Summary last week

- Multiplicative atomicity: $prime \iff indecomposable \iff |-minimal (proof)|$
- Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)

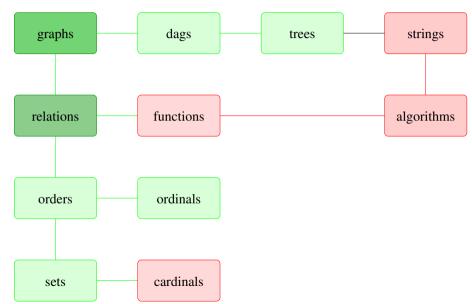
Summary last week

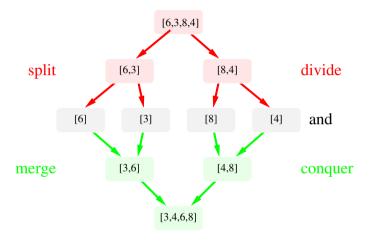
- Multiplicative atomicity: $prime \iff indecomposable \iff |-minimal (proof)|$
- Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)
- comparing (complexity) functions asymptotically (using lim, lim sup, lim inf)
- $O(f) = \{g \mid \exists m, c, \forall n \geq m, g(n) \leq c \cdot f(n)\}$; asymptotically bounded above by f
- $\Omega(f) = \{g \mid \exists m, c, \forall n \geq m, g(n) \geq c \cdot f(n)\}$; asymptotically bounded below by f
- $\Theta(f) = O(f) \cap \Omega(f)$; asymptotically same growth as f
- o(f) = { $g \mid \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$ }; asymptotically negligible w.r.t. f
- lim sup-characterisation of O: $f \in O(g) \Leftrightarrow \limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty$
- $\lim\inf$ -characterisation of Ω : $f\in \Omega(g) \Leftrightarrow \liminf_{n\to\infty} \frac{f(n)}{g(n)}>0$

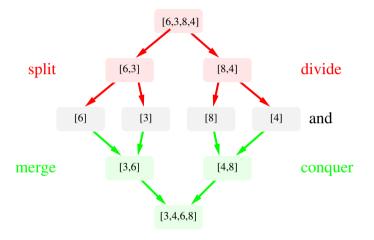
Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

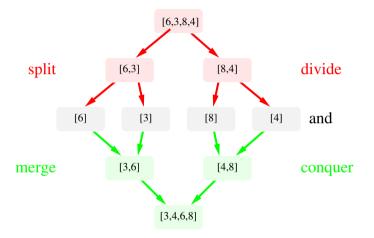






Complexity?

 $O(n \cdot \log_2 n)$



Complexity?

 $O(n \cdot \log n)$: each level O(n) operations, $O(\log n)$ levels ($\log n$ splits, merges)

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

divide-and-conquer

recursive design paradigm for algorithms A:

• divide: divide the input I into a number a of smaller parts I_1, \ldots, I_a solve the subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ recursively

divide-and-conquer

recursive design paradigm for algorithms A:

- divide: divide the input I into a number a of smaller parts I_1, \ldots, I_a solve the subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

divide-and-conquer

recursive design paradigm for algorithms A:

- divide: divide the input I into a number a of smaller parts I_1, \ldots, I_a solve the subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

problems of constant size as base cases

divide-and-conquer

recursive design paradigm for algorithms A:

- divide: divide the input I into a number a of smaller parts I_1, \ldots, I_a solve the subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm

divide-and-conquer

recursive design paradigm for algorithms A:

- divide: divide the input I into a number a of smaller parts I_1, \ldots, I_a solve the subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ recursively
- conquer: combine solutions of subproblems $A(I_1), \ldots, A(I_a)$ into solution for A(I)

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
 - equations of shape $A(n) = \dots a \cdot A(\frac{n}{b}) \dots$; number a of smaller parts $\frac{n}{b}$

divide-and-conquer

recursive design paradigm for algorithms A:

- divide: divide the input I into a number a of smaller parts I_1, \ldots, I_a solve the subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
 - equations of shape $A(\mathbf{n}) = \dots a \cdot A(\frac{n}{b}) \dots$
 - input $I \Rightarrow length n$ of input

divide-and-conquer

recursive design paradigm for algorithms A:

- divide: divide the input I into a number a of smaller parts I_1, \ldots, I_a solve the subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
 - equations of shape $A(n) = \dots a \cdot A(\frac{n}{b}) \dots$
 - input $I \Rightarrow \text{length } n \text{ of input}$
 - operation ⇒ complexity of operation

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

• divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively
- conquer: merge solutions of $\mathcal{M}(L_1)$, $\mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively
- conquer: merge solutions of $\mathcal{M}(L_1)$, $\mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

problems of constant size as base cases

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + n \cdot c$, if $n \ge 2$, otherwise c

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + n \cdot c$, if $n \ge 2$, otherwise c
 - input $L \Rightarrow length n$ of list

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively
- conquer: merge solutions of $\mathcal{M}(L_1)$, $\mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + n \cdot c$, if $n \ge 2$, otherwise c
 - input $L \Rightarrow \text{length } n \text{ of } \overline{\text{list}}$
 - complexity of merging $n \cdot c$; merging linear in sum n of sizes of sublists L_1, L_2

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_1, L_2 solve sorting problems $\mathcal{M}(L_1), \mathcal{M}(L_2)$ recursively
- conquer: merge solutions of $\mathcal{M}(L_1)$, $\mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + n \cdot c$, if $n \ge 2$, otherwise c
 - input $L \Rightarrow \text{length } n \text{ of } \overline{\text{list}}$
 - complexity of merging $n \cdot c$
 - comparison, consing, . . . \Rightarrow all some fixed complexity c

Mergesort in Haskell

```
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>
```

Mergesort

```
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>
```

Complexity of **merge** in sum n of lengths of input lists

```
E(n) = c + E(n-1) if neither input list is empty; c time of a comparison = c \cdot n otherwise
```

Mergesort

```
merge :: Ord a ⇒ [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] -> [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

Complexity of merge in sum \boldsymbol{n} of lengths of input lists

```
E(n) = c + E(n-1) if neither input list is empty
= c \cdot n otherwise; c \cdot n time for returning list
```

Mergesort

```
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>
```

Complexity of merge in sum \boldsymbol{n} of lengths of input lists

```
E(n) = c + E(n-1) if neither input list is empty
= c \cdot n otherwise
recurrence: specification of E contains itself
```

Mergesort

```
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>
```

Complexity of merge in sum \boldsymbol{n} of lengths of input lists

```
E(n) = c + E(n-1) if neither input list is empty = c \cdot n otherwise recurrence: closed-form solution E(n) = c \cdot n
```

Mergesort

```
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>
```

Complexity of mergesort in length n of input list

```
M(n) = 2 \cdot M(\frac{n}{2}) + E(n) if n \ge 2 E(n) time for merging = c if n \ge 2
```

Mergesort

```
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>
```

Complexity of mergesort in length \boldsymbol{n} of input list

```
M(n) = 2 \cdot M(\frac{n}{2}) + c \cdot n \text{ if } n \ge 2
= \frac{c}{n} if n \ge 2 c time for base case
```

Mergesort

```
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>
```

Complexity of mergesort in length \boldsymbol{n} of input list

$$M(n) = 2 \cdot M(\frac{n}{2}) + c \cdot n \text{ if } n \ge 2$$

= $c \text{ if } n \ge 2$

recurrence: specification of M contains itself

Mergesort

```
merge :: Ord a ⇒ [a] -> [a] -> [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] -> [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

Complexity of mergesort in length \boldsymbol{n} of input list

```
M(n) = 2 \cdot M(\frac{n}{2}) + c \cdot n if n \ge 2
= c if n \ge 2
recurrence: closed-form solution M(n) = c \cdot n \cdot \log n + c \cdot n
```

Recurrences

Definition

• Recall: function is a set of (input,output) pairs; cannot be recursive

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification; cf. functional program

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \to \mathbb{N}$;

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- ullet here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- ullet here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

Example

the function $f \colon \mathbb{N} \to \mathbb{N}$, defined for $n \geqslant 1$ by:

$$g(n) = egin{cases} 1 & n = 1 \\ 2 \cdot g(\frac{n}{2}) + n & n \geqslant 2 \end{cases}$$

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- ullet here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

Example

the Fibonacci numbers defined by

$$f(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ f(n-1) + f(n-2) & \text{if } n \geqslant 2 \end{cases}$$

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \to \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

Example

the Fibonacci numbers defined by

$$f_0 = 0$$
 $f_1 = 1$ $f_n = f_{n-1} + f_{n-2}$

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- ullet here: recurrences that specify functions $\mathbb{N}
 ightarrow \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

solving recurrence?

a closed-form solution: no recursive calls in right-hand side

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- ullet here: recurrences that specify functions $\mathbb{N}
 ightarrow \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

solving recurrence?

- a closed-form solution: no recursive calls in right-hand side

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- ullet here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

solving recurrence?

- a closed-form solution: no recursive calls in right-hand side

 - 2 $f(n) = f_n = \frac{\phi^n (1-\phi)^n}{\sqrt{5}}$ where $\phi = \frac{1+\sqrt{5}}{2}$; using generating functions (not this course)

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- ullet here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

solving recurrence?

a closed-form solution: no recursive calls in right-hand side

2
$$f(n) = f_n = \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}}$$
 where $\phi = \frac{1 + \sqrt{5}}{2}$

because recursive, solution unique so can be verified by substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

$$T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$$

$$= 2 \cdot (2 \cdot T(\frac{n}{2^2}) + c \cdot \frac{n}{2}) + c \cdot n$$

$$= 2^2 \cdot T(\frac{n}{2^2}) + 2 \cdot c \cdot n$$

$$= 2^3 \cdot T(\frac{n}{2^3}) + 3 \cdot c \cdot n$$

$$= \dots$$

$$= 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n$$

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

$$T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n \text{ for } 1 \le k < ?$$

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

- $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n \text{ for } 1 \le k < \log n$
- 2 base case T(n) = c if $n = 2^k$, i.e. if $k = \log n$

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

- $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n \text{ for } 1 \le k < \log n$
- **2** base case T(n) = c if $n = 2^k$, i.e. if $k = \log n$
- \exists set $k := \log n$. $T(n) = 2^{\log n} \cdot c + \log n \cdot c \cdot n = c \cdot n \cdot \log n + c \cdot n$; closed-form for T(n)

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

- $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n \text{ for } 1 \le k < \log n$
- base case T(n) = c if $n = 2^k$, i.e. if $k = \log n$
- \exists set $k := \log n$. $T(n) = 2^{\log n} \cdot c + \log n \cdot c \cdot n = c \cdot n \cdot \log n + c \cdot n$
- **asymptotic complexity** of solution: $T(n) \in O(n \cdot \log n)$

Recall

• recurrence specifies unique function

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

- **1** guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise
- verify by substituting guess f for T in recurrence: (may use induction)

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

- **1** guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise
- **2** verify by substituting guess f for T in recurrence:
 - case n = 1: f(1) = c

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

- **1** guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise
- **2** verify by substituting guess f for T in recurrence:

• case
$$n = 1$$
: $f(1) = c$ \checkmark
• case $n > 1$:
$$T(n) = f(n) = c \cdot n \cdot \log n + c \cdot n$$

$$= 2 \cdot \left(c \cdot \frac{n}{2} \cdot \log \frac{n}{2} + c \cdot \frac{n}{2}\right) + c \cdot n$$

$$=_{\mathsf{IH}} 2 \cdot T\left(\frac{n}{2}\right) + c \cdot n \qquad \checkmark$$

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

- **1** guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise

• case
$$n = 1$$
: $f(1) = c$ \checkmark
• case $n > 1$:
$$T(n) = f(n) = c \cdot n \cdot \log n + c \cdot n$$

$$= 2 \cdot \left(c \cdot \frac{n}{2} \cdot \log \frac{n}{2} + c \cdot \frac{n}{2}\right) + c \cdot n$$

$$=_{\mathsf{IH}} 2 \cdot T\left(\frac{n}{2}\right) + c \cdot n \qquad \checkmark$$

using
$$\log(\frac{a}{b}) = (\log a) - (\log b)$$

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

- **1** guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise

• case
$$n = 1$$
: $f(1) = c$

• case
$$n > 1$$
: $T(n) = f(n) = c \cdot n \cdot \log n + c \cdot n$

$$= 2 \cdot \left(c \cdot \frac{n}{2} \cdot \log \frac{n}{2} + c \cdot \frac{n}{2}\right) + c \cdot n$$

$$=_{\mathsf{IH}} 2 \cdot T(\frac{\mathsf{n}}{2}) + c \cdot \mathsf{n}$$

using
$$\log(\frac{a}{b}) = (\log a) - (\log b)$$
, well-founded <-induction on $n (\frac{n}{2} < n \text{ if } n \ge 2)$

Lemma

Let $T \colon \mathbb{N} \to \mathbb{N}$ be defined by recurrence

$$T(n) = aT(\frac{n}{h}) + f(n)$$

with $a, b \in \mathbb{N}$ with b > 1, and such that $\exists k$ with $n = b^k$. Then

$$T(n) = a^{k}T(1) + \sum_{i=0}^{k-1} a^{i}f(\frac{n}{b^{i}})$$
 (1)

Lemma

Let $T \colon \mathbb{N} \to \mathbb{N}$ be defined by recurrence

$$T(n) = aT(\frac{n}{b}) + f(n)$$

with $a, b \in \mathbb{N}$ with b > 1, and such that $\exists k$ with $n = b^k$. Then

$$T(n) = a^{k}T(1) + \sum_{i=0}^{k-1} a^{i}f(\frac{n}{b^{i}})$$
 (1)

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \geqslant 1$:

$$a^{i}T(\frac{n}{b^{i}})=a^{i+1}T(\frac{n}{b^{i+1}})+a^{i}f(\frac{n}{b^{i}})$$

and therefore $T(n) = a^k T(1) + a^{k-1} f(\frac{n}{b^{k-1}}) + \cdots + a f(\frac{n}{b}) + f(n)$

Lemma

Let $T \colon \mathbb{N} \to \mathbb{N}$ be defined by recurrence

$$T(n) = aT(\frac{n}{h}) + f(n)$$

with $a, b \in \mathbb{N}$ with b > 1, and such that $\exists k$ with $n = b^k$. Then

$$T(n) = a^{k}T(1) + \sum_{i=0}^{k-1} a^{i}f(\frac{n}{b^{i}})$$
 (1)

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \geqslant 1$:

$$a^{i}T(\frac{n}{b^{i}})=a^{i+1}T(\frac{n}{b^{i+1}})+a^{i}f(\frac{n}{b^{i}})$$

and therefore $T(n) = a^k T(1) + a^{k-1} f(\frac{n}{b^{k-1}}) + \cdots + a f(\frac{n}{b}) + f(n)$

Definition (Divide-and-conquer algorithms)

ullet the algorithm solves instances up to size m directly

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split (divide) into a further instances of sizes $\lfloor n/b \rfloor$ and $\lceil n/b \rceil$, solves these recursively; we then combine (conquer) their solutions

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split (divide) into a further instances of sizes $\lfloor n/b \rfloor$ and $\lceil n/b \rceil$, solves these recursively; we then combine (conquer) their solutions

Definition

- let the time to split and combine be f(n)
- let the total time be T(n), where we assume $T(n+1) \ge T(n)$
- We define

$$T^{-}(n) := \begin{cases} a \cdot T^{-}(\lfloor n/b \rfloor) + f(n) & \text{if } n > m \\ T(n) & \text{if } n \leqslant m \end{cases}$$

$$T^{+}(n) := \begin{cases} a \cdot T^{+}(\lceil n/b \rceil) + f(n) & \text{if } n > m \\ T(n) & \text{if } n \leqslant m \end{cases}$$

Example (Recall mergesort)

```
merge :: Ord a \Rightarrow [a] \rightarrow [a] \rightarrow [a]
merge xs[] = xs
merge [] vs = vs
merge (x:xs) (y:ys)
| (x \le y) = x: (merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a \Rightarrow [a] \rightarrow [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

Example (Recall mergesort)

```
merge :: Ord a \Rightarrow [a] \rightarrow [a] \rightarrow [a]
merge xs[] = xs
merge [] vs = vs
merge (x:xs) (y:ys)
(x \le y) = x:(merge\ xs\ (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a \Rightarrow [a] \rightarrow [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

Ouestion

Can we give a bound on the complexity of merge sort?

Definition (Recapitulation)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split into a (divide) further instances of sizes $\lfloor n/b \rfloor$ and $\lceil n/b \rceil$, solves these recursively, and then combines (conquer) their solutions

Definition (Recapitulation)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split into a (divide) further instances of sizes $\lfloor n/b \rfloor$ and $\lceil n/b \rceil$, solves these recursively, and then combines (conquer) their solutions

Observation

- Let $n = m \cdot b^k$
- algorithm splits k times, hence there are, for $r := \log_b a$:

$$a^k=(b^r)^k=(b^k)^r=\left(rac{n}{m}
ight)^r$$
 ,

basic instances

- solving just the basic instances costs $\Theta(n^r)$
- *r* captures ratio of recursive calls *a* vs. decrease in size *b*:

Observation

- $a \cdot T(\lfloor n/b \rfloor) + f(n) \leqslant T(n) \leqslant a \cdot T(\lceil n/b \rceil) + f(n)$
- ullet Taking splitting and combining into account, allows asymptotic analysis of $T^\pm(n)$

Observation

- $a \cdot T(\lfloor n/b \rfloor) + f(n) \leqslant T(n) \leqslant a \cdot T(\lceil n/b \rceil) + f(n)$
- ullet Taking splitting and combining into account, allows asymptotic analysis of $T^\pm(n)$

Theorem (master theorem)

Let T(n) be an increasing function that satisfies the following recursive equations

$$T(n) = \begin{cases} c & n = 1 \\ aT(\frac{n}{b}) + f(n) & n = b^k, k = 1, 2, \dots \end{cases}$$

where $a\geqslant 1$, b>1, c>0. If $f\in\Theta(n^s)$ with $s\geqslant 0$, then

$$T(n) \in egin{cases} \Theta(n^{\log_b a}) & \textit{if } a > b^s \ \Theta(n^s \log n) & \textit{if } a = b^s \ \Theta(n^s) & \textit{if } a < b^s \end{cases}$$

Example (merge sort, continued)

for mergesort a=b=2 and moreover $f\in\Theta(n^1)$, as splitting and combining is linear in n (hence s=1). The master theorem yields the following bound on the runtime

$$T(n) \in \Theta(n \cdot \log n)$$

we have $a = b^s$, since a = b = 2 and s = 1 (second case)

Example (merge sort, continued)

for mergesort a=b=2 and moreover $f\in\Theta(n^1)$, as splitting and combining is linear in n (hence s=1). The master theorem yields the following bound on the runtime

$$T(n) \in \Theta(n \cdot \log n)$$

we have $a = b^s$, since a = b = 2 and s = 1 (second case)

Example

Consider the recurrence:

$$T(n)=4T(\frac{n}{2})+n^1$$

then a=4, b=2, $r=\log_b a=2$ and $a>b^s$, hence by the first case of the theorem: $T(n)\in\Theta(n^2)$

Case $f \in \Theta(n^s)$ with $a = b^s$

• set $r := \log_b a$; then r = s

Case $f \in \Theta(n^s)$ with $a = b^s$

- set $r := \log_b a$; then r = s
- we use properties of Θ , resp. properties of the exponential function to conclude:

$$a^{i}f(\frac{n}{b^{i}}) = \Theta(a^{i}\frac{n^{r}}{(b^{i})^{r}}) = \Theta(a^{i}\frac{n^{r}}{(b^{r})^{i}}) = \Theta(a^{i}\frac{n^{r}}{a^{i}}) = \Theta(n^{r})$$

Case $f \in \Theta(n^s)$ with $a = b^s$

- set $r := \log_b a$; then r = s
- we use properties of Θ , resp. properties of the exponential function to conclude:

$$a^{i}f(\frac{n}{b^{i}}) = \Theta(a^{i}\frac{n^{r}}{(b^{i})^{r}}) = \Theta(a^{i}\frac{n^{r}}{(b^{r})^{i}}) = \Theta(a^{i}\frac{n^{r}}{a^{i}}) = \Theta(n^{r})$$

• from which we obtain (as $n = b^k$)

$$\sum_{i=0}^{k} a^{i} f(\frac{n}{b^{i}}) = \Theta(\sum_{i=0}^{k} n^{r}) = \Theta(kn^{r}) = \Theta(n^{r} \log n)$$

17

Case $f \in \Theta(n^s)$ with $a = b^s$

- set $r := \log_b a$; then r = s
- we use properties of Θ , resp. properties of the exponential function to conclude:

$$a^{i}f(\frac{n}{b^{i}}) = \Theta(a^{i}\frac{n^{r}}{(b^{i})^{r}}) = \Theta(a^{i}\frac{n^{r}}{(b^{r})^{i}}) = \Theta(a^{i}\frac{n^{r}}{a^{i}}) = \Theta(n^{r})$$

• from which we obtain (as $n = b^k$)

$$\sum_{i=0}^{k} a^{i} f(\frac{n}{b^{i}}) = \Theta(\sum_{i=0}^{k} n^{r}) = \Theta(kn^{r}) = \Theta(n^{r} \log n)$$

moreover we already know that

$$a^kT(1) \in \Theta(n^r)$$

17

• recall equation (1)

$$T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$$

• recall equation (1)

$$T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$$

its terms can be bounded as follows:

$$a^k T(1) \in \Theta(n^r)$$

$$\sum_{i=0}^{k-1} a^i f(\frac{n}{b^i}) \in \Theta(n^r \log n)$$

recall equation (1)

$$T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$$

its terms can be bounded as follows:

$$a^k T(1) \in \Theta(n^r)$$

$$\sum_{i=0}^{k-1} a^i f(\frac{n}{b^i}) \in \Theta(n^r \log n)$$

and therefore

$$T(n) \in \Theta(n^r \log n)$$

recall equation (1)

$$T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$$

its terms can be bounded as follows:

$$a^k T(1) \in \Theta(n^r)$$

$$\sum_{i=0}^{k-1} a^i f(\frac{n}{b^i}) \in \Theta(n^r \log n)$$

and therefore

$$T(n) \in \Theta(n^r \log n)$$

Example

$$T(n) = 8 \cdot T(\frac{n}{2}) + n^2$$

- a = 8, b = 2, $f(n) = n^2$,
- $\log_b a = 3$, s = 2, $8 > 2^2$ so by case $1 \ T(n) \in \Theta(n^3)$

Example

$$T(n) = 8 \cdot T(\frac{n}{2}) + n^2$$

- a = 8, b = 2, $f(n) = n^2$,
- $\log_b a = 3$, s = 2, $8 > 2^2$ so by case $1 T(n) \in \Theta(n^3)$

Example

$$T(n) = 9 \cdot T(\frac{n}{3}) + n^3$$

- a = 9, b = 3, $f(n) = n^3$,
- $\log_b a = 2$, s = 3, $9 < 3^3$ so by case $3 T(n) \in \Theta(n^3)$

Example

$$T(n) = 8 \cdot T(\frac{n}{2}) + n^2$$

- a = 8, b = 2, $f(n) = n^2$,
- $\log_b a = 3$, s = 2, $8 > 2^2$ so by case $1 T(n) \in \Theta(n^3)$

Example

$$T(n) = 9 \cdot T(\frac{n}{3}) + n^3$$

- a = 9, b = 3, $f(n) = n^3$,
- $\log_b a = 2$, s = 3, $9 < 3^3$ so by case $3 T(n) \in \Theta(n^3)$

Example

$$T(n) = T(\frac{n}{2}) + 1$$
 (binary search)

- a = 1, b = 2, f(n) = 1,
- $\log_b a = 0$, s = 0, $1 = 2^0$ so by case $2 T(n) \in \Theta(\log n)$

Limitations of Master theorem

- split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating functions)
- f(n) not of complexity $\Theta(n^s)$ for some s (can be relaxed)