Summary last week

- Multiplicative atomicity: prime \Longleftrightarrow indecomposable \Longleftrightarrow |-minimal (proof)
- Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Summary last week

- Multiplicative atomicity: prime \Longleftrightarrow indecomposable \Longleftrightarrow |-minimal (proof)
- Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)
- comparing (complexity) functions asymptotically (using lim, lim sup, lim inf)
- $\mathrm{O}(f)=\{g \mid \exists m, c, \forall n \geq m, g(n) \leq c \cdot f(n)\}$; asymptotically bounded above by f
$\Omega(f)=\{g \mid \exists m, c, \forall n \geq m, g(n) \geq c \cdot f(n)\}$; asymptotically bounded below by f
- $\Theta(f)=O(f) \cap \Omega(f)$; asymptotically same growth as f
- $o(f)=\left\{g \left\lvert\, \lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=0\right.\right\}$; asymptotically negligible w.r.t. f
- \lim sup-characterisation of $\mathrm{O}: f \in \mathrm{O}(g) \Leftrightarrow \limsup _{n \rightarrow \infty} \frac{f(n)}{g(n)}<\infty$
- $\lim \inf$-characterisation of $\Omega: f \in \Omega(g) \Leftrightarrow \liminf _{n \rightarrow \infty} \frac{f(n)}{g(n)}>0$

Discrete structures

Divide-and-conquer

Divide-and-conquer

Complexity?

$\mathrm{O}\left(n \cdot \log _{2} n\right)$

Divide-and-conquer

Complexity?

$\mathrm{O}(n \cdot \log n)$: each level $\mathrm{O}(n)$ operations, $\mathrm{O}(\log n)$ levels (log n splits, merges)

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input $/$ into a number a of smaller parts I_{1}, \ldots, I_{a} solve the subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ recursively

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input $/$ into a number a of smaller parts I_{1}, \ldots, l_{a} solve the subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ into solution for $\mathcal{A}(I)$

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input / into a number a of smaller parts I_{1}, \ldots, I_{a} solve the subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input I into a number a of smaller parts I_{1}, \ldots, I_{a} solve the subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input l into a number a of smaller parts I_{1}, \ldots, I_{a} solve the subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm - equations of shape $A(n)=\ldots a \cdot A\left(\frac{n}{b}\right) \ldots$; number a of smaller parts $\frac{n}{b}$

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input I into a number a of smaller parts I_{1}, \ldots, I_{a} solve the subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
- equations of shape $A(n)=\ldots \cdot a \cdot A\left(\frac{n}{b}\right)$..
- input $I \Rightarrow$ length n of input
- operation \Rightarrow complexity of operation

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms \mathcal{A} :

- divide: divide the input I into a number a of smaller parts I_{1}, \ldots, I_{a} solve the subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ recursively
- conquer: combine solutions of subproblems $\mathcal{A}\left(I_{1}\right), \ldots, \mathcal{A}\left(I_{a}\right)$ into solution for $\mathcal{A}(I)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equations of algorithm
- equations of shape $A(n)=\ldots a \cdot A\left(\frac{n}{b}\right) \ldots$
- input $I \Rightarrow$ length n of input

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

Divide-and-conquer for mergesort

divide-and-conquer for mergesort
 recursive list L sorting algorithm $\mathcal{M}(L)$:
 - divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively
- conquer: merge solutions of $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively
- conquer: merge solutions of $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ into a single list solving $\mathcal{M}(L)$

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively
- conquer: merge solutions of $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively
- conquer: merge solutions of $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
- equation $M(n)=2 \cdot M\left(\frac{n}{2}\right)+n \cdot c$, if $n \geq 2$, otherwise c

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively
- conquer: merge solutions of $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
- equation $M(n)=2 \cdot M\left(\frac{n}{2}\right)+n \cdot c$, if $n \geq 2$, otherwise c
- input $L \Rightarrow$ length n of list
- complexity of merging $n \cdot c$; merging linear in sum n of sizes of sublists L_{1}, L_{2}

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively
- conquer: merge solutions of $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
- equation $M(n)=2 \cdot M\left(\frac{n}{2}\right)+n \cdot c$, if $n \geq 2$, otherwise c
- input $L \Rightarrow$ length n of list

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm $\mathcal{M}(L)$:

- divide: split input list L into 2 smaller sublists L_{1}, L_{2} solve sorting problems $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ recursively
- conquer: merge solutions of $\mathcal{M}\left(L_{1}\right), \mathcal{M}\left(L_{2}\right)$ into a single list solving $\mathcal{M}(L)$

remarks

- problems of constant size as base cases
- complexity analysis done using recurrence equation of mergesort
- equation $M(n)=2 \cdot M\left(\frac{n}{2}\right)+n \cdot c$, if $n \geq 2$, otherwise c
- input $L \Rightarrow$ length n of list
- complexity of merging $n \cdot c$
- comparison,consing,... \Rightarrow all some fixed complexity c

Algorithm and recurrence for complexity of mergesort

```
Mergesort in Haskell
    merge :: Ord a => [a] > [a] > [a]
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
    | (x<= y) = x:(merge xs (y:ys))
    | otherwise = y:(merge (x:xs) ys)
    mergesort :: Ord a => [a] -> [a]
    mergesort [] = []
    mergesort [x] = [x]
    mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```


Algorithm and recurrence for complexity of merge

Mergesort

merge :: Ord a \Rightarrow [a] \rightarrow [a] \rightarrow [a]
merge xs [] = xs
merge [] ys = ys
merge ($x: x s$) ($y: y s)$
| $(x<=y)=x:(m e r g e ~ x s ~(y: y s))$
\mid otherwise $=y:(m e r g e ~(x: x s) y s)$
mergesort :: Ord a \Rightarrow [a] \rightarrow [a]
mergesort [] = []
mergesort $[x]=[x]$
mergesort $x s=\operatorname{merge}($ mergesort $(f s t h a l f ~ x s)) \quad(m e r g e s o r t ~(s n d h a l f ~ x s)) ~$

Complexity of merge in sum n of lengths of input lists

$E(n)=c+E(n-1)$ if neither input list is empty
$=c \cdot n \quad$ otherwise; $c \cdot n$ time for returning list

Algorithm and recurrence for complexity of merge

```
Mergesort
    merge :: Ord \(a \Rightarrow\) [a] \(\rightarrow\) [a] \(\rightarrow\) [a]
    merge xs [] = xs
    merge [] ys = ys
    merge (x:xs) (y:ys)
    | \((x<=y)=x:(\) merge \(x s \quad(y: y s))\)
    \(\mid\) otherwise \(=y:(\) merge \((x: x s) y s)\)
    mergesort :: Ord a \(\Rightarrow\) [a] \(\rightarrow\) [a]
    mergesort [] = []
    mergesort \([x]=[x]\)
    mergesort \(x s=\operatorname{merge}(\operatorname{mergesort}(f s t h a l f ~ x s)) \quad(\) mergesort (sndhalf xs))
```

Complexity of merge in sum n of lengths of input lists
$E(n)=c+E(n-1)$ if neither input list is empty; c time of a comparison

$$
=c \cdot n \quad \text { otherwise }
$$

Algorithm and recurrence for complexity of merge

Mergesort

merge :: Ord a \Rightarrow [a] \rightarrow [a] \rightarrow [a]
merge \times s [] = xs
merge [] ys = ys
merge ($x: x$ s) (y : $y s$)
| ($x<=y$) = $x:(m e r g e ~ x s ~(y: y s))$
| otherwise = y :(merge (x:xs) ys)
mergesort :: Ord a \Rightarrow [a] \rightarrow [a]
mergesort [] = []
mergesort $[x]=[x]$
mergesort $x s=\operatorname{merge}($ mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Complexity of merge in sum n of lengths of input lists

$E(n)=c+E(n-1)$ if neither input list is empty
$=c \cdot n$
otherwise
recurrence: specification of E contains itself

Algorithm and recurrence for complexity of merge

```
Mergesort
    merge :: Ord \(a \Rightarrow\) [a] \(\rightarrow\) [a] \(\rightarrow\) [a]
    merge xs [] = xs
    merge [] ys = ys
    merge (x:xs) (y:ys)
    \((x<=y)=x:(m e r g e ~ x s ~(y: y s))\)
    \(\mid\) otherwise \(=y:(\) merge \((x: x s) y s)\)
    mergesort :: Ord a \(\Rightarrow\) [a] \(\rightarrow\) [a]
    mergesort [] = []
    mergesort \([x]=[x]\)
    mergesort \(x s=\operatorname{merge}(\operatorname{mergesort}(f s t h a l f ~ x s)) \quad(m e r g e s o r t \quad(s n d h a l f ~ x s))\)
```


Complexity of merge in sum n of lengths of input lists

$E(n)=c+E(n-1)$ if neither input list is empty

$$
=c \cdot n \quad \text { otherwise }
$$

recurrence: closed-form solution $E(n)=c \cdot n$

Algorithm and recurrence for complexity of mergesort

Mergesort

merge :: Ord $a \Rightarrow[a] \rightarrow[a] \rightarrow[a]$
merge xs [] = xs
merge [] ys = ys
merge (x:xs) (y:ys)
$\mid(x<=y)=x:(m e r g e ~ x s ~(y: y s))$
\mid otherwise $=y:($ merge $(x: x s) y s)$
mergesort :: Ord a \Rightarrow [a] \rightarrow [a]
mergesort [] = []
mergesort $[x]=[x]$
mergesort $x s=\operatorname{merge}(\operatorname{mergesort}(f s t h a l f ~ x s)) \quad($ mergesort (sndhalf xs))

Complexity of mergesort in length n of input list
 $M(n)=2 \cdot M\left(\frac{n}{2}\right)+E(n)$ if $n \geq 2 \quad E(n)$ time for merging
 $$
=c \quad \text { if } n \nsupseteq 2
$$

Algorithm and recurrence for complexity of mergesort

Mergesort

merge :: Ord a \Rightarrow [a] \rightarrow [a] \rightarrow [a]
merge xs[]$=\mathrm{xs}$
merge [] ys = ys
merge ($x: x s$) (y : $y s$)
| ($x<=y$) = $x:(m e r g e ~ x s ~(y: y s))$
| otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a \Rightarrow [a] \rightarrow [a]
mergesort [] = []
mergesort $[x]=[x]$
mergesort $x s=\operatorname{merge}($ mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Complexity of mergesort in length n of input list

$M(n)=2 \cdot M\left(\frac{n}{2}\right)+c \cdot n$ if $n \geq 2$

recurrence: specification of M contains itself

Algorithm and recurrence for complexity of mergesort

```
Mergesort
    merge :: Ord a # [a] -> [a] > [a]
    merge xs [] = xs
    merge [] ys = ys
    merge (x:xs) (y:ys)
    | (x<= y) = x:(merge xs (y:ys)
    | otherwise = y:(merge (x:xs) ys)
    mergesort :: Ord a => [a] -> [a]
    mergesort [] = []
    mergesort [x] = [x]
    mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```


Complexity of mergesort in length n of input list

$M(n)=2 \cdot M\left(\frac{n}{2}\right)+c \cdot n$ if $n \geq 2$
$=c \quad$ if $n \nsupseteq 2$
recurrence: closed-form solution $M(n)=c \cdot n \cdot \log n+c \cdot n$

Recurrences

Definition

- Recall: function is a set of (input,output) pairs
- recurrence is recursive equational specification; cf. functional program

Definition

- Recall: function is a set of (input,output) pairs; cannot be recursive

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;

Recurrences

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;
- recurrences often written using indices: f_{n} instead of $f(n)$

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;
- recurrences often written using indices: f_{n} instead of $f(n)$

```
Example
the Fibonacci numbers defined by
\[
f(n)= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ f(n-1)+f(n-2) & \text { if } n \geqslant 2\end{cases}
\]
```


Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;
- recurrences often written using indices: f_{n} instead of $f(n)$.

```
Example
the function f:\mathbb{N}->\mathbb{N}\mathrm{ , defined for }n\geqslant1\mathrm{ by:}
\[
g(n)= \begin{cases}1 & n=1 \\ 2 \cdot g\left(\frac{n}{2}\right)+n & n \geqslant 2\end{cases}
\]
```


Recurrences

Definition

- Recall: function is a set of (input,output) pairs
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;
- recurrences often written using indices: f_{n} instead of $f(n)$.

```
Example
the Fibonacci numbers defined by
    f0}=0\quad\mp@subsup{f}{1}{}=1\quad\mp@subsup{f}{n}{}=\mp@subsup{f}{n-1}{}+\mp@subsup{f}{n-2}{
```


Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;
- recurrences often written using indices: f_{n} instead of $f(n)$.
solving recurrence?
a closed-form solution: no recursive calls in right-hand side
a closed-form solution: no recursive calls in right-hand side

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;
- recurrences often written using indices: f_{n} instead of $f(n)$.

solving recurrence?

a closed-form solution: no recursive calls in right-hand side
$1 g(n)=n \cdot \log n+n$; using master theorem (today)

Recurrences

Definition

- Recall: function is a set of (input,output) pairs;
- recurrence is recursive equational specification;
- here: recurrences that specify functions $\mathbb{N} \rightarrow \mathbb{N}$;
- recurrences often written using indices: f_{n} instead of $f(n)$.

solving recurrence?

a closed-form solution: no recursive calls in right-hand side
$1 g(n)=n \cdot \log n+n$
$2 f(n)=f_{n}=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}}$ where $\phi=\frac{1+\sqrt{5}}{2}$
because recursive, solution unique so can be verified by substitution

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example | $T(n)$ | $=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ |
| ---: | :--- |
| | $=2 \cdot\left(2 \cdot T\left(\frac{n}{2^{2}}\right)+c \cdot \frac{n}{2}\right)+c \cdot n$ |
| | $=2^{2} \cdot T\left(\frac{n}{2^{2}}\right)+2 \cdot c \cdot n$ |
| | $=2^{3} \cdot T\left(\frac{n}{2^{3}}\right)+3 \cdot c \cdot n$ |
| | $=\ldots$ |
| | $=2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+k \cdot c \cdot n$ |

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

```
Example
    1 T(n)=\mp@subsup{2}{}{k}\cdotT(\frac{n}{\mp@subsup{2}{}{k}})+k\cdotc\cdotn\mathrm{ for 1 }\leqk<\operatorname{log}n
    2 base case }T(n)=c\mathrm{ if }n=\mp@subsup{2}{}{k}\mathrm{ , i.e. if }k=\operatorname{log}
```


self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

$1 T(n)=2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+k \cdot c \cdot n$ for $1 \leq k<\log n$
2 base case $T(n)=c$ if $n=2^{k}$, i.e. if $k=\log n$
3 set $k:=\log n \cdot T(n)=2^{\log n} \cdot c+\log n \cdot c \cdot n=c \cdot n \cdot \log n+c \cdot n ;$ closed-form for $T(n)$

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

```
\(1 T(n)=2^{k} \cdot T\left(\frac{n}{2^{k}}\right)+k \cdot c \cdot n\) for \(1 \leq k<\log n\)
2 base case \(T(n)=c\) if \(n=2^{k}\), i.e. if \(k=\log n\)
3 set \(k:=\log n . T(n)=2^{\log n} \cdot c+\log n \cdot c \cdot n=c \cdot n \cdot \log n+c \cdot n\)
4 asymptotic complexity of solution: \(T(n) \in O(n \cdot \log n)\)
```


Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n)=c \cdot n \cdot \log n+c \cdot n$ solves $T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ if $n \geq 2, c$ otherwise

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n)=c \cdot n \cdot \log n+c \cdot n$ solves $T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ if $n \geq 2, c$ otherwise 2 verify by substituting guess f for T in recurrence:

- case $n=1: f(1)=c$

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n)=c \cdot n \cdot \log n+c \cdot n$ solves $T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ if $n \geq 2, c$ otherwise 2 verify by substituting guess f for T in recurrence: (may use induction)

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

```
Example
1 guess \(f(n)=c \cdot n \cdot \log n+c \cdot n\) solves \(T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n\) if \(n \geq 2, c\) otherwise
2 verify by substituting guess \(f\) for \(T\) in recurrence:
    - case \(n=1: f(1)=c\)
            \(T(n)=f(n)=c \cdot n \cdot \log n+c \cdot n\)
\[
=2 \cdot\left(c \cdot \frac{n}{2} \cdot \log \frac{n}{2}+c \cdot \frac{n}{2}\right)+c \cdot n
\]
\[
={ }_{1 H} 2 \cdot T\left(\frac{n}{2}\right)+c \cdot n
\]
```


Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

```
Example
    1 \text { guess } f ( n ) = c \cdot n \cdot \operatorname { l o g } n + c \cdot n \text { solves T(n)=2 T T( }
    2 verify by substituting guess }f\mathrm{ for T in recurrence:
        - case n=1: f(1)=c
        - case }n>1\mathrm{ :
            T ( n ) = f ( n ) = c \cdot n \cdot l o g n + c \cdot n
                =2 (c. n
                = }\mp@subsup{|}{H}{}2\cdotT(\frac{n}{2})+c\cdot
```

 using \(\log \left(\frac{a}{b}\right)=(\log a)-(\log b)\)

Verifying solutions/solving by guessing

Recall

- recurrence specifies unique function
- method: guess solution, verify solution by substitution/induction

Example

1 guess $f(n)=c \cdot n \cdot \log n+c \cdot n$ solves $T(n)=2 \cdot T\left(\frac{n}{2}\right)+c \cdot n$ if $n \geq 2, c$ otherwise 2 verify by substituting guess f for T in recurrence:

- case $n=1: f(1)=c \quad \checkmark$
- case $n>1$:

$$
T(n)=f(n)=c \cdot n \cdot \log n+c \cdot n
$$

$$
=2 \cdot\left(c \cdot \frac{n}{2} \cdot \log \frac{n}{2}+c \cdot \frac{n}{2}\right)+c \cdot n
$$

$$
={ }_{1 H} 2 \cdot T\left(\frac{n}{2}\right)+c \cdot n
$$

using $\log \left(\frac{a}{b}\right)=(\log a)-(\log b)$, well-founded $<$-induction on $n\left(\frac{n}{2}<n\right.$ if $\left.n \geq 2\right)$

Lemma

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be defined by recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

with $a, b \in \mathbb{N}$ with $b>1$, and such that $\exists k$ with $n=b^{k}$. Then

$$
\begin{equation*}
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \tag{1}
\end{equation*}
$$

Lemma

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be defined by recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

with $a, b \in \mathbb{N}$ with $b>1$, and such that $\exists k$ with $n=b^{k}$. Then

$$
\begin{equation*}
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \tag{1}
\end{equation*}
$$

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \geqslant 1$:

$$
a^{i} T\left(\frac{n}{b^{i}}\right)=a^{i+1} T\left(\frac{n}{b^{i+1}}\right)+a^{i} f\left(\frac{n}{b^{i}}\right)
$$

and therefore $T(n)=a^{k} T(1)+a^{k-1} f\left(\frac{n}{b^{k-1}}\right)+\cdots+a f\left(\frac{n}{b}\right)+f(n)$

Lemma

Let $T: \mathbb{N} \rightarrow \mathbb{N}$ be defined by recurrence

$$
T(n)=a T\left(\frac{n}{b}\right)+f(n)
$$

with $a, b \in \mathbb{N}$ with $b>1$, and such that $\exists k$ with $n=b^{k}$. Then

$$
\begin{equation*}
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \tag{1}
\end{equation*}
$$

Proof.

by repeated self-substitution of the recurrence, we see that for all $\ell \geqslant 1$:

$$
a^{i} T\left(\frac{n}{b^{i}}\right)=a^{i+1} T\left(\frac{n}{b^{i+1}}\right)+a^{i} f\left(\frac{n}{b^{i}}\right)
$$

and therefore $T(n)=a^{k} T(1)+a^{k-1} f\left(\frac{n}{b^{k-1}}\right)+\cdots+a f\left(\frac{n}{b}\right)+f(n)$

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size m directly

Definition (Divide-and-conquer algorithms)

- the algorithm solves instances up to size m directly
- instances of size $n>m$ are split (divide) into a further instances of sizes $\lfloor n / b\rfloor$ and $\lceil n / b\rceil$, solves these recursively; we then combine (conquer) their solutions

Definition

- let the time to split and combine be $f(n)$
- let the total time be $T(n)$, where we assume $T(n+1) \geqslant T(n)$
- We define

$$
\begin{aligned}
T^{-}(n) & := \begin{cases}a \cdot T^{-}(\lfloor n / b\rfloor)+f(n) & \text { if } n>m \\
T(n) & \text { if } n \leqslant m\end{cases} \\
T^{+}(n) & := \begin{cases}a \cdot T^{+}(\lceil n / b\rceil)+f(n) & \text { if } n>m \\
T(n) & \text { if } n \leqslant m\end{cases}
\end{aligned}
$$

```
Example (Recall mergesort)
    merge :: Ord a # [a] -> [a] -> [a]
    merge xs [] = xs
    merge [] ys = ys
    merge (x:xs) (y:ys)
    | (x <= y) = x:(merge xs (y:ys))
    | otherwise = y:(merge (x:xs) ys)
    mergesort :: Ord a => [a] > [a]
    mergesort [] = []
    mergesort [x] = [x]
    mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

```
Example (Recall mergesort)
    merge :: Ord a => [a] >> [a] ->> [a]
    merge xs [] = xs
    merge [] ys = ys
    merge (x:xs) (y:ys)
    | (x <= y) = x:(merge xs (y:ys))
    otherwise = y:(merge (x:xs) ys)
    mergesort :: Ord a => [a] >> [a]
    mergesort [] = []
    mergesort [x] = [x]
    mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
```

 Question
 Can we give a bound on the complexity of merge sort?

Definition (Recapitulation)

- the algorithm solves instances up to size m directly
- instances of size $n>m$ are split into a (divide) further instances of sizes $\mid n / b$ and $\lceil n / b\rceil$, solves these recursively, and then combines (conquer) their solutions

Definition (Recapitulation

- the algorithm solves instances up to size m directly
- instances of size $n>m$ are split into a (divide) further instances of sizes n / b and $[n / b\rceil$, solves these recursively, and then combines (conquer) their solutions

Observation

- Let $n=m \cdot b^{k}$
- algorithm splits k times, hence there are, for $r:=\log _{b} a$

$$
a^{k}=\left(b^{r}\right)^{k}=\left(b^{k}\right)^{r}=\left(\frac{n}{m}\right)^{r}
$$

basic instances

- solving just the basic instances costs $\Theta\left(n^{r}\right)$
- r captures ratio of recursive calls a vs. decrease in size b :

Observation

- $a \cdot T(\lfloor n / b\rfloor)+f(n) \leqslant T(n) \leqslant a \cdot T([n / b\rceil)+f(n)$
- Taking splitting and combining into account, allows asymptotic analysis of $T^{ \pm}(n)$

Observation

- $a \cdot T(\lfloor n / b\rfloor)+f(n) \leqslant T(n) \leqslant a \cdot T(\lceil n / b\rceil)+f(n)$
- Taking splitting and combining into account, allows asymptotic analysis of $T^{ \pm}(n)$

Theorem (master theorem)

Let $T(n)$ be an increasing function that satisfies the following recursive equations

$$
T(n)= \begin{cases}c & n=1 \\ a T\left(\frac{n}{b}\right)+f(n) & n=b^{k}, k=1,2, \ldots\end{cases}
$$

where $a \geqslant 1, b>1, c>0$. If $f \in \Theta\left(n^{s}\right)$ with $s \geqslant 0$, then

$$
T(n) \in \begin{cases}\Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{s} \\ \Theta\left(n^{s} \log n\right) & \text { if } a=b^{s} \\ \Theta\left(n^{s}\right) & \text { if } a<b^{s}\end{cases}
$$

Example (merge sort, continued)

for mergesort $a=b=2$ and moreover $f \in \Theta\left(n^{1}\right)$, as splitting and combining is linear in n (hence $s=1$). The master theorem yields the following bound on the runtime

$$
T(n) \in \Theta(n \cdot \log n)
$$

we have $a=b^{s}$, since $a=b=2$ and $s=1$ (second case)

Example (merge sort, continued)

for mergesort $a=b=2$ and moreover $f \in \Theta\left(n^{1}\right)$, as splitting and combining is linear in n (hence $s=1$). The master theorem yields the following bound on the runtime

$$
T(n) \in \Theta(n \cdot \log n)
$$

we have $a=b^{s}$, since $a=b=2$ and $s=1$ (second case)

Example

Consider the recurrence:

$$
T(n)=4 T\left(\frac{n}{2}\right)+n^{1}
$$

then $a=4, b=2, r=\log _{b} a=2$ and $a>b^{5}$, hence by the first case of the theorem: $T(n) \in \Theta\left(n^{2}\right)$

Case $f \in \Theta\left(n^{s}\right)$ with $a=b^{s}$

- set $r:=\log _{b} a ;$ then $r=s$

Proof of the master theorem

Case $f \in \Theta\left(n^{s}\right)$ with $a=b^{s}$

- set $r:=\log _{b} a$; then $r=s$
- we use properties of Θ, resp. properties of the exponential function to conclude:

$$
a^{i} f\left(\frac{n}{b^{i}}\right)=\Theta\left(a^{i} \frac{n^{r}}{\left(b^{i}\right)^{r}}\right)=\Theta\left(a^{i} \frac{n^{r}}{\left(b^{r}\right)^{i}}\right)=\Theta\left(a^{i} \frac{n^{r}}{a^{i}}\right)=\Theta\left(n^{r}\right)
$$

Proof of the master theorem

Case $f \in \Theta\left(n^{s}\right)$ with $a=b^{s}$

- set $r:=\log _{b} a$; then $r=s$
- we use properties of Θ, resp. properties of the exponential function to conclude:

$$
a^{i} f\left(\frac{n}{b^{i}}\right)=\Theta\left(a^{i} \frac{n^{r}}{\left(b^{i}\right)^{r}}\right)=\Theta\left(a^{i} \frac{n^{r}}{\left(b^{r}\right)^{i}}\right)=\Theta\left(a^{i} \frac{n^{r}}{a^{i}}\right)=\Theta\left(n^{r}\right)
$$

- from which we obtain (as $n=b^{k}$)

$$
\sum_{i=0}^{k} a^{i} f\left(\frac{n}{b^{i}}\right)=\Theta\left(\sum_{i=0}^{k} n^{r}\right)=\Theta\left(k n^{r}\right)=\Theta\left(n^{r} \log n\right)
$$

- moreover we already know that

$$
a^{k} T(1) \in \Theta\left(n^{r}\right)
$$

Proof (continued)

- recall equation (1)

$$
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

Proof (continued)

- recall equation (1)

$$
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- its terms can be bounded as follows:

$$
\begin{gathered}
a^{k} T(1) \in \Theta\left(n^{r}\right) \\
\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \in \Theta\left(n^{r} \log n\right)
\end{gathered}
$$

Proof (continued)

- recall equation (1)

$$
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- its terms can be bounded as follows:

$$
\begin{gathered}
a^{k} T(1) \in \Theta\left(n^{r}\right) \\
\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \in \Theta\left(n^{r} \log n\right)
\end{gathered}
$$

- and therefore

$$
T(n) \in \Theta\left(n^{r} \log n\right)
$$

Proof (continued)

- recall equation (1)

$$
T(n)=a^{k} T(1)+\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right)
$$

- its terms can be bounded as follows:

$$
\begin{gathered}
a^{k} T(1) \in \Theta\left(n^{r}\right) \\
\sum_{i=0}^{k-1} a^{i} f\left(\frac{n}{b^{i}}\right) \in \Theta\left(n^{r} \log n\right)
\end{gathered}
$$

- and therefore

$$
T(n) \in \Theta\left(n^{r} \log n\right)
$$

```
Example
T(n)=8\cdotT(\frac{n}{2})+\mp@subsup{n}{}{2}
    - a }a=8,b=2,f(n)=\mp@subsup{n}{}{2}
    - }\mp@subsup{\operatorname{log}}{b}{}a=3,s=2,8>2'\mp@code{2o by case 1T(n)\in\Theta(\mp@subsup{n}{}{3})
```

```
Example
\(T(n)=8 \cdot T\left(\frac{n}{2}\right)+n^{2}\)
    - \(a=8, b=2, f(n)=n^{2}\),
    - \(\log _{b} a=3, s=2,8>2^{2}\) so by case \(1 T(n) \in \Theta\left(n^{3}\right)\)
```


Example

```
T(n)=9\cdotT(\frac{n}{3})+\mp@subsup{n}{}{3}
    - a = 9,b=3,f(n)= n',
    - }\mp@subsup{\operatorname{log}}{b}{}a=2,s=3,9<\mp@subsup{3}{}{3}\mathrm{ so by case 3T(n) 
```


Example

$$
\begin{aligned}
& T(n)=8 \cdot T\left(\frac{n}{2}\right)+n^{2} \\
& \quad a=8, b=2, f(n)=n^{2} \\
& \quad \log _{b} a=3, s=2,8>2^{2} \text { so by case } 1 T(n) \in \Theta\left(n^{3}\right)
\end{aligned}
$$

```
Example
\(T(n)=9 \cdot T\left(\frac{n}{3}\right)+n^{3}\)
    - \(a=9, b=3, f(n)=n^{3}\),
    - \(\log _{b} a=2, s=3,9<3^{3}\) so by case \(3 T(n) \in \Theta\left(n^{3}\right)\)
```

Example
$T(n)=T\left(\frac{n}{2}\right)+1$ (binary search)
• $a=1, b=2, f(n)=1$

- $\log _{b} a=0, s=0,1=2^{0}$ so by case $2 T(n) \in \Theta(\log n)$
Example
$T(n)=T\left(\frac{n}{2}\right)+1$ (binary search)
$a=1, b=2, f(n)=1$
 - $\log _{b} a=0, s=0,1=2^{0}$ so by case $2 T(n) \in \Theta(\log n)$

Limitations of Master theorem

- split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating functions)
- $f(n)$ not of complexity $\Theta\left(n^{5}\right)$ for some s (can be relaxed)

