
Summary last week

• RSA public-key cryptography based on:

• fundamental theorem of arithmetic (using Bézout)

• Fermat’s little theorem

• fast exponentiation using binary representation of exponent

• Chinese remainder theorem (versions: bijective, Bézout, RSA)
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Asymptotic growth

Definition (Big-O)

Let g : {`, ` + 1, ` + 2, . . .} → [0,∞) with ` ∈ N .
The set O(g) comprises all functions

f : {k, k + 1, k + 2, . . .} → [0,∞) with k ∈ N ,

for which there exists a positive real number c, and a natural number m with m ≥ k
and m ≥ `, such that for all natural numbers n ≥ m:

f(n) ≤ c · g(n)

That is, f ∈ O(g), if for sufficiently large arguments of f , its value is bounded from
above by a constant multiple of the value of g.
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Big-Omega and Big-Theta

Definition (Big-Omega and Big-Theta)

• The set Ω(g) comprises the functions

f : {k, k + 1, k + 2, . . .} → [0,∞) with k ∈ N ,

for which there exists a positive real number c, and a natural number m with
m ≥ k and m ≥ `, such that for all natural numbers n ≥ m:

f(n) ≥ c · g(n)

That is, f ∈ Ω(g), if for sufficiently large arguments of f , its value is bounded from
below by a constant multiple of the value of g.

• Finally,
Θ(g) := O(g) ∩ Ω(g) .
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Example

Let f : N → N with n 7→ 3n2 + 5n + 100 and g : N → N with n 7→ n2. Then f ∈ Θ(g).

Proof.

• We show f ∈ O(g).
We choose c = 4 and m = 13 in the definition. We have f(n) ≤ 4 · g(n) for all
n ≥ 13.

• We show f ∈ Ω(g).
We choose c = 1 and m = 0 in the definition. By mathematical induction one
shows f(n) ≥ g(n) for all n ≥ 0.

• Therefore, f ∈ Θ(g).
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Infima, suprema, and limits

Definition

Let ≤ be a partial order on M and S ⊆ M.

• We say y ∈ M is an infimum of S, if for all x ∈ S y ≤ x and for all z ∈ M having that
property, z ≤ y (greatest lower bound).

• We say y ∈ M is a supremum of S, if for all x ∈ S y ≤ x and for all z ∈ M having that
property, y ≤ z (least upper bound).

Remark

Infima and suprema need not exist
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Definition

Let f : N → [0,∞) be a function. Then

lim
n→∞

f(n) = L

if for all positive reals ε, there exists m ∈ N , such that |f(n)− L| < ε for all n > m. L is
the limit of f .

Example

Let f : N → [0,∞) with n 7→ n2 and g : N → [0,∞) with n 7→ 1
n . Then lim

n→∞
f(n) =∞

and lim
n→∞

g(n) = 0. The function h : N → [0,∞) with

h(n) =

{
1 if n even

0 if n odd

has no limit.
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Definition (Limes inferior and superior)

• Let f : N → [0,∞). Then

lim inf
n→∞

f(n) := lim
n→∞

(inf{f(m) | m > n})

and
lim sup

n→∞
f(n) := lim

n→∞
(sup{f(m) | m > n}) .

where inf (sup) denotes the infimum (supremum).

• For every sequence f(n)n>` of real numbers, the limes inferior and superior exist
in the extended real numbers R ∪ [−∞,+∞].

Theorem

Let f : N → [0,∞). If limn→∞ f(n) is defined, then
limn→∞ f(n) = lim supn→∞ f(n) = lim infn→∞ f(n) .
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Theorem

Let f : {k, k + 1, . . .} → [0,∞) and g : {`, ` + 1, . . .} → (0,∞) . Then

f ∈ O(g) ⇔ lim sup
n→∞

f(n)

g(n)
<∞

and

f ∈ Ω(g) ⇔ lim inf
n→∞

f(n)

g(n)
> 0 .

Proof.

We show the first equivalence, the second one being analogous. If f(n) 6 c · g(n) for

sufficiently large n, then lim supn→∞
f(n)
g(n) 6 c .

Conversely, if s := lim supn→∞
f(n)
g(n) <∞ then f(n)

g(n) 6 s + 1 for n sufficiently large.
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Definition (small-o)

Let f : {k, k + 1, . . .} → [0,∞) and g : {`, ` + 1, . . .} → (0,∞) . Then f ∈ o(g), if

lim
n→∞

f(n)

g(n)
= 0 ,

That is, f is asymptotically negligible w.r.t. g

Example

We have n ∈ o(n2), as

lim
n→∞

n

n2
= lim

n→∞

1

n
= 0 ,

but n 6∈ o(2n), as

lim
n→∞

n

2n
= lim

n→∞

1

2
=

1

2
.
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