Summary last week

e Multiplicative atomicity: prime <= indecomposable <=

-minimal (proof)

® Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)

Course themes

e directed and undirected graphs

e relations and functions

® orders and induction

® trees and dags

¢ finite and infinite counting

® elementary number theory

® Turing machines, algorithms, and complexity
® decidable and undecidable problem

Summary last week

Multiplicative atomicity: prime <= indecomposable <= |-minimal (proof)
Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)

comparing (complexity) functions asymptotically (using lim, lim sup, lim inf)
O(f) ={g | Im,c,¥Yn > m,g(n) < c-f(n)}; asymptotically bounded above by f
Q(f) ={g | 3Im,c,Yn > m,g(n) > c - f(n)}; asymptotically bounded below by f
O(f) = O(f) N Q(f); asymptotically same growth as f

o(f) ={g | limnsee % = 0}; asymptotically negligible w.r.t. f
lim sup-characterisation of O: f € O(g) < limsup n—eo % < 00

lim inf-characterisation of Q: f € Q(g) < liminf 00 % >0

Discrete structures

1

dags 4{ trees }7 strings

functions algorithms

orders ordinals

1

Divide-and-conquer

[6,3.8,4]
/“
split [6,3] \\l8,4l divide
[6]/ ¥[3] [Sf \[4] and
[3,6] [4.8]
[3,4,6,8]
Divide-and-conquer
[6,3,8,4]
split [6,3] \\[8,4] divide
e N
6] ¥[3] [Sf 4 and
[3,6] [4.8]
[3,4,6,8]

Complexity?

O(n - logn): each level O(n) operations, O(log n) levels (log n splits, merges) .

Divide-and-conquer

[6,3,8:4]

O\

split [6,3] [8:4] divide

an N
(6] [31 (8] 4 and

[3,6] [4,8]

[3.4,6,8]

Complexity?

O(n 0 |og2n) 4

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

Divide-and-conquer

divide-and-conquer
recursive design paradigm for algorithms A:

e divide: divide the input / into a number a of smaller parts /1,...,/;
solve the subproblems A(l1),. .., A(l5) recursively

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

e divide: divide the input / into a number a of smaller parts I1,...,/5
solve the subproblems A(l1),...,.A(l5) recursively
® conquer: combine solutions of subproblems A(/1),...,.A(/5) into solution for A(/)

® problems of constant size as base cases

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

e divide: divide the input / into a number a of smaller parts /1,...,/;
solve the subproblems A(l1),...,.A(l5) recursively
e conquer: combine solutions of subproblems A(/1), ..., .A(l;) into solution for A(/)

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

¢ divide: divide the input / into a number a of smaller parts /1, ...,/
solve the subproblems A(l1),...,.A(l5) recursively
® conquer: combine solutions of subproblems A(l1),...,.A(/5) into solution for A(/)

® problems of constant size as base cases
e complexity analysis done using recurrence equations of algorithm

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

e divide: divide the input / into a number a of smaller parts /1,...,/;
solve the subproblems A(l1),...,.A(l5) recursively
e conquer: combine solutions of subproblems A(/1), ..., .A(l;) into solution for A(/)

® problems of constant size as base cases
® complexity analysis done using recurrence equations of algorithm
® equations of shape A(n) = ...a-A(%)...; number a of smaller parts §

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

e divide: divide the input / into a number a of smaller parts I1,...,/5
solve the subproblems A(l1),...,.A(l5) recursively
® conquer: combine solutions of subproblems A(/1),...,.A(/5) into solution for A(/)

® problems of constant size as base cases

e complexity analysis done using recurrence equations of algorithm
® equations of shape A(n) = ...a-A(3) ...
® input/ = length n of input
® operation = complexity of operation

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

e divide: divide the input / into a number a of smaller parts /1,...,/;
solve the subproblems A(l1),...,.A(l5) recursively
e conquer: combine solutions of subproblems A(/1), ..., .A(l;) into solution for A(/)

® problems of constant size as base cases

® complexity analysis done using recurrence equations of algorithm
® equations of shape A(n) =...a-A(g)...
® input/ = length n of input

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

e divide: split input list L into 2 smaller sublists L1, L,
solve sorting problems M(L;), M(L;) recursively

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

e divide: split input list L into 2 smaller sublists L1, L;
solve sorting problems M(L1), M(L;) recursively

e conquer: merge solutions of M(L1), M(L>) into a single list solving M(L)

® problems of constant size as base cases

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

e divide: split input list L into 2 smaller sublists L1, L,
solve sorting problems M(L;), M(L3) recursively

e conquer: merge solutions of M(L1), M(L>) into a single list solving M(L)

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

e divide: split input list L into 2 smaller sublists L1, L;
solve sorting problems M(L1), M(L3) recursively

e conquer: merge solutions of M(L1), M(L;) into a single list solving M(L)

® problems of constant size as base cases
® complexity analysis done using recurrence equation of mergesort

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

e divide: split input list L into 2 smaller sublists L1, L;
solve sorting problems M(L;), M(L;) recursively

e conquer: merge solutions of M(L1), M(L>) into a single list solving M(L)

® problems of constant size as base cases
e complexity analysis done using recurrence equation of mergesort
® equation M(n) =2-M(5) +n-c,if n > 2, otherwise c

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

e divide: split input list L into 2 smaller sublists L1, L;
solve sorting problems M(L1), M(L;) recursively

e conquer: merge solutions of M(L1), M(L>) into a single list solving M(L)

® problems of constant size as base cases
® complexity analysis done using recurrence equation of mergesort
® equation M(n) =2-M(5)+n-c,if n > 2, otherwise c
® input L = length n of list
® complexity of merging n - ¢ ; merging linear in sum n of sizes of sublists L;,L,

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):
e divide: split input list L into 2 smaller sublists L1, L,
solve sorting problems M(L1), M(L;) recursively
® conquer: merge solutions of M(L1), M(Ly) into a single list solving M(L)

® problems of constant size as base cases

® complexity analysis done using recurrence equation of mergesort
® equation M(n) =2-M(5) +n-c,if n > 2, otherwise c
® input L = length n of list

Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithm M(L):

e divide: split input list L into 2 smaller sublists L1, L;
solve sorting problems M(L1), M(L3) recursively

e conquer: merge solutions of M(L1), M(L;) into a single list solving M(L)

® problems of constant size as base cases

e complexity analysis done using recurrence equation of mergesort
equation M(n) =2 -M(5)+n-c, if n > 2, otherwise c

input L = length n of list

complexity of merging n - ¢

comparison,consing,... = all some fixed complexity ¢

Algorithm and recurrence for complexity of mergesort Algorithm and recurrence for complexity of merge

Mergesort

Mergesort in Haskell merge :: Ord a = [a] — [a] — [a]

merge xs [] = xs
merge :: Ord a = [a] — [a] — [a] merge [] ys = ys
merge xs [] = xs

merge (x:xs) (y:ys)
merge [] ys = ys

. . | (x<=y) = x:(merge xs (y:ys))
r|ne(r>g<e<ix;/))(5)—(§:{ri1)erge B — | otherwise = y:(merge (x:xs) ys)
| otherwise = y:(merge (x:xs) ys) mergesort :: Ord a => [a] —> [a]

mergesort [] = []
mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

mergesort :: Ord a = [a] — [a]
mergesort [] = []
mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs)) Complexity of in sum n of lengths of input lists

E(n) = c + E(n — 1) if neither input list is empty; ¢ time of a comparison

=cCc-n otherwise
Algorithm and recurrence for complexity of merge Algorithm and recurrence for complexity of merge
merge :: Ord a = [a] — [a] — [a] merge :: Ord a = [a] — [a] — [a]
merge xs [] = xs merge xs [] = xs
merge [] ys = ys merge [] ys = ys
merge (x:xs) (y:ys) merge (x:xs) (y:ys)
| (x<=y) = x:(merge xs (y:ys)) | (x<=y) = x:(merge xs (y:ys))
| otherwise = y:(merge (x:xs) ys) | otherwise = y:(merge (x:xs) ys)
mergesort :: Ord a = [a] — [a] mergesort :: Ord a = [a] — [a]
mergesort [] = [] mergesort [] = []
mergesort [x] = [x] mergesort [x] = [x]
mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs)) mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
Complexity of merge in sum n of lengths of input lists Complexity of merge in sum n of lengths of input lists
E(n) = c + E(n — 1) if neither input list is empty E(n) = c + E(n — 1) if neither input list is empty
=cCc-n otherwise; ¢ - n time for returning list =cCc-n otherwise

recurrence: specification of E contains itself

Algorithm and recurrence for complexity of merge Algorithm and recurrence for complexity of mergesort

merge :: Ord a = [a] — [a] — [a] merge :: Ord a = [a] — [a] — [a]
merge xs [] = xs merge xs [] = xs

merge [] ys = ys merge [] ys = ys

merge (x:xs) (y:ys) merge (x:xs) (y:ys)

| (x<=vy) X:(merge xs (y:ys)) | (x<=1vy) X:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys) | otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a = [a] — [a] mergesort :: Ord a = [a] — [a]

mergesort [] = [] mergesort [] = []

mergesort [x] = [x] mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs)) mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
Complexity of merge in sum n of lengths of input lists Complexity of in length n of input list
E(n) = c + E(n — 1) if neither input list is empty M(n)=2-M(5)+E(n)ifn>2 E(n) time for merging

=c-n otherwise =c ifn %2

recurrence: closed-form solution E(n) =c-n

Algorithm and recurrence for complexity of mergesort Algorithm and recurrence for complexity of mergesort

merge :: Ord a = [a] — [a] — [a] merge :: Ord a = [a] — [a] — [a]

merge xs [] = xs merge xs [] = xs

merge [] ys = ys merge [] ys = ys

merge (x:xs) (y:ys) merge (x:xs) (y:ys)

| (x<=y) = x:(merge xs (y:ys)) | (x<=y) = x:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys) | otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a = [a] — [a] mergesort :: Ord a = [a] — [a]

mergesort [] = [] mergesort [] = []

mergesort [x] = [x] mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs)) mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))
Complexity of mergesort in length n of input list Complexity of mergesort in length n of input list
M(n)=2-M(5)+c-nifn>2 M(n)=2-M(5)+c-nifn>2

=c ifn %2 c time for base case =c ifn %2

recurrence: specification of M contains itself

Algorithm and recurrence for complexity of mergesort

merge :: Ord a = [a] — [a] — [a]
merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| (x<=vy) X:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a = [a] — [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Complexity of mergesort in length n of input list

M(n)=2-M(5)+c-nifn>2
=cC ifn %2
recurrence: closed-form solution M(n) =c-n-logn+c-n

Recurrences

e Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification; cf. functional program

Recurrences

e Recall: function is a set of (input,output) pairs; cannot be recursive

Recurrences

e Recall: function is a set of (input,output) pairs;
® recurrence is recursive equational specification;
® here: recurrences that specify functions N — N;

Recurrences

e Recall: function is a set of (input,output) pairs;
® recurrence is recursive equational specification;

here: recurrences that specify functions N — N;
® recurrences often written using indices: f, instead of f(n).

Recurrences

e Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification;

® here: recurrences that specify functions N — N;

* recurrences often written using indices: f, instead of f(n).

the Fibonacci numbers defined by
0 ifn=20
f(n) =141 ifn=1
f(n—1)+f(n—2) ifn=>2

Recurrences

Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification;

® here: recurrences that specify functions N — N;

e recurrences often written using indices: f, instead of f(n).

the function f: N — N, defined forn > 1 by:

(n) = 1 n=1
A= 2-9g(8)+n n>2

Recurrences

Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification;

® here: recurrences that specify functions N — N;

e recurrences often written using indices: f, instead of f(n).

the Fibonacci numbers defined by
fo=0 =1 fon="Ffo1+fro

Recurrences

Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification;

® here: recurrences that specify functions N — N;

e recurrences often written using indices: f, instead of f(n).

a closed-form solution: no recursive calls in right-hand side

Recurrences

Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification;

® here: recurrences that specify functions N — N;

e recurrences often written using indices: f, instead of f(n).

solving recurrence?
a closed-form solution: no recursive calls in right-hand side
F g(n)=n-logn+n

Afn)=Ff= &\/;W where ¢ = 1+2\/§; using generating functions (not this course)

Recurrences

® Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification;

® here: recurrences that specify functions N — N;

e recurrences often written using indices: f, instead of f(n).

solving recurrence?

a closed-form solution: no recursive calls in right-hand side
E g(n) =n-logn + n; using master theorem (today)

Recurrences

® Recall: function is a set of (input,output) pairs;

® recurrence is recursive equational specification;

® here: recurrences that specify functions N — N;

e recurrences often written using indices: f, instead of f(n).

solving recurrence?
a closed-form solution: no recursive calls in right-hand side
F g(n)=n-logn+n
" —(1—¢)" 1
Afn)=f=2 E/E)" Wwhere ¢ = =
because recursive, solution unique so can be verified by substitution

S

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

B T(n)=2K-T(5)+k-c-nforl <k <?

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

T(n):2-T(g)+c-n
:2.(2.T(%)+c~g)+c-n

n
:22~T(?)+2~c~n

n
23~T(f)+3~c~n

n
:2‘<.T(?)+k~c.n

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

B T(n)=2K-T(J)+k-c-nforl <k <logn

E1 base case T(n) = cif n = 2K, i.e. if k = logn

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

B T(n)=2K-T(&)+k-c-nfor1 <k <logn
El base case T(n) = cifn =2, i.e.ifk = logn
Bl setk :=logn. T(n) = 2'°¢".c+logn-c-n=c-n-logn + c-n; closed-form for T(n)

Verifying solutions/solving by guessing

® recurrence specifies unique function

Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

B T(n)=2K-T(&)+k-c-nforl <k <logn

El base case T(n) = cifn =2, i.e.ifk = logn

El setk :=logn. T(n) =2'°¢" .c+logn-c-n=c-n-logn+c-n
1 asymptotic complexity of solution: T(n) € O(n - logn)

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

10

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

E8 guess f(n) =c-n-logn+c-nsolvesT(n) =2-T(5)+c-nifn > 2, c otherwise

10

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

E¥ guess f(n) =c-n-logn+c-nsolvesT(n) =2-T(5)+c-nifn > 2, c otherwise
F1 verify by substituting guess f for T in recurrence:
® casen=1:f(1)=c v

10

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

E¥ guess f(n) =c-n-logn+c-nsolvesT(n) =2-T(5)+c-nifn > 2, c otherwise
F verify by substituting guess f for T in recurrence: (may use induction)

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

E¥ guess f(n) =c-n-logn+c-nsolvesT(n) =2-T(5)+c-nifn > 2, c otherwise
F1 verify by substituting guess f for T in recurrence:

® casen=1:f(1)=c v
® casen > 1: T(n)=f(n)=c-n-logn+c-n
:2~(c~g~logg+c~g)+c~n

=|H2~T(g)+c-n v

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

E8 guess f(n) =c-n-logn+c-nsolvesT(n) =2-T(5)+c-nifn > 2, c otherwise
F1 verify by substituting guess f for T in recurrence:

® casen=1:f(1)=c v

® casen > 1: T(n)=f(n)=c-n-logn+c-n
Q
2

n

:|H2'T(E)+C'n ve

n n
:2-(C~5~Iog5+cv)+c-n

using log(%) = (loga) — (logb) 10

LetT: N — N be defined by recurrence
n
T(n) = aT(B) + f(n)

with a,b € N with b > 1, and such that 3k with n = bX. Then

k-1
T(n) = T(1) + Y () M
i=0

Verifying solutions/solving by guessing

® recurrence specifies unique function
®* method: guess solution, verify solution by substitution/induction

E¥ guess f(n) =c-n-logn+c-nsolvesT(n) =2-T(5)+c-nifn > 2, c otherwise
F1 verify by substituting guess f for T in recurrence:

® casen=1:f(1)=c v

® casen > 1: T(n)=f(n)=c-n-logn+c-n
Q
2

n

=|H2'T(E)+C'n ve

n n
:2~(C~5v|og5+cv)+c-n

using log(2) = (loga) — (logb) , well-founded <-inductiononn (5 <nifn>2) 1

LetT: N — N be defined by recurrence
n
T(n) = aT(B) + f(n)

with a,b € N with b > 1, and such that 3k with n = bX. Then

k-1
T(n) = T(1) + Y d(5) M
i=0

by repeated self-substitution of the recurrence, we see that for all ¢/ > 1:

n
pitl

0 = aaT(

and therefore T(n) = akT(1) + a* () + - - + af() + f(n)

a'T()+ ()

I — e ——er)

LetT: N — N be defined by recurrence ® the algorithm solves instances up to size m directly
n
T(n) = aT(B) + f(n)
with a,b € N with b > 1, and such that 3k with n = bX. Then

k—1
T(n) = aT(1)+ Y af() 1)
i=0

by repeated self-substitution of the recurrence, we see that for all ¢/ > 1:

n n

.n . .
a’T(E) = ahLlT(le) + a’f(bi)
and therefore T(n) = akT(1) + a* (1) + - - + af() + f(n) u

Definition (Divide-and-conquer algorithms) Definition (Divide-and-conquer algorithms)
® the algorithm solves instances up to size m directly ® the algorithm solves instances up to size m directly
e instances of size n > m are split (divide) into a further instances of sizes [n/b| e instances of size n > m are split (divide) into a further instances of sizes [n/b|
and [n/b], solves these recursively; we then combine (conquer) their solutions and [n/b], solves these recursively; we then combine (conquer) their solutions

* et the time to split and combine be f(n)
* let the total time be T(n), where we assume T(n + 1) > T(n)
® We define
T-(n) = a-T (ln/b])+f(n) ifn>m
T(n) ifn<m
T+(n) = a-T™([n/b]) + f(n) ?fn>m
T(n) ifn<m

Example (Recall mergesort)

merge :: Ord a = [a] — [a] — [a]
merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| (x<=y) = x:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a = [a] — [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Example (Recall mergesort)

merge :: Ord a = [a] — [a] — [a]
merge xs [] = xs

merge [] ys = ys

merge (x:xs) (y:ys)

| (x<=y) = x:(merge xs (y:ys))

| otherwise = y:(merge (x:xs) ys)

mergesort :: Ord a = [a] — [a]

mergesort [] = []

mergesort [x] = [x]

mergesort xs = merge (mergesort (fsthalf xs)) (mergesort (sndhalf xs))

Can we give a bound on the complexity of merge sort?

13

-
™

Definition (Recapitulation)

Definition (Recapitulation)

® the algorithm solves instances up to size m directly

e instances of size n > m are split into a (divide) further instances of sizes [n/b|
and [n/b], solves these recursively, and then combines (conquer) their solutions

¢ the algorithm solves instances up to size m directly

e instances of size n > m are split into a (divide) further instances of sizes [n/b|
and [n/b], solves these recursively, and then combines (conquer) their solutions

Observation
* Letn=m-b¥
® algorithm splits k times, hence there are, for r := log, a:

ak _ (br)k _ (bk)r _ (ﬂ)r ,

m

basic instances
e solving just the basic instances costs ©(n")
® r captures ratio of recursive calls a vs. decrease in size b:

14 14

® a-T(|n/b])+f(n) < T(n) <a-T([n/b])+ f(n)
® Taking splitting and combining into account, allows asymptotic analysis of Ti(n)

15

Example (merge sort, continued)

for mergesort a = b = 2 and moreover f € e(nl), as splitting and combining is linear
in n (hence s = 1). The master theorem yields the following bound on the runtime

T(n) € ©(n - logn)

we have a = b®, sincea = b = 2 and s = 1 (second case)

16

Observation

® a-T(|n/b])+f(n) < T(n)<a-T([n/b])+f(n)
® Taking splitting and combining into account, allows asymptotic analysis of Ti(n)

Theorem (master theorem)
Let T(n) be an increasing function that satisfies the following recursive equations
c n=1
T(n) =
aT(g)+f(n) n=bKk=1,2,...

wherea >1,b>1,c > 0. Iff € ©(n®) with s > 0, then

O(n'°&3) jfa > b*

T(n) € ¢ ©(n°logn) ifa=b®
O(n®) ifa < b’

-
&

Example (merge sort, continued)

for mergesort a = b = 2 and moreover f € e(nl), as splitting and combining is linear
in n (hence s = 1). The master theorem yields the following bound on the runtime

T(n) € ©(n - logn)

we have a = b®, sincea = b = 2 and s = 1 (second case)

Consider the recurrence:
1w 1
T(n)=4T(z)+n

thena=4,b =2, r =log,a =2 anda > b°, hence by the first case of the theorem:
T(n) € ©(n?)

Proof of the master theorem

Case f € ©(n°) with a = b®

® setr:=log,a;thenr=s

17

Proof of the master theorem

Case f € ©(n®) with a = b°®
® setr:=log,a;thenr=s
® we use properties of ©, resp. properties of the exponential function to conclude:
.n . n" . n" -n"
af(=)=0(@——)=0(a+—=)=06(a"=)=0(n"
() = 0@ i) = 06) = ©(a'5) = ©()

e from which we obtain (as n = b¥)

" Kk
S aif() = (>) = O(kn") = O(n" logn)
i=0 i=0

Proof of the master theorem

Case f € ©(n®) with a = b®

® setr:=log,a;thenr=s
® we use properties of ©, resp. properties of the exponential function to conclude:
n

a’f(bl.

) = 0(d/) = (& o) = () = €()

Proof of the master theorem

Case f € ©(n®) with a = b®
® setr:=log,a;thenr=s
® we use properties of ©, resp. properties of the exponential function to conclude:
.n . n" . n" -n"
af(=)=0(@—~)=0(@+—)=06(a"—=)=0(n
() = 0@ i) = ©(& ry) = ©(a'5) = ©()

e from which we obtain (as n = b¥)
K K
3 a’f(g) —o(>_n") = e(kn") = ©(n' log n)
i=0 i=0

® moreover we already know that
akT(1) € ©(n")

Proof (continued) Proof (continued)

® recall equation (1) ® recall equation (1)
k—1

k—1
T(n) = &T(1) + > a'f(5) T(n) = aT(1) + 3 alf(
i=0 i=0

n

b’)

® jts terms can be bounded as follows:
a*T(1) € ©(n")

k—1
Za’f(g) € ©(n" logn)
i=0

18 18

Proof (continued) Proof (continued)

® recall equation (1) ® recall equation (1)
k=1 k—1
T(n) = &T(1) + Za’f(g) T(n) = a*T(1) + Za’f(g)
=0 i=0
® its terms can be bounded as follows: ® its terms can be bounded as follows:
a“T(1) € ©(n") a“T(1) € ©(n")
o S, o S,
Za’f(y) € ©(n"logn) Za’f(y) € ©(n"logn)
i=0 i=0
® and therefore ® and therefore
T(n) € ©(n" logn) T(n) € ©(n" logn)

18 18

T(n)=8-T(3)+n?
°* a=8,b=2f(n)=n?
® logya=3,5=2,8>2%s0bycaselT(n)cO(n3

19

T(n) =8-T(3)+n?
°* a=8,b=2f(n)=n?
® logya=3,5s=2,8>2%so0bycase 1 T(n) € ©(n3)

T(n)=9-T(§)+n?
°* a=29,b=23/f(n)=n
® logya=2,5=3,9 < 3%so by case 3 T(n) € ©(n?)

T(n) = T(%) + 1 (binary search)
ea=1,b=2f(n)=1,
® logya=0,s=0,1=2°%so by case 2 T(n) € ©(logn)

19

T(n)=8-T(3)+n?
°* a=8,b=2f(n)=n?
® logya=3,5s=2,8>2%s0bycaselT(n)cO(n3

T(n)=9-T(3)+n?
°* a=29,b=23/f(n)=n
® logya=2,5=3,9 < 3%so by case 3 T(n) € ©(n?)

19

Limitations of Master theorem

® split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating
functions)

e f(n) not of complexity ©(n®) for some s (can be relaxed)

20

