
Summary last week

• Multiplicative atomicity: prime ⇐⇒ indecomposable ⇐⇒ |-minimal (proof)

• Chinese remainder in 3 versions: bijection, Bézout, RSA (proofs)

• comparing (complexity) functions asymptotically (using lim, lim sup, lim inf)

• O(f) = {g | ∃m, c,∀n ≥ m,g(n) ≤ c · f(n)}; asymptotically bounded above by f

• Ω(f) = {g | ∃m, c, ∀n ≥ m,g(n) ≥ c · f(n)}; asymptotically bounded below by f

• Θ(f) = O(f) ∩ Ω(f); asymptotically same growth as f

• o(f) = {g | lim n→∞
g(n)
f(n) = 0}; asymptotically negligible w.r.t. f

• lim sup-characterisation of O: f ∈ O(g) ⇔ lim sup n→∞
f(n)
g(n) <∞

• lim inf-characterisation of Ω: f ∈ Ω(g) ⇔ lim inf n→∞
f(n)
g(n) > 0
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Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem
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Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders
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Divide-and-conquer

divide

conquermerge

split

and

[6,3] [8,4]

[4][8][3][6]

[3,6] [4,8]

[3,4,6,8]

[6,3,8,4]

Complexity?

O(n · log n)
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and

[6,3] [8,4]

[4][8][3][6]

[3,6] [4,8]

[3,4,6,8]

[6,3,8,4]

Complexity?

O(n · log n): each level O(n) operations, O(log n) levels (log n splits, merges) 4

Divide-and-conquer

divide-and-conquer

recursive design paradigm for algorithms A:

• divide: divide the input I into a number a of smaller parts I1, . . . , Ia
solve the subproblems A(I1), . . . ,A(Ia) recursively

• conquer: combine solutions of subproblems A(I1), . . . ,A(Ia) into solution for A(I)

remarks

• problems of constant size as base cases
• complexity analysis done using recurrence equations of algorithm

• equations of shape A(n) = . . . a · A( n
b ) . . .

• input I ⇒ length n of input
• operation ⇒ complexity of operation
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Divide-and-conquer for mergesort

divide-and-conquer for mergesort

recursive list L sorting algorithmM(L):

• divide: split input list L into 2 smaller sublists L1, L2

solve sorting problemsM(L1),M(L2) recursively

• conquer: merge solutions ofM(L1),M(L2) into a single list solvingM(L)

remarks

• problems of constant size as base cases
• complexity analysis done using recurrence equation of mergesort

• equation M(n) = 2 ·M( n
2 ) + n · c, if n ≥ 2, otherwise c

• input L ⇒ length n of list
• complexity of merging n · c
• comparison,consing,. . . ⇒ all some fixed complexity c
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Algorithm and recurrence for complexity of mergesort

Mergesort in Haskell

merge : : Ord a => [a] −> [a] −> [a]
merge xs [ ] = xs
merge [ ] ys = ys
merge (x : xs) (y : ys)
| (x <= y) = x : (merge xs (y : ys ) )
| otherwise = y : (merge (x : xs) ys)

mergesort : : Ord a => [a] −> [a]
mergesort [ ] = [ ]
mergesort [x] = [x]
mergesort xs = merge (mergesort ( fs tha l f xs ) ) (mergesort ( sndhalf xs ) )
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E(n) = c + E(n− 1) if neither input list is empty; c time of a comparison
= c · n otherwise

recurrence:
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Mergesort

merge : : Ord a => [a] −> [a] −> [a]
merge xs [ ] = xs
merge [ ] ys = ys
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M(n) = 2 ·M(n
2) + c · n if n ≥ 2

= c if n 6≥ 2
recurrence: closed-form solution M(n) = c · n · log n + c · n 7

Recurrences

Definition

• Recall: function is a set of (input,output) pairs; cannot be recursive

• recurrence is recursive equational specification;

• here: recurrences that specify functions N → N ;

• recurrences often written using indices: fn instead of f(n).
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Recurrences

Definition

• Recall: function is a set of (input,output) pairs;

• recurrence is recursive equational specification;

• here: recurrences that specify functions N → N ;

• recurrences often written using indices: fn instead of f(n).

Example

the function f : N → N , defined for n > 1 by:

g(n) =

{
1 n = 1

2 · g(n
2) + n n > 2
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Recurrences

Definition

• Recall: function is a set of (input,output) pairs;

• recurrence is recursive equational specification;

• here: recurrences that specify functions N → N ;

• recurrences often written using indices: fn instead of f(n).

Example

the Fibonacci numbers defined by

f(n) =

0 if n = 0

1 if n = 1

f(n− 1) + f(n− 2) if n > 2

8

Recurrences

Definition

• Recall: function is a set of (input,output) pairs;

• recurrence is recursive equational specification;

• here: recurrences that specify functions N → N ;

• recurrences often written using indices: fn instead of f(n).

Example

the Fibonacci numbers defined by

f0 = 0 f1 = 1 fn = fn−1 + fn−2

8
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Definition

• Recall: function is a set of (input,output) pairs;

• recurrence is recursive equational specification;

• here: recurrences that specify functions N → N ;

• recurrences often written using indices: fn instead of f(n).

solving recurrence?

a closed-form solution: no recursive calls in right-hand side

1 g(n) = n · log n + n

2 f(n) = fn = φn−(1−φ)n
√

5
where φ = 1+

√
5

2

because recursive, solution unique so can be verified by substitution
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Example

T(n) = 2 · T(
n

2
) + c · n

= 2 · (2 · T(
n

22
) + c · n

2
) + c · n

= 22 · T(
n

22
) + 2 · c · n

= 23 · T(
n
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) + 3 · c · n

= . . .

= 2k · T(
n

2k
) + k · c · n
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Solving recurrences by self-substitution

self-substitution

repeatedly substitute recurrence into itself; look for pattern

Example

1 T(n) = 2k · T( n
2k ) + k · c · n for 1 ≤ k < ?

2 base case T(n) = c if n = 2k, i.e. if k = log n

3 set k := log n. T(n) = 2log n · c + log n · c · n = c · n · log n + c · n
4 asymptotic complexity of solution: T(n) ∈ O(n · log n)
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repeatedly substitute recurrence into itself; look for pattern

Example

1 T(n) = 2k · T( n
2k ) + k · c · n for 1 ≤ k < log n

2 base case T(n) = c if n = 2k, i.e. if k = log n

3 set k := log n. T(n) = 2log n · c + log n · c · n = c · n · log n + c · n; closed-form for T(n)
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Verifying solutions/solving by guessing

Recall

• recurrence specifies unique function

• method: guess solution, verify solution by substitution/induction

Example

1 guess f(n) = c · n · log n + c · n solves T(n) = 2 · T(n
2) + c · n if n ≥ 2, c otherwise

2 verify by substituting guess f for T in recurrence:

• case n = 1: f(1) = c X
• case n > 1: T(n) = f(n) = c · n · log n + c · n

= 2 · (c · n

2
· log

n

2
+ c · n

2
) + c · n

=IH 2 · T(
n

2
) + c · n X

using log( a
b ) = (log a)− (log b) , well-founded <-induction on n ( n

2 < n if n ≥ 2)
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Lemma

Let T : N → N be defined by recurrence

T(n) = aT(
n

b
) + f(n)

with a,b ∈ N with b > 1, and such that ∃k with n = bk. Then

T(n) = akT(1) +
k−1∑
i=0

aif(
n

bi
) (1)

Proof.

by repeated self-substitution of the recurrence, we see that for all ` > 1:

aiT(
n

bi
) = ai+1T(

n

bi+1
) + aif(

n

bi
)

and therefore T(n) = akT(1) + ak−1f( n
bk−1 ) + · · ·+ af(n

b) + f(n)
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Definition (Divide-and-conquer algorithms)

• the algorithm solves instances up to size m directly

• instances of size n > m are split (divide) into a further instances of sizes bn/bc
and dn/be, solves these recursively; we then combine (conquer) their solutions

Definition

• let the time to split and combine be f(n)

• let the total time be T(n), where we assume T(n + 1) > T(n)

• We define

T−(n) :=

{
a · T−(bn/bc) + f(n) if n > m

T(n) if n 6 m

T+(n) :=

{
a · T+(dn/be) + f(n) if n > m

T(n) if n 6 m

12

Definition (Divide-and-conquer algorithms)

• the algorithm solves instances up to size m directly

• instances of size n > m are split (divide) into a further instances of sizes bn/bc
and dn/be, solves these recursively; we then combine (conquer) their solutions

Definition

• let the time to split and combine be f(n)

• let the total time be T(n), where we assume T(n + 1) > T(n)

• We define

T−(n) :=

{
a · T−(bn/bc) + f(n) if n > m

T(n) if n 6 m

T+(n) :=

{
a · T+(dn/be) + f(n) if n > m

T(n) if n 6 m

12

Definition (Divide-and-conquer algorithms)

• the algorithm solves instances up to size m directly

• instances of size n > m are split (divide) into a further instances of sizes bn/bc
and dn/be, solves these recursively; we then combine (conquer) their solutions

Definition

• let the time to split and combine be f(n)

• let the total time be T(n), where we assume T(n + 1) > T(n)

• We define

T−(n) :=

{
a · T−(bn/bc) + f(n) if n > m

T(n) if n 6 m

T+(n) :=

{
a · T+(dn/be) + f(n) if n > m

T(n) if n 6 m

12



Example (Recall mergesort)

merge : : Ord a => [a] −> [a] −> [a]
merge xs [ ] = xs
merge [ ] ys = ys
merge (x : xs) (y : ys)
| (x <= y) = x : (merge xs (y : ys ) )
| otherwise = y : (merge (x : xs) ys)

mergesort : : Ord a => [a] −> [a]
mergesort [ ] = [ ]
mergesort [x] = [x]
mergesort xs = merge (mergesort ( fs tha l f xs ) ) (mergesort ( sndhalf xs ) )

Question

Can we give a bound on the complexity of merge sort?

13
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Definition (Recapitulation)

• the algorithm solves instances up to size m directly

• instances of size n > m are split into a (divide) further instances of sizes bn/bc
and dn/be, solves these recursively, and then combines (conquer) their solutions

Observation

• Let n = m · bk

• algorithm splits k times, hence there are, for r := logb a:

ak = (br)k = (bk)r =
( n

m

)r
,

basic instances

• solving just the basic instances costs Θ(nr)

• r captures ratio of recursive calls a vs. decrease in size b:
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Observation

• a · T(bn/bc) + f(n) 6 T(n) 6 a · T(dn/be) + f(n)

• Taking splitting and combining into account, allows asymptotic analysis of T±(n)

Theorem (master theorem)

Let T(n) be an increasing function that satisfies the following recursive equations

T(n) =

{
c n = 1

aT(n
b) + f(n) n = bk, k = 1,2, . . .

where a > 1, b > 1, c > 0. If f ∈ Θ(ns) with s > 0, then

T(n) ∈


Θ(nlogb a) if a > bs

Θ(ns log n) if a = bs

Θ(ns) if a < bs
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Example (merge sort, continued)

for mergesort a = b = 2 and moreover f ∈ Θ(n1), as splitting and combining is linear
in n (hence s = 1). The master theorem yields the following bound on the runtime

T(n) ∈ Θ(n · log n)

we have a = bs, since a = b = 2 and s = 1 (second case)

Example

Consider the recurrence:

T(n) = 4T(
n

2
) + n1

then a = 4, b = 2, r = logb a = 2 and a > bs, hence by the first case of the theorem:
T(n) ∈ Θ(n2)
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Proof of the master theorem

Case f ∈ Θ(ns) with a = bs

• set r := logb a; then r = s

• we use properties of Θ, resp. properties of the exponential function to conclude:

aif(
n

bi
) = Θ(ai nr

(bi)r
) = Θ(ai nr

(br)i
) = Θ(ai n

r

ai
) = Θ(nr)

• from which we obtain (as n = bk)
k∑

i=0

aif(
n

bi
) = Θ(

k∑
i=0

nr) = Θ(knr) = Θ(nr log n)

• moreover we already know that

akT(1) ∈ Θ(nr)
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Proof (continued)

• recall equation (1)

T(n) = akT(1) +
k−1∑
i=0

aif(
n

bi
)

• its terms can be bounded as follows:

akT(1) ∈ Θ(nr)

k−1∑
i=0

aif(
n

bi
) ∈ Θ(nr log n)

• and therefore

T(n) ∈ Θ(nr log n)
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Example

T(n) = 8 · T(n
2) + n2

• a = 8, b = 2, f(n) = n2,

• logb a = 3, s = 2, 8 > 22 so by case 1 T(n) ∈ Θ(n3)

Example

T(n) = 9 · T(n
3) + n3

• a = 9, b = 3,f(n) = n3,

• logb a = 2, s = 3, 9 < 33 so by case 3 T(n) ∈ Θ(n3)

Example

T(n) = T(n
2) + 1 (binary search)

• a = 1, b = 2,f(n) = 1,

• logb a = 0, s = 0, 1 = 20 so by case 2 T(n) ∈ Θ(log n)
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Limitations of Master theorem

• split into non-equal-sized or non-fractional parts, e.g. Fibonacci (generating
functions)

• f(n) not of complexity Θ(ns) for some s (can be relaxed)

20


