\square universität
innsbruck

Discrete structures

Vincent van Oostrom

http://cl-informatik.uibk.ac.at

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

Questions and methodology

- When are two structures the same?
- When is one structure a substructure of another?
- How can we represent structures?
- What operations can we do on the structures?

Questions and methodology

- When are two structures the same?
- When is one structure a substructure of another?
- How can we represent structures?
- What operations can we do on the structures?
- Specify structures and operations mathematically
- Implement operations on structures by algorithms
- Prove that algorithm implement the operations, using appropriate mathematical techniques
- This course: basic discrete structures and basic mathematical techniques

A directed multigraph G is given by

- a set V of vertices or nodes
- a set E of edges
- functions src: $E \rightarrow V$ and tgt: $E \rightarrow V$ that map an edge e to its beginning or source $\operatorname{src}(e)$ respectively end or target tgt(e)
- e is an edge from $\operatorname{src}(e)$ to tgt(e), its direction

Graphs for modelling problems

- History: Euler's seven bridges
- Sameness: Graph isomorphism problem
- Map drawing: Four color theorem
- Graph drawing: Kuratowski graph planarity
- Networks: Maximum flow problem
- Social networks: Friendship paradox
- flow graphs, abstract syntax trees, neural networks, ...

Definition (Directed multigraph)
A directed multigraph G is given by

- a set V of vertices or nodes
- a set E of edges
- functions src: $E \rightarrow V$ and tgt: $E \rightarrow V$ that map an edge e to its beginning or source $\operatorname{src}(e)$ respectively end or target tgt(e)
- e is an edge from $\operatorname{src}(e)$ to tgt(e), its direction

Example

Let $V=\{0,1,2,3\}, E=\{0,1,2, \ldots, 7\}$ and the functions src and tgt be given by

e	$\operatorname{src}(e)$	$\operatorname{tgt}(e)$
0	0	0
1	0	1
2	1	2
3	1	3

e	$\operatorname{src}(e)$	$\operatorname{tgt}(e)$
4	1	3
5	2	2
6	2	3
7	3	0

Example (Continued)

Definition

- Node c is an immediate predecessor of node d, if there is an edge from c to d
- d is then an immediate successor of c
- a loop is an edge from a node to itself
- edges having the same sources and the same edges are said to be parallel
- the number of edges having e as target is the indegree of e
- the number of edges having e as source is the outdegree of e
- a multigraph is called labelled if there are functions from the nodes or edges to some set of labels.
- if labels are numbers, then we speak of weighted graphs

Example (Continued)

The previous graph is the state-diagram of a synchronous circuit with input x, output y, a NOR-gate and a buffer of length 2

the equations for the bit streams are

$$
\begin{aligned}
y(t) & =x(t) \bar{\nabla} w(t) \\
w(t+1) & =z(t) \\
z(t+1) & =y(t)
\end{aligned}
$$

indexed by $t \in \mathbb{N}$ discrete time

Definition

- A directed graph (or digraph) is a directed multigraph without parallel edges
- for every pair (c, d) of nodes there is at most one edge e from c to d
- instead of the edge e we may write the pair (c, d)

Definition

- A directed graph (or digraph) is a directed multigraph without parallel edges
for every pair (c, d) of nodes there is at most one edge e from c to d
- instead of the edge e we may write the pair (c, d)

```
Example
Let R be a relation on a set M. Then the digraph of R is given by:
    - the set of nodes M
    - the set of edges R
    - the functions src((x,y)) =x and tgt ((x,y)) = y
```


Definition

- Let $G=(V, E, s r c, \operatorname{tg} t)$ be a directed multigraph
- $G^{\prime}=\left(V^{\prime}, E^{\prime}, s r c^{\prime}, t g t^{\prime}\right)$ is a sub-multigraph of G, if $V^{\prime} \subseteq V, E^{\prime} \subseteq E$ and $\operatorname{src}^{\prime}(e)=\operatorname{src}(e), \operatorname{tgt}^{\prime}(e)=\operatorname{tgt}(e)$ for all $e \in E^{\prime}$
- A sub-graph is a sub-multigraph that is a graph

Definition

- Let $G=(V, E, s r c, t g t)$ be a directed multigraph
- $G^{\prime}=\left(V^{\prime}, E^{\prime}, s r c^{\prime}, t g t^{\prime}\right)$ is a sub-multigraph of G, if $V^{\prime} \subseteq V, E^{\prime} \subseteq E$ and $\operatorname{src}^{\prime}(e)=\operatorname{src}(e), \operatorname{tgt}^{\prime}(e)=\operatorname{tg} t(e)$ for all $e \in E^{\prime}$
- A sub-graph is a sub-multigraph that is a graph

Definition

Let $(V, E, s r c, \operatorname{tg} t)$ be a directed multigraph with nodes c, d

- A tuple $\left(e_{0}, e_{1}, \ldots, e_{\ell-1}\right) \in E^{\ell}$ is a path from c to d of length ℓ, if there are nodes $v_{0}, v_{1}, \ldots, v_{\ell}$ such that $v_{0}=c, v_{\ell}=d$, with $\operatorname{src}\left(e_{i}\right)=v_{i}$ and $\operatorname{tgt}\left(e_{i}\right)=v_{i+1}$ for $i=0,1, \ldots, \ell-1$
- v_{0} is the source node
- v_{ℓ} is the target node
- $v_{1}, v_{2}, \ldots, v_{\ell-1}$ are the intermediate nodes

Definition (Continued)

- the empty tuple ()$\in E^{0}$ is the empty path from any node e, with source, target e
- a multigraph is strongly connected if there is a path from each node to each node
- a path is simple if non-empty and has pairwise distinct nodes (exception $v_{0}=v_{\ell}$)
- the composition of paths $\left(e_{0}, e_{1}, \ldots, e_{\ell-1}\right)$ (from c to d) and ($f_{0}, f_{1}, \ldots, f_{m-1}$) (from d to e) is a path from c to e given by

$$
\left(e_{0}, e_{1}, \ldots, e_{\ell-1}, f_{0}, f_{1}, \ldots, f_{m-1}\right)
$$

Definition (Continued)

- the empty tuple ()$\in E^{0}$ is the empty path from any node e, with source, target e
- a multigraph is strongly connected if there is a path from each node to each node
- a path is simple if non-empty and has pairwise distinct nodes (exception $v_{0}=v_{\ell}$)
- the composition of paths $\left(e_{0}, e_{1}, \ldots, e_{\ell-1}\right)$ (from c to d) and ($f_{0}, f_{1}, \ldots, f_{m-1}$) (from d to e) is a path from c to e given by

$$
\left(e_{0}, e_{1}, \ldots, e_{\ell-1}, f_{0}, f_{1}, \ldots, f_{m-1}\right)
$$

Definition

Let (V, E, src, tgt) be a directed multigraph having finitely many nodes- and edges; we number the nodes as $v_{0}, v_{1}, \ldots, v_{n-1}$. The matrix $A \in \mathbb{N}^{n \times n}$,

$$
A_{i j}:=\#\left(\left\{e \in E \mid \operatorname{src}(e)=v_{i} \text { and } \operatorname{tgt}(e)=v_{j}\right\}\right)
$$

is the adjacency matrix

Shortest paths

Definition

Let G be a directed multigraph with non-negative edge-weight given by w

- The length or weight of a path $\left(e_{0}, e_{1}, \ldots, e_{\ell-1}\right)$ with respect to w is the sum of the weights $w\left(e_{i}\right)$ of its edges e_{i}
- The distance from node e to node d is the minimal length of a path from e to d, if that exists, and ∞ otherwise

Algorithm of Floyd, distance initialisation

Definition

- Let G be a directed multigraph with finite sets of nodes V and edges E, and a non-negative edge-weights w
- We number the nodes $v_{0}, v_{1}, \ldots, v_{n-1}$
- Let B be the $n \times n$-matrix with elements

$$
B_{i j}:= \begin{cases}0 & \begin{array}{l}
\text { if } i=j \\
\min \left\{w(e) \mid e \text { edge from } v_{i} \text { to } v_{j}\right\} \\
i \neq j \text { and edge from } v_{i} \\
\text { to } v_{j} \text { exists } \\
\infty
\end{array} \\
\text { otherwise }\end{cases}
$$

Algorithm of Floyd

Theorem

The following algorithm overwrites the matrix B with the matrix of distances

$$
\begin{aligned}
& \text { For } r \text { from } 0 \text { to } n-1 \text { repeat: } \\
& \text { Set } N=B \text {. } \\
& \text { For } i \text { from } 0 \text { to } n-1 \text { repeat: } \\
& \text { For } j \text { from } 0 \text { to } n-1 \text { repeat: } \\
& \quad \text { Set } N_{i j}=\min \left(B_{i j}, B_{i r}+B_{r j}\right) \text {. } \\
& \text { Set } B=N .
\end{aligned}
$$

Example

From adjacency matrix to distance matrix before Floyd

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 2 \\
0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0
\end{array}\right) \quad \Rightarrow \quad\left(\begin{array}{cccc}
0 & 1 & \infty & \infty \\
\infty & 0 & 1 & 1 \\
\infty & \infty & 0 & 1 \\
1 & \infty & \infty & 0
\end{array}\right)
$$

Example

Distances matrix after Floyd

$$
\left(\begin{array}{llll}
0 & 1 & 2 & 2 \\
2 & 0 & 1 & 1 \\
2 & 3 & 0 & 1 \\
1 & 2 & 3 & 0
\end{array}\right)
$$

Properties of Floyd's algorithm

- Does it work? What does that mean, exactly?
- In what language do we express that?
- How do we prove it?
- Why does the algorithm work?
- How fast is it? As a function of what?
- How much memory does it use?
- How do we express this in a computer-independent way?
- ...

