

Discrete structures

Vincent van Oostrom

http://cl-informatik.uibk.ac.at

Course themes

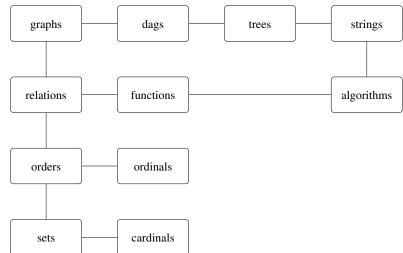
- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity

1

3

• decidable and undecidable problem

Discrete structures



Questions and methodology

- When are two structures the same?
- When is one structure a substructure of another?
- How can we represent structures?

2

• What operations can we do on the structures?

Questions and methodology

- When are two structures the same?
- When is one structure a substructure of another?
- How can we represent structures?
- What operations can we do on the structures?
- Specify structures and operations mathematically
- Implement operations on structures by algorithms
- Prove that algorithm implement the operations, using appropriate mathematical techniques
- This course: basic discrete structures and basic mathematical techniques

Graphs for modelling problems

- History: Euler's seven bridges
- Sameness: Graph isomorphism problem
- Map drawing: Four color theorem
- Graph drawing: Kuratowski graph planarity
- Networks: Maximum flow problem
- Social networks: Friendship paradox
- flow graphs, abstract syntax trees, neural networks, ...

Definition (Directed multigraph)

A directed multigraph G is given by

- a set V of vertices or nodes
- a set *E* of edges
- functions src: E → V and tgt: E → V that map an edge e to its beginning or source src(e) respectively end or target tgt(e)
- *e* is an edge from *src*(*e*) to *tgt*(*e*), its direction

Definition (Directed multigraph)

A directed multigraph G is given by

- a set V of vertices or nodes
- a set *E* of edges
- functions src: E → V and tgt: E → V that map an edge e to its beginning or source src(e) respectively end or target tgt(e)
- *e* is an edge from *src*(*e*) to *tgt*(*e*), its direction

Example

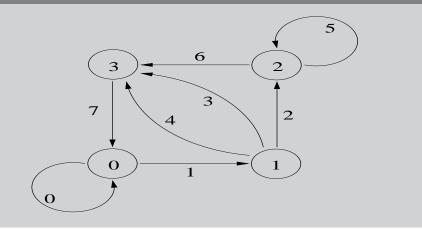
3

5

Let $V = \{0, 1, 2, 3\}$, $E = \{0, 1, 2, ..., 7\}$ and the functions *src* and *tgt* be given by

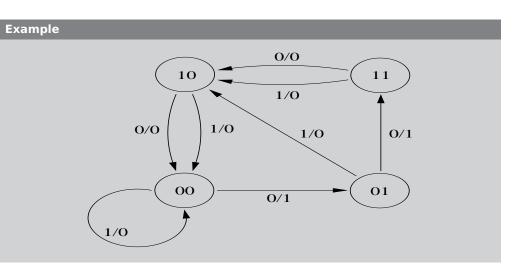
е	src(e)	tgt(e)	е	src(e)	tgt(e)
0	0	0	4	1	3
1	0	1	5	2	2
2	1	2	6	2	3
3	1	3	7	3	0

Example (Continued)



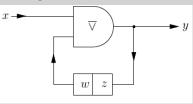
Definition

- Node *c* is an **immediate predecessor** of node *d*, if there is an edge from *c* to *d*
- *d* is then an immediate successor of *c*
- a loop is an edge from a node to itself
- edges having the same sources and the same edges are said to be parallel
- the number of edges having *e* as target is the **indegree** of *e*
- the number of edges having *e* as source is the **outdegree** of *e*
- a multigraph is called labelled if there are functions from the nodes or edges to some set of labels.
- if labels are numbers, then we speak of weighted graphs



Example (Continued)

The previous graph is the state-diagram of a synchronous circuit with input x, output y, a NOR-gate and a buffer of length 2



the equations for the bit streams are

$$y(t) = x(t) \nabla w(t)$$

$$w(t+1) = z(t)$$

$$z(t+1) = y(t)$$

indexed by $t \in \mathbb{N}$ discrete time

Definition

- A directed graph (or digraph) is a directed multigraph without parallel edges
- for every pair (c, d) of nodes there is at most one edge e from c to d
- instead of the edge e we may write the pair (c, d)

Definition

- A directed graph (or digraph) is a directed multigraph without parallel edges
- for every pair (c, d) of nodes there is at most one edge e from c to d
- instead of the edge e we may write the pair (c, d)

Example

Let *R* be a relation on a set *M*. Then the digraph of *R* is given by:

- the set of nodes M
- the set of edges *R*
- the functions src((x, y)) = x and tgt((x, y)) = y

Definition

- Let G = (V, E, src, tgt) be a directed multigraph
- G' = (V', E', src', tgt') is a sub-multigraph of G, if $V' \subseteq V$, $E' \subseteq E$ and src'(e) = src(e), tgt'(e) = tgt(e) for all $e \in E'$
- A sub-graph is a sub-multigraph that is a graph

Definition

- Let G = (V, E, src, tgt) be a directed multigraph
- G' = (V', E', src', tgt') is a sub-multigraph of G, if $V' \subseteq V$, $E' \subseteq E$ and src'(e) = src(e), tgt'(e) = tgt(e) for all $e \in E'$
- A sub-graph is a sub-multigraph that is a graph

Definition

Let (V, E, src, tgt) be a directed multigraph with nodes c, d

- A tuple $(e_0, e_1, \ldots, e_{\ell-1}) \in E^{\ell}$ is a path from c to d of length ℓ , if there are nodes $v_0, v_1, \ldots, v_{\ell}$ such that $v_0 = c$, $v_{\ell} = d$, with $src(e_i) = v_i$ and $tgt(e_i) = v_{i+1}$ for $i = 0, 1, \ldots, \ell 1$
- *v*₀ is the source node
- v_{ℓ} is the target node
- $v_1, v_2, \ldots, v_{\ell-1}$ are the intermediate nodes

10

Definition (Continued)

- the empty tuple () $\in E^0$ is the empty path from any node *e*, with source, target *e*
- a multigraph is strongly connected if there is a path from each node to each node
- a path is simple if non-empty and has pairwise distinct nodes (exception $v_0 = v_{\ell}$)
- the composition of paths $(e_0, e_1, \ldots, e_{\ell-1})$ (from *c* to *d*) and $(f_0, f_1, \ldots, f_{m-1})$ (from *d* to *e*) is a path from *c* to *e* given by

 $(e_0, e_1, \ldots, e_{\ell-1}, f_0, f_1, \ldots, f_{m-1})$

Definition (Continued)

- the empty tuple () $\in E^0$ is the empty path from any node e, with source, target e
- a multigraph is strongly connected if there is a path from each node to each node
- a path is simple if non-empty and has pairwise distinct nodes (exception $v_0 = v_\ell$)
- the composition of paths $(e_0, e_1, \ldots, e_{\ell-1})$ (from *c* to *d*) and $(f_0, f_1, \ldots, f_{m-1})$ (from *d* to *e*) is a path from *c* to *e* given by

 $(e_0, e_1, \ldots, e_{\ell-1}, f_0, f_1, \ldots, f_{m-1})$

Definition

Let (V, E, src, tgt) be a directed multigraph having finitely many nodes- and edges; we number the nodes as $v_0, v_1, \ldots, v_{n-1}$. The matrix $A \in \mathbb{N}^{n \times n}$,

 $A_{ij} := \#(\{e \in E \mid src(e) = v_i \text{ and } tgt(e) = v_j\})$

is the adjacency matrix

Example			
The adjacency matrix for the multigraph	n of	the	first example is
(1 0 0 1	1 0 0	0 1 1	0 2 1 0

Shortest paths

Definition

Let G be a directed multigraph with non-negative edge-weight given by w

- The length or weight of a path (e₀, e₁,..., e_{l-1}) with respect to w is the sum of the weights w(e_i) of its edges e_i
- The distance from node *e* to node *d* is the minimal length of a path from *e* to *d*, if that exists, and ∞ otherwise

12

12

Algorithm of Floyd, distance initialisation

Definition

- Let *G* be a directed multigraph with finite sets of nodes *V* and edges *E*, and a non-negative edge-weights *w*
- We number the nodes $v_0, v_1, \ldots, v_{n-1}$
- Let *B* be the $n \times n$ -matrix with elements

$$B_{ij} := \begin{cases} 0 & \text{if } i = j \\ i \neq j \text{ and edge from } v_i \text{ to } v_j \} \\ \infty & \text{to } v_j \text{ exists} \\ \infty & \text{otherwise} \end{cases}$$

From adjacency matrix to distance matrix before Floyd
$ \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 0 & 1 & \infty & \infty \\ \infty & 0 & 1 & 1 \\ \infty & \infty & 0 & 1 \\ 1 & \infty & \infty & 0 \end{pmatrix} $

Algorithm of Floyd

TheoremThe following algorithm overwrites the matrix B with the matrix of distancesFor r from 0 to n - 1 repeat:Set N = B.For i from 0 to n - 1 repeat:For j from 0 to n - 1 repeat:Set $N_{ij} = \min(B_{ij}, B_{ir} + B_{rj}).$

Set B = N.

Example	
Distances matrix after Floyd	$\begin{pmatrix} 0 & 1 & 2 & 2 \\ 2 & 0 & 1 & 1 \\ 2 & 3 & 0 & 1 \\ 1 & 2 & 3 & 0 \end{pmatrix}$

16

18

15

Properties of Floyd's algorithm

- Does it work? What does that mean, exactly?
- In what language do we express that?
- How do we prove it?
- Why does the algorithm work?
- How fast is it? As a function of what?
- How much memory does it use?
- How do we express this in a computer-independent way?

19

• ...