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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Questions and methodology

• When are two structures the same?

• When is one structure a substructure of another?

• How can we represent structures?

• What operations can we do on the structures?

• Specify structures and operations mathematically

• Implement operations on structures by algorithms

• Prove that algorithm implement the operations, using appropriate mathematical
techniques

• This course: basic discrete structures and basic mathematical techniques
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Graphs for modelling problems

• History: Euler’s seven bridges

• Sameness: Graph isomorphism problem

• Map drawing: Four color theorem

• Graph drawing: Kuratowski graph planarity

• Networks: Maximum flow problem

• Social networks: Friendship paradox

• flow graphs, abstract syntax trees, neural networks, . . .
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Definition (Directed multigraph)

A directed multigraph G is given by

• a set V of vertices or nodes

• a set E of edges

• functions src : E→ V and tgt : E→ V that map an edge e to its beginning or
source src(e) respectively end or target tgt(e)

• e is an edge from src(e) to tgt(e), its direction

Example

Let V = {0,1,2,3}, E = {0,1,2, . . . ,7} and the functions src and tgt be given by

e src(e) tgt(e) e src(e) tgt(e)

0 0 0 4 1 3

1 0 1 5 2 2

2 1 2 6 2 3

3 1 3 7 3 0
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Example (Continued)

0

0 1
1

7
4

3
2

3
6

2

5

6



Definition

• Node c is an immediate predecessor of node d, if there is an edge from c to d

• d is then an immediate successor of c

• a loop is an edge from a node to itself

• edges having the same sources and the same edges are said to be parallel

• the number of edges having e as target is the indegree of e

• the number of edges having e as source is the outdegree of e

• a multigraph is called labelled if there are functions from the nodes or edges to
some set of labels.

• if labels are numbers, then we speak of weighted graphs
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Example (Continued)

The previous graph is the state-diagram of a synchronous circuit with input x, output
y, a NOR-gate and a buffer of length 2

the equations for the bit streams are

y(t) = x(t)∨w(t)
w(t + 1) = z(t)

z(t + 1) = y(t)

indexed by t ∈ N discrete time
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Definition

• A directed graph (or digraph) is a directed multigraph without parallel edges

• for every pair (c,d) of nodes there is at most one edge e from c to d

• instead of the edge e we may write the pair (c,d)

Example

Let R be a relation on a set M. Then the digraph of R is given by:

• the set of nodes M

• the set of edges R

• the functions src((x, y)) = x and tgt((x, y)) = y
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Definition

• Let G = (V,E, src, tgt) be a directed multigraph

• G′ = (V′,E′, src′, tgt′) is a sub-multigraph of G, if V′ ⊆ V, E′ ⊆ E and
src′(e) = src(e), tgt′(e) = tgt(e) for all e ∈ E′

• A sub-graph is a sub-multigraph that is a graph

Definition

Let (V,E, src, tgt) be a directed multigraph with nodes c,d

• A tuple (e0, e1, . . . , e`−1) ∈ E` is a path from c to d of length `, if there are nodes
v0, v1, . . . , v` such that v0 = c, v` = d, with src(ei) = vi and tgt(ei) = vi+1 for
i = 0,1, . . . , `− 1

• v0 is the source node

• v` is the target node

• v1, v2, . . . , v`−1 are the intermediate nodes
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Definition (Continued)

• the empty tuple () ∈ E0 is the empty path from any node e, with source, target e

• a multigraph is strongly connected if there is a path from each node to each node

• a path is simple if non-empty and has pairwise distinct nodes (exception v0 = v`)

• the composition of paths (e0, e1, . . . , e`−1) (from c to d) and (f0, f1, . . . , fm−1) (from
d to e) is a path from c to e given by

(e0, e1, . . . , e`−1, f0, f1, . . . , fm−1)

Definition

Let (V,E, src, tgt) be a directed multigraph having finitely many nodes- and edges; we
number the nodes as v0, v1, . . . , vn−1. The matrix A ∈ N n×n,

Aij := #({e ∈ E | src(e) = vi and tgt(e) = vj})
is the adjacency matrix
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Example

The adjacency matrix for the multigraph of the first example is
1 1 0 0

0 0 1 2

0 0 1 1

1 0 0 0
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Shortest paths

Definition

Let G be a directed multigraph with non-negative edge-weight given by w

• The length or weight of a path (e0, e1, . . . , e`−1) with respect to w is the sum of the
weights w(ei) of its edges ei
• The distance from node e to node d is the minimal length of a path from e to d, if

that exists, and∞ otherwise

14



Algorithm of Floyd, distance initialisation

Definition

• Let G be a directed multigraph with finite sets of nodes V and edges E, and a
non-negative edge-weights w

• We number the nodes v0, v1, . . . , vn−1

• Let B be the n× n-matrix with elements

Bij :=


0 if i = j

min{w(e) | e edge from vi to vj}
i 6= j and edge from vi
to vj exists

∞ otherwise

15



Example

From adjacency matrix to distance matrix before Floyd
1 1 0 0

0 0 1 2

0 0 1 1

1 0 0 0

 ⇒


0 1 ∞ ∞
∞ 0 1 1

∞ ∞ 0 1

1 ∞ ∞ 0
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Algorithm of Floyd

Theorem

The following algorithm overwrites the matrix B with the matrix of distances

For r from 0 to n− 1 repeat:

Set N = B.

For i from 0 to n− 1 repeat:

For j from 0 to n− 1 repeat:

Set Nij = min(Bij,Bir + Brj).

Set B = N.
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Example

Distances matrix after Floyd 
0 1 2 2

2 0 1 1

2 3 0 1

1 2 3 0
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Properties of Floyd’s algorithm

• Does it work? What does that mean, exactly?

• In what language do we express that?

• How do we prove it?

• Why does the algorithm work?

• How fast is it? As a function of what?

• How much memory does it use?

• How do we express this in a computer-independent way?

• . . .
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