Summary last week

- fundamental theorem of arithmetic (using Bézout)
- Fermat's little theorem
- fast exponentiation using binary representation of exponent
- Chinese remainder theorem (versions: bijective, Bézout, RSA)

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Asymptotic growth

Definition (Big-0)

Let $g:\{\ell, \ell+1, \ell+2, \ldots\} \rightarrow[0, \infty)$ with $\ell \in \mathbb{N}$. The set $\mathrm{O}(g)$ comprises all functions

$$
f:\{k, k+1, k+2, \ldots\} \rightarrow[0, \infty) \text { with } k \in \mathbb{N}
$$

for which there exists a positive real number c, and a natural number m with $m \geq k$ and $m \geq \ell$, such that for all natural numbers $n \geq m$:

$$
f(n) \leq c \cdot g(n)
$$

That is, $f \in \mathrm{O}(g)$, if for sufficiently large arguments of f, its value is bounded from above by a constant multiple of the value of g.

Big-Omega and Big-Theta

Definition (Big-Omega and Big-Theta)

- The set $\Omega(g)$ comprises the functions

$$
f:\{k, k+1, k+2, \ldots\} \rightarrow[0, \infty) \text { with } k \in \mathbb{N}
$$

for which there exists a positive real number c, and a natural number m with $m \geq k$ and $m \geq \ell$, such that for all natural numbers $n \geq m$:

$$
f(n) \geq c \cdot g(n)
$$

That is, $f \in \Omega(g)$, if for sufficiently large arguments of f, its value is bounded from below by a constant multiple of the value of g.

- Finally,

$$
\Theta(g):=O(g) \cap \Omega(g) .
$$

Example
 Let $f: \mathbb{N} \rightarrow \mathbb{N}$ with $n \mapsto 3 n^{2}+5 n+100$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ with $n \mapsto n^{2}$. Then $f \in \Theta(g)$.

Proof.

- We show $f \in \mathrm{O}(g)$.

We choose $c=4$ and $m=13$ in the definition. We have $f(n) \leq 4 \cdot g(n)$ for all $n \geq 13$.

- We show $f \in \Omega(g)$.

We choose $c=1$ and $m=0$ in the definition. By mathematical induction one shows $f(n) \geq g(n)$ for all $n \geq 0$.

- Therefore, $f \in \Theta(g)$.

```
Example
Let f:\mathbb{N}->\mathbb{N}\mathrm{ with n}\mapsto3\mp@subsup{n}{}{2}+5n+100\mathrm{ and }g:\mathbb{N}->\mathbb{N}\mathrm{ with n}\mapsto\mp@subsup{n}{}{2}\mathrm{ . Then }f\in\Theta(g)
```


Example
 Let $f: \mathbb{N} \rightarrow \mathbb{N}$ with $n \mapsto 3 n^{2}+5 n+100$ and $g: \mathbb{N} \rightarrow \mathbb{N}$ with $n \mapsto n^{2}$. Then $f \in \Theta(g)$.

Proof.

- We show $f \in O(g)$.

We choose $c=4$ and $m=13$ in the definition. We have $f(n) \leq 4 \cdot g(n)$ for all $n \geq 13$.

- We show $f \in \Omega(g)$.

We choose $c=1$ and $m=0$ in the definition. By mathematical induction one shows $f(n) \geq g(n)$ for all $n \geq 0$.

- Therefore, $f \in \Theta(g)$.

Infima, suprema, and limits

Definition

Let \leq be a partial order on M and $S \subseteq M$.

- We say $y \in M$ is an infimum of S, if for all $x \in S y \leq x$ and for all $z \in M$ having that property, $z \leq y$ (greatest lower bound).
- We say $y \in M$ is a supremum of S, if for all $x \in S y \leq x$ and for all $z \in M$ having that property, $y \leq z$ (least upper bound).

Infima, suprema, and limits

Definition

Let \leq be a partial order on M and $S \subseteq M$.

- We say $y \in M$ is an infimum of S, if for all $x \in S y \leq x$ and for all $z \in M$ having that property, $z \leq y$ (greatest lower bound).
- We say $y \in M$ is a supremum of S, if for all $x \in S y \leq x$ and for all $z \in M$ having that property, $y \leq z$ (least upper bound)

Remark

Infima and suprema need not exist

Definition

Let $f: \mathbb{N} \rightarrow[0, \infty)$ be a function. Then

$$
\lim _{n \rightarrow \infty} f(n)=L
$$

if for all positive reals ε, there exists $m \in \mathbb{N}$, such that $|f(n)-L|<\varepsilon$ for all $n \geqslant m$. L is the limit of f.

Definition

Let $f: \mathbb{N} \rightarrow[0, \infty)$ be a function. Then

$$
\lim _{n \rightarrow \infty} f(n)=L
$$

if for all positive reals ε, there exists $m \in \mathbb{N}$, such that $|f(n)-L|<\varepsilon$ for all $n \geqslant m$. L is the limit of f.

$$
\begin{aligned}
& \text { Example } \\
& \text { Let } f: \mathbb{N} \rightarrow[0, \infty) \text { with } n \mapsto n^{2} \text { and } g: \mathbb{N} \rightarrow[0, \infty) \text { with } n \mapsto \frac{1}{n} \text {. Then } \lim _{n \rightarrow \infty} f(n)=\infty \\
& \text { and } \lim _{n \rightarrow \infty} g(n)=0 \text {. The function } h: \mathbb{N} \rightarrow[0, \infty) \text { with } \\
& \qquad h(n)= \begin{cases}1 & \text { if } n \text { even } \\
0 & \text { if } n \text { odd }\end{cases} \\
& \text { has no limit. }
\end{aligned}
$$

Definition (Limes inferior and superior)

- Let $f: \mathbb{N} \rightarrow[0, \infty)$. Then

$$
\liminf _{n \rightarrow \infty} f(n):=\lim _{n \rightarrow \infty}(\inf \{f(m) \mid m \geqslant n\})
$$

and

$$
\limsup _{n \rightarrow \infty} f(n):=\lim _{n \rightarrow \infty}(\sup \{f(m) \mid m \geqslant n\}) .
$$

where inf (sup) denotes the infimum (supremum).

Definition (Limes inferior and superior)

- Let $f: \mathbb{N} \rightarrow[0, \infty)$. Then

$$
\liminf _{n \rightarrow \infty} f(n):=\lim _{n \rightarrow \infty}(\inf \{f(m) \mid m \geqslant n\})
$$

and

$$
\limsup _{n \rightarrow \infty} f(n):=\lim _{n \rightarrow \infty}(\sup \{f(m) \mid m \geqslant n\}) .
$$

where inf (sup) denotes the infimum (supremum).

- For every sequence $f(n)_{n \geqslant \ell}$ of real numbers, the limes inferior and superior exist in the extended real numbers $\mathbb{R} \cup[-\infty,+\infty]$.

Definition (Limes inferior and superior)

- Let $f: \mathbb{N} \rightarrow[0, \infty)$. Then

$$
\liminf _{n \rightarrow \infty} f(n):=\lim _{n \rightarrow \infty}(\inf \{f(m) \mid m \geqslant n\})
$$

and

$$
\limsup _{n \rightarrow \infty} f(n):=\lim _{n \rightarrow \infty}(\sup \{f(m) \mid m \geqslant n\}) .
$$

where inf (sup) denotes the infimum (supremum).

- For every sequence $f(n)_{n \geqslant \ell}$ of real numbers, the limes inferior and superior exist in the extended real numbers $\mathbb{R} \cup[-\infty,+\infty]$.

Theorem

Let $f:\{k, k+1, \ldots\} \rightarrow[0, \infty)$ and $g:\{\ell, \ell+1, \ldots\} \rightarrow(0, \infty)$. Then

$$
f \in O(g) \Leftrightarrow \limsup _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty
$$

and

$$
f \in \Omega(g) \Leftrightarrow \liminf _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0 .
$$

Theorem

Let $f: \mathbb{N} \rightarrow[0, \infty)$. If $\lim _{n \rightarrow \infty} f(n)$ is defined, then
$\lim _{n \rightarrow \infty} f(n)=\lim \sup _{n \rightarrow \infty} f(n)=\liminf _{n \rightarrow \infty} f(n)$.

Theorem

Let $f:\{k, k+1, \ldots\} \rightarrow[0, \infty)$ and $g:\{\ell, \ell+1, \ldots\} \rightarrow(0, \infty)$. Then

$$
f \in O(g) \Leftrightarrow \limsup _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty
$$

and

$$
f \in \Omega(g) \Leftrightarrow \liminf _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0 .
$$

Proof.

We show the first equivalence, the second one being analogous. If $f(n) \leqslant c \cdot g(n)$ for sufficiently large n, then lim sup $n \rightarrow \infty=\frac{f(n)}{g(n)} \leqslant c$.
Conversely, if $s:=\lim \sup _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$ then $\frac{f(n)}{g(n)} \leqslant s+1$ for n sufficiently large.

Definition (small-o)

Let $f:\{k, k+1, \ldots\} \rightarrow[0, \infty)$ and $g:\{\ell, \ell+1, \ldots\} \rightarrow(0, \infty)$. Then $f \in \mathrm{o}(g)$, if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

That is, f is asymptotically negligible w.r.t. g

Theorem

Let $f:\{k, k+1, \ldots\} \rightarrow[0, \infty)$ and $g:\{\ell, \ell+1, \ldots\} \rightarrow(0, \infty)$. Then

$$
f \in O(g) \Leftrightarrow \limsup _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty
$$

and

$$
f \in \Omega(g) \Leftrightarrow \liminf _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0 .
$$

Proof.

We show the first equivalence, the second one being analogous. If $f(n) \leqslant c \cdot g(n)$ for sufficiently large n, then $\lim \sup _{n \rightarrow \infty} \frac{f(n)}{g(n)} \leqslant c$.
Conversely, if $s:=\lim _{\sup _{n \rightarrow \infty}} \frac{f(n)}{g(n)}<\infty$ then $\frac{f(n)}{g(n)} \leqslant s+1$ for n sufficiently large.

Definition (small-o)

Let $f:\{k, k+1, \ldots\} \rightarrow[0, \infty)$ and $g:\{\ell, \ell+1, \ldots\} \rightarrow(0, \infty)$. Then $f \in \mathrm{o}(g)$, if

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0
$$

That is, f is asymptotically negligible w.r.t. g

Example

We have $n \in o\left(n^{2}\right)$, as

$$
\lim _{n \rightarrow \infty} \frac{n}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

but $n \notin o(2 n)$, as

$$
\lim _{n \rightarrow \infty} \frac{n}{2 n}=\lim _{n \rightarrow \infty} \frac{1}{2}=\frac{1}{2}
$$

