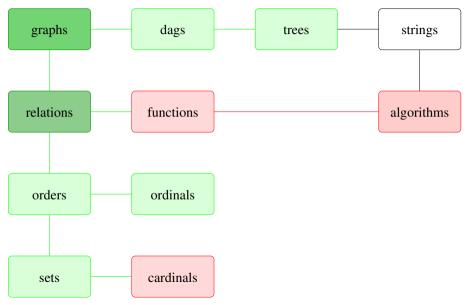
Summary last week

- RSA public-key cryptography based on:
- fundamental theorem of arithmetic (using Bézout)
- Fermat's little theorem
- fast exponentiation using binary representation of exponent
- Chinese remainder theorem (versions: bijective, Bézout, RSA)

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures



Asymptotic growth

Definition (Big-O)

Let $g \colon \{\ell, \ell + 1, \ell + 2, \ldots\} \to [0, \infty)$ with $\ell \in \mathbb{N}$. The set O(g) comprises all functions

 $f: \{k, k+1, k+2, \ldots\} \rightarrow [0, \infty) \quad \text{with} \quad k \in \mathbb{N} \ ,$

for which there exists a positive real number *c*, and a natural number *m* with $m \ge k$ and $m \ge \ell$, such that for all natural numbers $n \ge m$:

 $f(n) \leq c \cdot g(n)$

That is, $f \in O(g)$, if for sufficiently large arguments of f, its value is bounded from above by a constant multiple of the value of g.

Big-Omega and Big-Theta

Definition (Big-Omega and Big-Theta)

• The set $\Omega(g)$ comprises the functions

$$f \colon \{k, k+1, k+2, \ldots\} \to [0, \infty) \quad \text{with} \quad k \in \mathbb{N} \ ,$$

for which there exists a positive real number *c*, and a natural number *m* with $m \ge k$ and $m \ge \ell$, such that for all natural numbers $n \ge m$:

$$f(n) \ge c \cdot g(n)$$

That is, $f \in \Omega(g)$, if for sufficiently large arguments of f, its value is bounded from below by a constant multiple of the value of g.

• Finally,

$$\Theta(g):= \mathrm{O}(g)\cap \Omega(g)$$
 .

Example

Let $f: \mathbb{N} \to \mathbb{N}$ with $n \mapsto 3n^2 + 5n + 100$ and $g: \mathbb{N} \to \mathbb{N}$ with $n \mapsto n^2$. Then $f \in \Theta(g)$.

Example

Let $f: \mathbb{N} \to \mathbb{N}$ with $n \mapsto 3n^2 + 5n + 100$ and $g: \mathbb{N} \to \mathbb{N}$ with $n \mapsto n^2$. Then $f \in \Theta(g)$.

Proof.

- We show $f \in O(g)$. We choose c = 4 and m = 13 in the definition. We have $f(n) \le 4 \cdot g(n)$ for all $n \ge 13$.
- We show f ∈ Ω(g).
 We choose c = 1 and m = 0 in the definition. By mathematical induction one shows f(n) ≥ g(n) for all n ≥ 0.
- Therefore, $f \in \Theta(g)$.

Example

Let $f: \mathbb{N} \to \mathbb{N}$ with $n \mapsto 3n^2 + 5n + 100$ and $g: \mathbb{N} \to \mathbb{N}$ with $n \mapsto n^2$. Then $f \in \Theta(g)$.

Proof.

- We show $f \in O(g)$. We choose c = 4 and m = 13 in the definition. We have $f(n) \le 4 \cdot g(n)$ for all $n \ge 13$.
- We show f ∈ Ω(g).
 We choose c = 1 and m = 0 in the definition. By mathematical induction one shows f(n) ≥ g(n) for all n ≥ 0.
- Therefore, $f \in \Theta(g)$.

Infima, suprema, and limits

Definition

Let \leq be a partial order on *M* and *S* \subseteq *M*.

- We say $y \in M$ is an infimum of *S*, if for all $x \in S$ $y \leq x$ and for all $z \in M$ having that property, $z \leq y$ (greatest lower bound).
- We say y ∈ M is a supremum of S, if for all x ∈ S y ≤ x and for all z ∈ M having that property, y ≤ z (least upper bound).

Infima, suprema, and limits

Definition

Let \leq be a partial order on *M* and *S* \subseteq *M*.

- We say $y \in M$ is an infimum of *S*, if for all $x \in S$ $y \leq x$ and for all $z \in M$ having that property, $z \leq y$ (greatest lower bound).
- We say y ∈ M is a supremum of S, if for all x ∈ S y ≤ x and for all z ∈ M having that property, y ≤ z (least upper bound).

Remark

Infima and suprema need not exist

Definition

Let $f \colon \mathbb{N} o [0,\infty)$ be a function. Then

$$\lim_{n\to\infty}f(n)=L$$

if for all positive reals ε , there exists $m \in \mathbb{N}$, such that $|f(n) - L| < \varepsilon$ for all $n \ge m$. L is the limit of f.

Definition

Let $f \colon \mathbb{N} \to [0,\infty)$ be a function. Then

 $\lim_{n\to\infty} f(n) = L$

if for all positive reals ε , there exists $m \in \mathbb{N}$, such that $|f(n) - L| < \varepsilon$ for all $n \ge m$. L is the limit of *f*.

Example

Let $f: \mathbb{N} \to [0,\infty)$ with $n \mapsto n^2$ and $g: \mathbb{N} \to [0,\infty)$ with $n \mapsto \frac{1}{n}$. Then $\lim_{n \to \infty} f(n) = \infty$ and $\lim_{n o\infty}g(n)=$ 0. The function $h\colon \,\mathbb{N}\, o[0,\infty)$ with $h(n) = \begin{cases} 1 & \text{if } n \text{ even} \\ 0 & \text{if } n \text{ odd} \end{cases}$

$$n) = \begin{cases} 0 & \text{if } n \text{ odd} \end{cases}$$

has no limit.

Definition (Limes inferior and superior)

• Let $f \colon \mathbb{N} \to [0,\infty)$. Then

$$\liminf_{n\to\infty} f(n) := \lim_{n\to\infty} \left(\inf\{f(m) \mid m \ge n\} \right)$$

and

$$\limsup_{n\to\infty} f(n) := \lim_{n\to\infty} \left(\sup\{f(m) \mid m \ge n\} \right).$$

where inf (sup) denotes the infimum (supremum).

Definition (Limes inferior and superior)

• Let $f \colon \mathbb{N} \to [0,\infty)$. Then

$$\liminf_{n\to\infty} f(n) := \lim_{n\to\infty} \left(\inf\{f(m) \mid m \ge n\} \right)$$

and

$$\limsup_{n\to\infty} f(n) := \lim_{n\to\infty} \left(\sup\{f(m) \mid m \ge n\} \right).$$

where inf (sup) denotes the infimum (supremum).

• For every sequence $f(n)_{n \ge \ell}$ of real numbers, the limes inferior and superior exist in the extended real numbers $\mathbb{R} \cup [-\infty, +\infty]$.

Definition (Limes inferior and superior)

• Let $f \colon \mathbb{N} \to [0,\infty)$. Then

$$\liminf_{n\to\infty} f(n) := \lim_{n\to\infty} \left(\inf\{f(m) \mid m \ge n\} \right)$$

and

$$\limsup_{n\to\infty} f(n) := \lim_{n\to\infty} \left(\sup\{f(m) \mid m \ge n\} \right).$$

where inf (sup) denotes the infimum (supremum).

• For every sequence $f(n)_{n \ge \ell}$ of real numbers, the limes inferior and superior exist in the extended real numbers $\mathbb{R} \cup [-\infty, +\infty]$.

Theorem

Let
$$f: \mathbb{N} \to [0, \infty)$$
. If $\lim_{n \to \infty} f(n)$ is defined, then
 $\lim_{n \to \infty} f(n) = \limsup_{n \to \infty} f(n) = \lim_{n \to \infty} \inf_{n \to \infty} f(n)$.

Theorem

Let
$$f \colon \{k,k+1,\ldots\} o [0,\infty)$$
 and $g \colon \{\ell,\ell+1,\ldots\} o (0,\infty)$. Then

$$f\in \mathsf{O}(g) \ \Leftrightarrow \ \limsup_{n
ightarrow\infty} \, rac{f(n)}{g(n)} < \infty$$

and

$$f\in \Omega(g) \ \Leftrightarrow \ \liminf_{n o\infty} \ rac{f(n)}{g(n)}>0 \ .$$

Theorem

Let
$$f \colon \{k,k+1,\ldots\} o [0,\infty)$$
 and $g \colon \{\ell,\ell+1,\ldots\} o (0,\infty)$. Then

and

$$f\in \Omega(g) \ \Leftrightarrow \ \liminf_{n o\infty} \ rac{f(n)}{g(n)}>0 \ .$$

 $f \in O(g) \Leftrightarrow \limsup_{n \to \infty} \frac{f(n)}{q(n)} < \infty$

Proof.

We show the first equivalence, the second one being analogous. If $f(n) \leq c \cdot g(n)$ for sufficiently large n, then $\limsup_{n\to\infty} \frac{f(n)}{g(n)} \leq c$. Conversely, if $s := \limsup_{n\to\infty} \frac{f(n)}{g(n)} < \infty$ then $\frac{f(n)}{g(n)} \leq s + 1$ for n sufficiently large.

Theorem

Let
$$f \colon \{k,k+1,\ldots\} o [0,\infty)$$
 and $g \colon \{\ell,\ell+1,\ldots\} o (0,\infty)$. Then

and

$$f\in \Omega(g) \ \Leftrightarrow \ \liminf_{n o\infty} \ rac{f(n)}{g(n)}>0\,.$$

 $f \in \mathsf{O}(g) \Leftrightarrow \limsup_{n \to \infty} \frac{f(n)}{q(n)} < \infty$

Proof.

We show the first equivalence, the second one being analogous. If $f(n) \leq c \cdot g(n)$ for sufficiently large n, then $\limsup_{n\to\infty} \frac{f(n)}{g(n)} \leq c$. Conversely, if $s := \limsup_{n\to\infty} \frac{f(n)}{g(n)} < \infty$ then $\frac{f(n)}{g(n)} \leq s + 1$ for n sufficiently large.

Definition (small-o)

Let
$$f\colon \{k,k+1,\ldots\} o [0,\infty)$$
 and $g\colon \{\ell,\ell+1,\ldots\} o (0,\infty)$. Then $f\in \mathsf{o}(g)$, if

$$\lim_{n\to\infty}\,\frac{f(n)}{g(n)}=0\,,$$

That is, f is asymptotically negligible w.r.t. g

Definition (small-o)

Let
$$f \colon \{k,k+1,\ldots\} o [0,\infty)$$
 and $g \colon \{\ell,\ell+1,\ldots\} o (0,\infty)$. Then $f \in \mathsf{o}(g)$, if

$$\lim_{n\to\infty}\,\frac{f(n)}{g(n)}=0\,,$$

That is, f is asymptotically negligible w.r.t. g

Example

We have $n \in o(n^2)$, as

$$\lim_{n\to\infty} \frac{n}{n^2} = \lim_{n\to\infty} \frac{1}{n} = 0$$

but $n \notin o(2n)$, as

$$\lim_{n\to\infty} \frac{n}{2n} = \lim_{n\to\infty} \frac{1}{2} = \frac{1}{2}.$$