}|<|\mathbb{R} \times \mathbb{R}|$ using transitivity.

2) - Every set B_{n} is non-empty since for all $n, a^{n} \in B_{n} . B_{n} \cap B_{m}=\emptyset$ if $n \neq m$ since ℓ is a function on words. The corresponding equivalence relation is defined by $w=\ell v$ if $\ell(w)=\ell(v)$. The cardinality of $B_{n}=2^{n}$.

- Reflexivity and symmetry are trivial consequences of reflexivity of equality on natural numbers and commutativity of multiplication, respectively. If for fractions $\frac{n}{m}, \frac{k}{\ell}, \frac{p}{q}$, we have $n \cdot \ell=m \cdot k$ and $k \cdot q=\ell \cdot p$, then $n \cdot q \cdot k=n \cdot \ell \cdot p=m \cdot k \cdot p$, hence by cancelling k on both sides, $n \cdot q=m \cdot p$. A system of representatives is $\left\{\left.\frac{n}{m} \right\rvert\, \operatorname{gcd}(n, m)=1\right\}$, the set of normalised fractions.

3) - By subtraction: $\operatorname{gcd}(42,63)=\operatorname{gcd}(42,21)=\operatorname{gcd}(21,21)$ so the common integer 21 is the gcd. By division: $\operatorname{gcd}(42,63)=\operatorname{gcd}(42,21)$ so the divisor 21 is the gcd, as $21 \mid 42$.
(1) $77=1 \cdot 77+0.30$
(2) $30=0 \cdot 77+1 \cdot 30$
(3) $47=1 \cdot 77+(-1) \cdot 30$
(1) $-(2)$
(4) $17=1 \cdot 77+(-2) \cdot 30$
(3) - (2)
(5) $13=(-1) \cdot 77+\quad 3 \cdot 30$
(2) - (4)
(6) $4=2 \cdot 77+(-5) \cdot 30$
(4) - (5)
(7) $9=(-3) \cdot 77+\quad 8 \cdot 30$
(5) $-(6)$
(8) $5=(-5) \cdot 77+\quad 13 \cdot 30$
(7) - (6)
(9) $1=(-7) \cdot 77+\quad 18 \cdot 30$
(8) - (6)

Indeed $(-7) \cdot 77+18 \cdot 30=-539+540=1$.
4*) The bijection f^{\prime} between \mathbb{N} and \mathbb{Z} constructed from f, g according to the proof of the theorem of Schröder-Bernstein on slide 13 of week 8, maps x to $g^{-1}(x)=n$ if $x=2^{n}$ and $n \in N$ is not itself a power of 2 and $x \neq 0$, and to $g^{-1}(x)=-n$ if $x=3^{n}$ for $n \in N$ and positive

[^0](x-chain ends on the right in both cases), and to $f(x)=x$ otherwise (either x-chain ends on the left, or it is ∞ if x is 0 or of shape $2^{2^{n}}$ for some $\left.n \in N\right)$. In particular $f^{\prime}(0)=f(0)=0$, $f^{\prime}(1)=f(1)=1, f^{\prime}(2)=f(2)=2, f^{\prime}(3)=g^{-1}(3)=-1, f^{\prime}(4)=f(4)=4$ since $4=2^{2^{1}}$ and $f^{\prime}(n)=f(n)=n$ if $5 \leq n \leq 7$ since these are not powers of 2 or $3, f^{\prime}(8)=g^{-1}(8)=3$ as $8=2^{3}$ and 3 is not a power of $2, f^{\prime}(9)=g^{-1}(9)=-2$ as $9=2^{3}$, etc.
$5 *$) By exactly the same proof as on slide 12 of lecture 7, replacing (cardinalities of) intersections \bigcap and unions \bigcup with gcd and lcm respectively, minus - with division \div and sum \sum with product Π.

[^0]: ${ }^{1}$ The bijection f^{\prime} constructed from f, g according to the proof of the theorem, on slide 13 of week 8 , maps x to $g^{-1}(x)=x$ if $x \notin \mathbb{N}$ (x-chain ends in interval (0,1) on the right), and to $x+1$ if $x \in \mathbb{N}$ (x-chain ends in $\{1\}$ on the left).
 ${ }^{2}$ The bijection f^{\prime} constructed from f, g according to the proof of the theorem, on slide 13 of week 8 , maps x to $g^{-1}(x)=\frac{1}{x}-1$ if $x \neq \frac{-1+\sqrt{5}}{2}\left(x\right.$-chain ends in a number >1 on the right; applying g^{-1} to a value $0<x<1$ increases the distance to $\frac{-1+\sqrt{5}}{2}$ (the golden ratio minus 1)) and to $f(x)=x=\frac{-1+\sqrt{5}}{2}$ otherwise (x-chain is $\infty)$. Thus, $f=g^{-1}$, i.e. g is already a bijection.

