- 1) The functions $f : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$ defined by f(x) = x + 1, and $g : \mathbb{R}_{>0} \to \mathbb{R}_{\geq 0}$ defined by g(x) = x, are clearly injections. Therefore, by the theorem of Schröder–Bernstein, there exists a bijection between $\mathbb{R}_{\geq 0}$ and $\mathbb{R}_{>0}$.¹ Note that there are infinitely (uncountably) many possible solutions, e.g. $f(x) = x + \epsilon$ works for any $\epsilon > 0$.
 - The functions $f: (0,1) \to \mathbb{R}_{>0}$ defined by f(x) = x, and $g: \mathbb{R} \to (0,1)$ defined by $g(x) = \frac{1}{1+x}$, are clearly injections. Therefore, by the theorem of Schröder–Bernstein, there exists a bijection between (0,1) and $\mathbb{R}_{>0}^2$.
 - Since we know $|\mathbb{N}| < |\mathbb{R}|$ and trivially $|\mathbb{R}| \le |\mathbb{R} \times \mathbb{R}|$, e.g. $x \mapsto (x, x)$ is an injection, we have by \le being a partial order, that $|\mathbb{N}| < |\mathbb{R} \times \mathbb{R}|$ using transitivity.
- 2) Every set B_n is non-empty since for all $n, a^n \in B_n$. $B_n \cap B_m = \emptyset$ if $n \neq m$ since ℓ is a function on words. The corresponding equivalence relation is defined by $w =_{\ell} v$ if $\ell(w) = \ell(v)$. The cardinality of $B_n = 2^n$.
 - Reflexivity and symmetry are trivial consequences of reflexivity of equality on natural numbers and commutativity of multiplication, respectively. If for fractions $\frac{n}{m}$, $\frac{k}{\ell}$, $\frac{p}{q}$, we have $n \cdot \ell = m \cdot k$ and $k \cdot q = \ell \cdot p$, then $n \cdot q \cdot k = n \cdot \ell \cdot p = m \cdot k \cdot p$, hence by cancelling k on both sides, $n \cdot q = m \cdot p$. A system of representatives is $\{\frac{n}{m} \mid \gcd(n,m) = 1\}$, the set of normalised fractions.
- 3) By subtraction: gcd(42, 63) = gcd(42, 21) = gcd(21, 21) so the common integer 21 is the gcd. By division: gcd(42, 63) = gcd(42, 21) so the divisor 21 is the gcd, as $21 \mid 42$.

$(1) \\ (2) \\ (3) \\ (4) \\ (5) \\ (6) \\ (7) \\ (2) \\ (2) \\ (2) \\ (3) \\ (4) \\ (5) \\ (6) \\ (7) \\ (6) \\ (7) \\ (6) \\ (7) \\ (6) \\ (7) $	$\begin{array}{rcl} 30 = & 0 \cdot 77 + \\ 47 = & 1 \cdot 77 + \end{array}$	$(-(-1) \cdot 30)$ $(-(-2) \cdot 30)$ $(-(-3) \cdot 30)$ $(-(-5) \cdot 30)$	(1) - (2) (3) - (2) (2) - (4) (4) - (5) (5) - (6)
` '		$- 8 \cdot 30$ $- 13 \cdot 30$	

Indeed $(-7) \cdot 77 + 18 \cdot 30 = -539 + 540 = 1.$

4*) The bijection f' between \mathbb{N} and \mathbb{Z} constructed from f, g according to the proof of the theorem of Schröder–Bernstein on slide 13 of week 8, maps x to $g^{-1}(x) = n$ if $x = 2^n$ and $n \in N$ is not itself a power of 2 and $x \neq 0$, and to $g^{-1}(x) = -n$ if $x = 3^n$ for $n \in N$ and positive

¹The bijection f' constructed from f, g according to the proof of the theorem, on slide 13 of week 8, maps x to $g^{-1}(x) = x$ if $x \notin \mathbb{N}$ (x-chain ends in interval (0, 1) on the right), and to x + 1 if $x \in \mathbb{N}$ (x-chain ends in $\{1\}$ on the left).

²The bijection f' constructed from f, g according to the proof of the theorem, on slide 13 of week 8, maps x to $g^{-1}(x) = \frac{1}{x} - 1$ if $x \neq \frac{-1+\sqrt{5}}{2}$ (x-chain ends in a number >1 on the right; applying g^{-1} to a value 0 < x < 1 increases the *distance* to $\frac{-1+\sqrt{5}}{2}$ (the golden ratio minus 1)) and to $f(x) = x = \frac{-1+\sqrt{5}}{2}$ otherwise (x-chain is ∞). Thus, $f = g^{-1}$, i.e. g is already a bijection.

(x-chain ends on the right in both cases), and to f(x) = x otherwise (either x-chain ends on the left, or it is ∞ if x is 0 or of shape 2^{2^n} for some $n \in N$). In particular f'(0) = f(0) = 0, f'(1) = f(1) = 1, f'(2) = f(2) = 2, $f'(3) = g^{-1}(3) = -1$, f'(4) = f(4) = 4 since $4 = 2^{2^1}$ and f'(n) = f(n) = n if $5 \le n \le 7$ since these are not powers of 2 or 3, $f'(8) = g^{-1}(8) = 3$ as $8 = 2^3$ and 3 is not a power of 2, $f'(9) = g^{-1}(9) = -2$ as $9 = 2^3$, etc.

5*) By exactly the same proof as on slide 12 of lecture 7, replacing (cardinalities of) intersections \bigcap and unions \bigcup with gcd and lcm respectively, minus – with division \div and sum \sum with product \prod .