Summary last week

- Multiplicative atomicity: prime \iff indecomposable \iff |-minimal (proof)
- Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)

Summary last week

- Multiplicative atomicity: prime \iff indecomposable \iff |-minimal (proof)
- Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)
- comparing (complexity) functions asymptotically (using lim, lim sup, lim inf)
- $O(f) = \{g \mid \exists m, c, \forall n \ge m, g(n) \le c \cdot f(n)\}$; asymptotically bounded above by f
- $\Omega(f) = \{g \mid \exists m, c, \forall n \ge m, g(n) \ge c \cdot f(n)\};$ asymptotically bounded below by f

1

- $\Theta(f) = O(f) \cap \Omega(f)$; asymptotically same growth as f
- $o(f) = \{g \mid \lim_{n \to \infty} \frac{g(n)}{f(n)} = 0\};$ asymptotically negligible w.r.t. f
- lim sup-characterisation of O: $f \in O(g) \Leftrightarrow \limsup_{n \to \infty} \frac{f(n)}{g(n)} < \infty$
- lim inf-characterisation of Ω : $f \in \Omega(g) \Leftrightarrow \liminf_{n \to \infty} \frac{f(n)}{q(n)} > 0$

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

1

Divide-and-conquer

Divide-and-conquer

Complexity?			
$O(n \cdot \log_2 n)$			

Divide-and-conquer

Divide-and-conquer

4

4

livide-and-conquer	
ecursive design paradigm for algorithms \mathcal{A} :	

5

Complexity?

 $O(n \cdot \log n)$: each level O(n) operations, $O(\log n)$ levels ($\log n$ splits, merges)

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

divide: divide the input *l* into a number *a* of smaller parts *l*₁,..., *l*_a solve the subproblems A(*l*₁),..., A(*l*_a) recursively

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input *I* into a number *a* of smaller parts *I*₁,..., *I*_a solve the subproblems A(*I*₁),..., A(*I*_a) recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input *l* into a number *a* of smaller parts *l*₁,..., *l_a* solve the subproblems A(*l*₁),..., A(*l_a*) recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

• problems of constant size as base cases

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

- divide: divide the input *l* into a number *a* of smaller parts *l*₁,..., *l_a* solve the subproblems A(*l*₁),..., A(*l_a*) recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

5

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input *I* into a number *a* of smaller parts *I*₁,..., *I*_a solve the subproblems A(*I*₁),..., A(*I*_a) recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
 - equations of shape $A(n) = \dots a \cdot A(\frac{n}{b}) \dots$; number *a* of smaller parts $\frac{n}{b}$

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input *l* into a number *a* of smaller parts *l*₁,..., *l*_a solve the subproblems A(*l*₁),..., A(*l*_a) recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
 - equations of shape $A(\mathbf{n}) = \dots a \cdot A(\frac{n}{b}) \dots$
 - input $I \Rightarrow \text{length } n \text{ of input}$

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input *l* into a number *a* of smaller parts *l*₁,..., *l_a* solve the subproblems A(*l*₁),..., A(*l_a*) recursively
- conquer: combine solutions of subproblems $\mathcal{A}(I_1), \ldots, \mathcal{A}(I_a)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
 - equations of shape $A(n) = \dots a \cdot A(\frac{n}{b}) \dots$
 - input $I \Rightarrow$ length *n* of input
 - operation \Rightarrow complexity of operation

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

divide: split input list L into 2 smaller sublists L₁, L₂ solve sorting problems M(L₁), M(L₂) recursively

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L₁, L₂ solve sorting problems M(L₁), M(L₂) recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

- divide: split input list *L* into 2 smaller sublists *L*₁, *L*₂ solve sorting problems *M*(*L*₁), *M*(*L*₂) recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

• problems of constant size as base cases

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

- divide: split input list *L* into 2 smaller sublists *L*₁, *L*₂ solve sorting problems *M*(*L*₁), *M*(*L*₂) recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L₁, L₂ solve sorting problems M(L₁), M(L₂) recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + n \cdot c$, if $n \ge 2$, otherwise c

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L₁, L₂ solve sorting problems M(L₁), M(L₂) recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + n \cdot c$, if $n \ge 2$, otherwise c
 - input $L \Rightarrow \text{length } n \text{ of } \overline{\text{list}}$

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

- divide: split input list *L* into 2 smaller sublists *L*₁, *L*₂ solve sorting problems *M*(*L*₁), *M*(*L*₂) recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + \mathbf{n} \cdot \mathbf{c}$, if $n \ge 2$, otherwise \mathbf{c}
 - input $L \Rightarrow$ length *n* of list
 - complexity of merging $n \cdot c$; merging linear in sum n of sizes of sublists L_1, L_2

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list *L* sorting algorithm $\mathcal{M}(L)$:

- divide: split input list *L* into 2 smaller sublists *L*₁, *L*₂ solve sorting problems *M*(*L*₁), *M*(*L*₂) recursively
- conquer: merge solutions of $\mathcal{M}(L_1), \mathcal{M}(L_2)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
 - equation $M(n) = 2 \cdot M(\frac{n}{2}) + n \cdot c$, if $n \ge 2$, otherwise c
 - input $L \Rightarrow$ length *n* of list
 - complexity of merging $n \cdot c$
 - comparison,consing,... \Rightarrow all some fixed complexity c

Algorithm and recurrence for complexity of mergesort

Mergesort in Haskell

merge :: **Ord** $a \Rightarrow [a] \rightarrow [a] \rightarrow [a]$ merge xs [] = xs merge [] ys = ys merge (x:xs) (y:ys) | (x <= y) = x:(merge xs (y:ys)) | **otherwise** = y:(merge (x:xs) ys) mergesort :: **Ord** $a \Rightarrow [a] \rightarrow [a]$ mergesort [] = [] mergesort [x] = [x] mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

7

Algorithm and recurrence for complexity of merge

/lergesort
<pre>merge :: Ord a => [a] -> [a] -> [a] merge xs [] = xs merge [] ys = ys merge (x:xs) (y:ys) (x <= y) = x:(merge xs (y:ys)) otherwise = y:(merge (x:xs) ys)</pre>
<pre>mergesort :: Ord a => [a] -> [a] mergesort [] = [] mergesort [x] = [x] mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>

Complexity of merge in sum <i>n</i> of lengths of input lists	
E(n) = c + E(n - 1) if neither input list is empty; c time of a comparison	

Algorithm and recurrence for complexity of merge

Mergesort

merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>

Complexity of merge in sum *n* of lengths of input lists

E(n) = c + E(n-1)	.) if neither input list is empty
$= c \cdot n$	otherwise; <i>c</i> · <i>n</i> time for returning list

Algorithm and recurrence for complexity of merge

Mergesort
<pre>merge :: Ord a => [a] -> [a] merge xs [] = xs merge [] ys = ys merge (x:xs) (y:ys) (x <= y) = x:(merge xs (y:ys)) otherwise = y:(merge (x:xs) ys)</pre>
<pre>mergesort :: Ord a => [a] -> [a] mergesort [] = [] mergesort [x] = [x] mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>

Complexity of merge in sum *n* **of lengths of input lists**

E(n) = c + E(n - 1) if neither input list is empty = $c \cdot n$ otherwise recurrence: specification of E contains itself Algorithm and recurrence for complexity of merge

Mergesort
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>

Complexity of merge in sum *n* **of lengths of input lists**

E(n) = c + E(n - 1) if neither input list is empty = $c \cdot n$ otherwise recurrence: closed-form solution $E(n) = c \cdot n$ Algorithm and recurrence for complexity of mergesort

Mergesort
<pre>merge :: Ord a => [a] -> [a] -> [a] merge xs [] = xs merge [] ys = ys merge (x:xs) (y:ys) (x <= y) = x:(merge xs (y:ys)) otherwise = y:(merge (x:xs) ys)</pre>
<pre>mergesort :: Ord a => [a] -> [a] mergesort [] = [] mergesort [x] = [x] mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>

Complexity of mergesort in length <i>n</i> of input list			
$M(n) = 2 \cdot M(\frac{n}{2}) + \frac{E(n)}{n}$ if n	2 $E(n)$ time for merging		
e 117,	- 7		

Algorithm and recurrence for complexity of mergesort

Mergesort merge :: Ord a ⇒ [a] → [a] → [a] merge xs [] = xs merge [] ys = ys merge (x:xs) (y:ys) | (x <= y) = x:(merge xs (y:ys)) | otherwise = y:(merge (x:xs) ys) mergesort :: Ord a ⇒ [a] → [a] mergesort [] = [] mergesort [x] = [x] mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Complexity of mergesort in length *n* of input list

 Algorithm and recurrence for complexity of mergesort

Mergesort	
<pre>merge :: Ord a ⇒ [a] → [a] → [a] merge xs [] = xs merge [] ys = ys merge (x:xs) (y:ys) (x <= y) = x:(merge xs (y:ys)) otherwise = y:(merge (x:xs) ys)</pre>	
<pre>mergesort :: Ord a => [a] -> [a] mergesort [] = [] mergesort [x] = [x] mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>	

Complexity of mergesort in length n of input list

Algorithm and recurrence for complexity of mergesort

Mergesort
merge :: Ord a ⇒ [a] → [a] → [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
| (x <= y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a ⇒ [a] → [a]
mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))</pre>

Complexity of mergesort in length *n* of input list

Recurrences

Definition

• Recall: function is a set of (input,output) pairs; cannot be recursive

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification; cf. functional program

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \to \mathbb{N}$;

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

Example

8

8

the function $f \colon \mathbb{N} \to \mathbb{N}$, defined for $n \geqslant 1$ by:

$$g(n)=egin{cases} 1&n=1\ 2\cdot g(rac{n}{2})+n&n\geqslant 2 \end{cases}$$

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} o \mathbb{N}$;
- recurrences often written using indices: f_n instead of f(n).

Example

the Fibonacci numbers defined by

$$f(n) = \begin{cases} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ f(n-1) + f(n-2) & \text{if } n \ge 2 \end{cases}$$

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\,\mathbb{N}\,\rightarrow\,\mathbb{N}\,$;
- recurrences often written using indices: f_n instead of f(n).

Example

the Fibonacci numbers defined by

 $f_0 = 0$ $f_1 = 1$ $f_n = f_{n-1} + f_{n-2}$

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\,\mathbb{N}\,\rightarrow\,\mathbb{N}\,$;
- recurrences often written using indices: f_n instead of f(n).

olving recurrence?

a closed-form solution: no recursive calls in right-hand side

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\,\mathbb{N}\,\rightarrow\,\mathbb{N}\,$;
- recurrences often written using indices: *f_n* instead of *f*(*n*).

solving recurrence?

a closed-form solution: no recursive calls in right-hand side $g(n) = n \cdot \log n + n; \text{ using master theorem (today)}$

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\,\mathbb{N}\,\rightarrow\,\mathbb{N}\,$;
- recurrences often written using indices: f_n instead of f(n).

solving recurrence?

a closed-form solution: no recursive calls in right-hand side

 $g(n) = n \cdot \log n + n$

2 $f(n) = f_n = \frac{\phi^n - (1-\phi)^n}{\sqrt{5}}$ where $\phi = \frac{1+\sqrt{5}}{2}$; using generating functions (not this course)

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\,\mathbb{N}\,\rightarrow\,\mathbb{N}\,$;
- recurrences often written using indices: *f_n* instead of *f*(*n*).

solving recurrence?

a closed-form solution: no recursive calls in right-hand side

1 $g(n) = n \cdot \log n + n$ 2 $f(n) = f_n = \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}}$ where $\phi = \frac{1 + \sqrt{5}}{2}$ because recursive, solution unique so can be verified by substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

9

9

$$T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$$

= $2 \cdot (2 \cdot T(\frac{n}{2^2}) + c \cdot \frac{n}{2}) + c \cdot n$
= $2^2 \cdot T(\frac{n}{2^2}) + 2 \cdot c \cdot n$
= $2^3 \cdot T(\frac{n}{2^3}) + 3 \cdot c \cdot n$
= ...
= $2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n$

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

 $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n \text{ for } 1 \le k < ?$

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

1 $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n$ for $1 \le k < \log n$ 2 base case T(n) = c if $n = 2^k$, i.e. if $k = \log n$

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

1 $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n$ for $1 \le k < \log n$ 2 base case T(n) = c if $n = 2^k$, i.e. if $k = \log n$ 3 set $k := \log n$. $T(n) = 2^{\log n} \cdot c + \log n \cdot c \cdot n = c \cdot n \cdot \log n + c \cdot n$; closed-form for T(n) Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

1 $T(n) = 2^k \cdot T(\frac{n}{2^k}) + k \cdot c \cdot n$ for $1 \le k < \log n$ 2 base case T(n) = c if $n = 2^k$, i.e. if $k = \log n$ 3 set $k := \log n$. $T(n) = 2^{\log n} \cdot c + \log n \cdot c \cdot n = c \cdot n \cdot \log n + c \cdot n$ 4 asymptotic complexity of solution: $T(n) \in O(n \cdot \log n)$

Verifying solutions/solving by guessing

Recall

• recurrence specifies unique function

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise 2 verify by substituting guess f for T in recurrence: (may use induction)

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

 \checkmark

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise 2 verify by substituting guess f for T in recurrence:

• case n = 1: f(1) = c

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise **2** verify by substituting guess f for T in recurrence:

• case
$$n = 1$$
: $f(1) = c$
• case $n > 1$:
 $T(n) = f(n) = c \cdot n \cdot \log n + c \cdot n$
 $= 2 \cdot (c \cdot \frac{n}{2} \cdot \log \frac{n}{2} + c \cdot \frac{n}{2}) + c \cdot n$
 $=_{\text{IH}} 2 \cdot T(\frac{n}{2}) + c \cdot n$

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise 2 verify by substituting guess f for T in recurrence:

• case
$$n = 1$$
: $f(1) = c$ \checkmark
• case $n > 1$:
 $T(n) = f(n) = c \cdot n \cdot \log n + c \cdot n$
 $= 2 \cdot (c \cdot \frac{n}{2} \cdot \log \frac{n}{2} + c \cdot \frac{n}{2}) + c \cdot n$
 $=_{\mathrm{IH}} 2 \cdot T(\frac{n}{2}) + c \cdot n$ \checkmark

using
$$\log(\frac{a}{b}) = (\log a) - (\log b)$$

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n) = c \cdot n \cdot \log n + c \cdot n$ solves $T(n) = 2 \cdot T(\frac{n}{2}) + c \cdot n$ if $n \ge 2$, c otherwise 2 verify by substituting guess f for T in recurrence:

case
$$n = 1$$
: $f(1) = c$ \checkmark
case $n > 1$: $T(n) = f(n) = c \cdot n \cdot \log n + c \cdot n$
 $= 2 \cdot (c \cdot \frac{n}{2} \cdot \log \frac{n}{2} + c \cdot \frac{n}{2}) + c \cdot$
 $=_{IH} 2 \cdot T(\frac{n}{2}) + c \cdot n$ \checkmark

using $\log(\frac{a}{b}) = (\log a) - (\log b)$, well-founded <-induction on $n (\frac{n}{2} < n \text{ if } n \ge 2)$ 10

Lemma Let $T: \mathbb{N} \to \mathbb{N}$ be defined by recurrence $T(n) = aT(\frac{n}{b}) + f(n)$ with $a, b \in \mathbb{N}$ with b > 1, and such that $\exists k$ with $n = b^k$. Then $T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$ (1)

Lemma

10

11

Let $T: \mathbb{N} \to \mathbb{N}$ be defined by recurrence $T(n) = aT(\frac{n}{b}) + f(n)$ with $a, b \in \mathbb{N}$ with b > 1, and such that $\exists k$ with $n = b^k$. Then

$$T(n) = a^{k}T(1) + \sum_{i=0}^{k-1} a^{i}f(\frac{n}{b^{i}})$$
(1)

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \geqslant$ 1:

$$a^{i}T(\frac{n}{b^{i}}) = a^{i+1}T(\frac{n}{b^{i+1}}) + a^{i}f(\frac{n}{b^{i}})$$

and therefore $T(n) = a^{k}T(1) + a^{k-1}f(\frac{n}{b^{k-1}}) + \dots + af(\frac{n}{b}) + f(n)$

Lemma

Let $T \colon \mathbb{N} \to \mathbb{N}$ be defined by recurrence

$$T(n) = aT(rac{n}{b}) + f(n)$$

with $a, b \in \mathbb{N}$ with b > 1, and such that $\exists k$ with $n = b^k$. Then

$$T(n) = a^k T(1) + \sum_{i=0}^{n-1} a^i f(\frac{n}{b^i})$$

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \ge 1$:

$$a^{i}T(\frac{n}{b^{i}}) = a^{i+1}T(\frac{n}{b^{i+1}}) + a^{i}f(\frac{n}{b^{i}})$$

and therefore $T(n) = a^{k}T(1) + a^{k-1}f(\frac{n}{b^{k-1}}) + \dots + af(\frac{n}{b}) + f(n)$

Definition (Divide-and-conquer algorithms)

• the algorithm solves instances up to size *m* directly

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split (divide) into *a* further instances of sizes $\lfloor n/b \rfloor$ and $\lfloor n/b \rfloor$, solves these recursively; we then combine (conquer) their solutions

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split (divide) into a further instances of sizes $\lfloor n/b \rfloor$ and $\lfloor n/b \rfloor$, solves these recursively; we then combine (conquer) their solutions

12

Definition

- let the time to split and combine be f(n)
- let the total time be T(n), where we assume $T(n+1) \ge T(n)$
- We define

$$T^{-}(n) := \begin{cases} a \cdot T^{-}(\lfloor n/b \rfloor) + f(n) & \text{if } n > m \\ T(n) & \text{if } n \leqslant m \end{cases}$$
$$T^{+}(n) := \begin{cases} a \cdot T^{+}(\lceil n/b \rceil) + f(n) & \text{if } n > m \\ T(n) & \text{if } n \leqslant m \end{cases}$$

(1)

Example (Recall mergesort)

```
merge :: Ord a \Rightarrow [a] \rightarrow [a]

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| (x <= y) = x:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a \Rightarrow [a] \rightarrow [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

Example (Recall mergesort)

```
merge :: Ord a \Rightarrow [a] \rightarrow [a] \rightarrow [a]

merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| (x <= y) = x:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a \Rightarrow [a] \rightarrow [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

Questio

Can we give a bound on the complexity of merge sort?

Definition (Recapitulation)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split into *a* (divide) further instances of sizes $\lfloor n/b \rfloor$ and $\lfloor n/b \rfloor$, solves these recursively, and then combines (conquer) their solutions

Definition (Recapitulation)

- the algorithm solves instances up to size *m* directly
- instances of size n > m are split into *a* (divide) further instances of sizes $\lfloor n/b \rfloor$ and $\lfloor n/b \rfloor$, solves these recursively, and then combines (conquer) their solutions

Observation

- Let $n = m \cdot b^k$
- algorithm splits k times, hence there are, for $r := \log_b a$:

$$a^{k} = (b^{r})^{k} = (b^{k})^{r} = \left(\frac{n}{m}\right)^{r}$$

basic instances

- solving just the basic instances costs $\Theta(n^r)$
- *r* captures ratio of recursive calls *a* vs. decrease in size *b*:

13

Observation

- $a \cdot T(\lfloor n/b \rfloor) + f(n) \leq T(n) \leq a \cdot T(\lceil n/b \rceil) + f(n)$
- Taking splitting and combining into account, allows asymptotic analysis of $T^{\pm}(n)$

Observation

- $a \cdot T(\lfloor n/b \rfloor) + f(n) \leq T(n) \leq a \cdot T(\lceil n/b \rceil) + f(n)$
- Taking splitting and combining into account, allows asymptotic analysis of $T^{\pm}(n)$

Theorem (master theorem)

Let T(n) be an increasing function that satisfies the following recursive equations

$$T(n) = \begin{cases} c & n = 1\\ aT(\frac{n}{b}) + f(n) & n = b^k, \ k = 1, 2, \dots \end{cases}$$

where $a \ge 1, \ b > 1, \ c > 0.$ If $f \in \Theta(n^s)$ with $s \ge 0$, then
$$T(n) \in \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^s\\ \Theta(n^s \log n) & \text{if } a = b^s\\ \Theta(n^s) & \text{if } a < b^s \end{cases}$$

Example (merge sort, continued)

for mergesort a = b = 2 and moreover $f \in \Theta(n^1)$, as splitting and combining is linear in n (hence s = 1). The master theorem yields the following bound on the runtime $T(n) \in \Theta(n \cdot \log n)$

we have $a = b^s$, since a = b = 2 and s = 1 (second case)

Example (merge sort, continued)

for mergesort a = b = 2 and moreover $f \in \Theta(n^1)$, as splitting and combining is linear in n (hence s = 1). The master theorem yields the following bound on the runtime $T(n) \in \Theta(n \cdot \log n)$

we have $a = b^s$, since a = b = 2 and s = 1 (second case)

Example

Consider the recurrence:

$$T(n) = 4T(\frac{n}{2}) + n^1$$

then a = 4, b = 2, $r = \log_b a = 2$ and $a > b^s$, hence by the first case of the theorem: $T(n) \in \Theta(n^2)$

15

Proof of the master theorem

Proof of the master theorem

Case $f \in \Theta(n^s)$ with $a = b^s$

- set $r := \log_b a$; then r = s
- we use properties of Θ , resp. properties of the exponential function to conclude:

$$a^{i}f(\frac{n}{b^{i}}) = \Theta(a^{i}\frac{n^{r}}{(b^{i})^{r}}) = \Theta(a^{i}\frac{n^{r}}{(b^{r})^{i}}) = \Theta(a^{i}\frac{n^{r}}{a^{i}}) = \Theta(n^{r})$$

Proof of the master theorem

Case $f \in \Theta(n^s)$ with $a = b^s$

- set $r := \log_b a$; then r = s
- we use properties of Θ , resp. properties of the exponential function to conclude:

$$a^{i}f(\frac{n}{b^{i}}) = \Theta(a^{i}\frac{n^{r}}{(b^{i})^{r}}) = \Theta(a^{i}\frac{n^{r}}{(b^{r})^{i}}) = \Theta(a^{i}\frac{n^{r}}{a^{i}}) = \Theta(n^{r})$$

• from which we obtain (as $n = b^k$)

$$\sum_{i=0}^{k} a^{i} f(\frac{n}{b^{i}}) = \Theta(\sum_{i=0}^{k} n^{r}) = \Theta(kn^{r}) = \Theta(n^{r} \log n)$$

Proof of the master theorem

Case $f \in \Theta(n^s)$ with $a = b^s$

- set $r := \log_b a$; then r = s
- we use properties of Θ , resp. properties of the exponential function to conclude:

$$a^{i}f(\frac{n}{b^{i}}) = \Theta(a^{i}\frac{n^{r}}{(b^{i})^{r}}) = \Theta(a^{i}\frac{n^{r}}{(b^{r})^{i}}) = \Theta(a^{i}\frac{n^{r}}{a^{i}}) = \Theta(n^{r})$$

• from which we obtain (as $n = b^k$)

$$\sum_{i=0}^{k} a^{i} f(\frac{n}{b^{i}}) = \Theta(\sum_{i=0}^{k} n^{r}) = \Theta(kn^{r}) = \Theta(n^{r} \log n)$$

moreover we already know that

$$a^{\kappa}T(1)\in\Theta(n^{r})$$

Proof (continued)

• recall equation (1)

$$T(n) = a^{k}T(1) + \sum_{i=0}^{k-1} a^{i}f(\frac{n}{b^{i}})$$

Proof (continued)

recall equation (1)

$$T(n) = a^{k}T(1) + \sum_{i=0}^{k-1} a^{i}f(\frac{n}{b^{i}})$$

• its terms can be bounded as follows:

$$a^{\kappa}T(1) \in \Theta(n^{r})$$

 $\sum_{i=0}^{k-1} a^{i}f(\frac{n}{b^{i}}) \in \Theta(n^{r} \log n)$

Proof (continued)

• recall equation (1)

$$T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$$

• its terms can be bounded as follows:

$$a^k T(1) \in \Theta(n^r)$$

 $\sum_{i=0}^{k-1} a^i f(\frac{n}{b^i}) \in \Theta(n^r \log n)$

and therefore

 $T(n) \in \Theta(n^r \log n)$

Proof (continued)

recall equation (1)

$$T(n) = a^k T(1) + \sum_{i=0}^{k-1} a^i f(\frac{n}{b^i})$$

• its terms can be bounded as follows:

$$a^k T(1) \in \Theta(n^r)$$

 $\sum_{i=0}^{k-1} a^i f(rac{n}{b^i}) \in \Theta(n^r \log n)$

and therefore

$$T(n) \in \Theta(n^r \log n)$$

18

Example

- $T(n) = 8 \cdot T(\frac{n}{2}) + n^2$ • $a = 8, b = 2, f(n) = n^2,$
- $\log_b a = 3, s = 2, 8 > 2^2$ so by case $1 T(n) \in \Theta(n^3)$

Example

 $T(n) = 8 \cdot T(\frac{n}{2}) + n^2$

- $a = 8, b = 2, f(n) = n^2,$
- $\log_b a = 3, s = 2, 8 > 2^2$ so by case $1 T(n) \in \Theta(n^3)$

Example

19

- $T(n) = 9 \cdot T(\frac{n}{3}) + n^3$
- $a = 9, b = 3, f(n) = n^3$,
- $\log_b a = 2, s = 3, 9 < 3^3$ so by case $3 T(n) \in \Theta(n^3)$

Example

 $T(n) = 8 \cdot T(\frac{n}{2}) + n^2$

• $a = 8, b = 2, f(n) = n^2,$

• $\log_b a = 3, s = 2, 8 > 2^2$ so by case $1 T(n) \in \Theta(n^3)$

Example

 $T(n) = 9 \cdot T(\frac{n}{3}) + n^3$ • $a = 9, b = 3, f(n) = n^3,$ • $\log_b a = 2, s = 3, 9 < 3^3$ so by case $3 T(n) \in \Theta(n^3)$

Example

 $T(n) = T(\frac{n}{2}) + 1$ (binary search)

• a = 1, b = 2, f(n) = 1,

• $\log_b a = 0, s = 0, 1 = 2^0$ so by case $2 T(n) \in \Theta(\log n)$

Limitations of Master theorem

- split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating functions)
- f(n) not of complexity $\Theta(n^s)$ for some *s* (can be relaxed)