Summary last week

- divide and conquer algorithms, e.g. mergesort
- have asymptotic complexities given by recurrences $T(n) = \dots T(< n) \dots$
- may find a closed-form solution for a recurrence by:
- self-substitution and looking for pattern; or
- guessing and verifying; or
- generating functions (not this course); or
- master theorem: $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ if $n = b^k$ for k > 0, otherwise c:

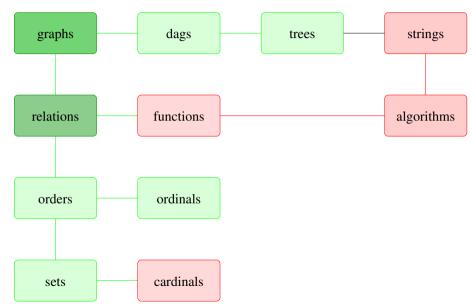
$$T(n) \in egin{cases} \Theta(n^{\log_b a}) & ext{if } a > b^s \ \Theta(n^s \log n) & ext{if } a = b^s \ \Theta(n^s) & ext{if } a < b^s \end{cases}$$

for T increasing, $a \geqslant 1$, b > 1, c > 0, and $f \in \Theta(n^s)$ with $s \geqslant 0$.

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures



• There are more functions $f: \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;

- There are more functions $f: \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.

- There are more functions $f: \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).

- There are more functions $f: \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).

- There are more functions $f: \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).

• ..

- There are more functions $f: \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).
- ...

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

Function defined by a TM (recall from 3rd lecture)

Definition

a TM M

• accepts $x \in \Sigma^*$, if $\exists y, n$:

$$(s, \vdash_{\mathbf{X}} \sqcup^{\infty}, 0) \xrightarrow{*}_{M} (\mathbf{t}, y, n)$$

• rejects $x \in \Sigma^*$, if $\exists y, n$:

$$(s, \vdash_{\mathbf{X}} \sqcup^{\infty}, 0) \xrightarrow{*}_{M} (\mathbf{r}, y, n)$$

- halt on input x, if x is accepted or rejected
- does not halt on input x, if x is neither accepted nor rejected
- is total, if M halts on all inputs

Function defined by a TM (recall from 3rd lecture)

Definition

a TM M

• accepts $x \in \Sigma^*$, if $\exists y, n$:

$$(s, \vdash_{\mathbf{X}} \sqcup^{\infty}, 0) \xrightarrow{*}_{M} (\mathbf{t}, y, n)$$

• rejects $x \in \Sigma^*$, if $\exists y, n$:

$$(s, \vdash_{\mathbf{X}} \sqcup^{\infty}, 0) \xrightarrow{*} (\mathbf{r}, y, n)$$

- halt on input x, if x is accepted or rejected
- does not halt on input x, if x is neither accepted nor rejected
- is total, if M halts on all inputs

Definition

A function $f: A \to B$ is defined by a TM M for every $x \in A$, M accepts input x with f(y) on the tape (and does not halt or rejects on inputs $x \notin A$).

Computable functions

Idea of computability

 $f: \mathbb{N} \to \mathbb{N}$ computable if there is an effective procedure to compute f(n) for input n

Computable functions

Idea of computability

 $f: \mathbb{N} \to \mathbb{N}$ computable if there is an effective procedure to compute f(n) for input n

Definition (computability via TM)

 $f: \mathbb{N} \to \mathbb{N}$ computable if it can be defined by a TM

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, . . .

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, . . .

Example

- any function programmable in some programming language square root, counting the number of 3s, compression, etc.
- effective ≠ efficient factorial, Ackermann function (complexity far worse than exponential)

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, . . .

Example

- any function programmable in some programming language square root, counting the number of 3s, compression, etc.
- effective \(\neq \) efficient
 factorial, Ackermann function (complexity far worse than exponential)
- unbounded search functions
 the least number that has property P (need not exist)

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, . . .

Example

- any function programmable in some programming language square root, counting the number of 3s, compression, etc.
- effective \(\neq \) efficient
 factorial, Ackermann function (complexity far worse than exponential)
- unbounded search functions
 the least number that has property P (need not exist)
- functions defined by finite cases f(n) = n if n odd, otherwise n^2

Lemma

there exist functions that are not computable (more functions than programs)

Proof.

Lemma

there exist functions that are not computable

Proof.

• any program may be encoded by a finite bit-string

Lemma

there exist functions that are not computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0,1\}^i$ is countable)

Lemma

there exist functions that are not computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0,1\}^i$ is countable)
- ullet there are uncountably many functions $\mathbb{N} o \mathbb{N}$ (recall $\mathbb{N} o \{0,1\}$ is uncountable)

Lemma

there exist functions that are not computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0,1\}^i$ is countable)
- ullet there are uncountably many functions $\mathbb{N} o \mathbb{N}$ (recall $\mathbb{N} o \{0,1\}$ is uncountable)
- ullet \Rightarrow some function $\mathbb{N} \to \mathbb{N}$ is not computable

Theorem

concrete non-computable functions (diagonalise away from TM behaviours)

Lemma

there exist functions that are not computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0,1\}^i$ is countable)
- ullet there are uncountably many functions $\mathbb{N} o \mathbb{N}$ (recall $\mathbb{N} o \{0,1\}$ is uncountable)
- ullet \Rightarrow some function $\mathbb{N} \to \mathbb{N}$ is not computable

Theorem

concrete non-computable functions

rest of this lecture, details of the above: coding, diagonalising way

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

- recursively enumerable, if there exists a TM M such that L = L(M) i.e. L is the set of strings accepted by M
- recursive, if there exists a total TM M, such that L = L(M) i.e. M is required to halt (accept or reject) on all strings

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

- recursively enumerable, if there exists a TM M such that L = L(M)
 i.e. L is the set of strings accepted by M
- recursive, if there exists a total TM M, such that L = L(M)
 i.e. M is required to halt (accept or reject) on all strings

Church-Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

- recursively enumerable, if there exists a TM M such that L = L(M)
 i.e. L is the set of strings accepted by M
- recursive, if there exists a total TM M, such that L = L(M)
 i.e. M is required to halt (accept or reject) on all strings

Church-Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

Computable function vs. recursive sets

Partial function $f: \mathbb{N} \to \mathbb{N}$ is computable iff $L_f = \{x \# f(x) \mid x \in \mathbb{N}\}$ is recursively enumerable. Total f is computable iff L_f is recursive.

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Proof.

Because L is recursive, there exists a total TM M such that L = L(M). Let the TM M' be obtained from M by exchanging its accepting and rejecting states. Because M is total, so is M'. Therefore, M' accepts a word iff M rejects it, hence $\sim L = L(M')$, i.e. $\sim L$ is recursive.

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Proof.

Because L is recursive, there exists a total TM M such that L = L(M). Let the TM M' be obtained from M by exchanging its accepting and rejecting states. Because M is total, so is M'. Therefore, M' accepts a word iff M rejects it, hence $\sim L = L(M')$, i.e. $\sim L$ is recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable set is recursive.

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Proof.

Because L is recursive, there exists a total TM M such that L = L(M). Let the TM M' be obtained from M by exchanging its accepting and rejecting states. Because M is total, so is M'. Therefore, M' accepts a word iff M rejects it, hence $\sim L = L(M')$, i.e. $\sim L$ is recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable set is recursive.

Proof.

The first part of the theorem follows from the definitions; the second part we will show later

If both L and \sim L are recursively enumerable, then L is recursive.

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

• $\exists \mathsf{TM} \ M_1, M_2 \ \mathsf{with} \ L = \mathsf{L}(M_1) \ \mathsf{and} \ {\sim} (L) = \mathsf{L}(M_2)$

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \text{ TM } M_1, M_2 \text{ with } L = L(M_1) \text{ and } \sim(L) = L(M_2)$
- define TM M', such that its tape has two 'halves' (or a TM with 2-tapes):

b	ĥ	а	b	а	а	а	а	b	а	а	а	\Box	>	
С	С	С	d	d	d	С	ĉ	d	С	d	С			

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \text{ TM } M_1, M_2 \text{ with } L = L(M_1) \text{ and } \sim(L) = L(M_2)$
- define TM M', such that its tape has two 'halves' (or a TM with 2-tapes):

• M_1 is simulated on the upper tape and M_2 on the lower tape

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \mathsf{TM} M_1, M_2 \mathsf{ with } L = \mathsf{L}(M_1) \mathsf{ and } \sim (L) = \mathsf{L}(M_2)$
- define TM M', such that its tape has two 'halves' (or a TM with 2-tapes):

- M_1 is simulated on the upper tape and M_2 on the lower tape
- if M_1 accepts x, then M' accepts x
- if M_2 accepts x, then M' rejects x

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \mathsf{TM} M_1, M_2 \mathsf{ with } L = \mathsf{L}(M_1) \mathsf{ and } \sim (L) = \mathsf{L}(M_2)$
- define TM M', such that its tape has two 'halves' (or a TM with 2-tapes):

- M_1 is simulated on the upper tape and M_2 on the lower tape
- if M_1 accepts x, then M' accepts x
- if M_2 accepts x, then M' rejects x

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property P of words over Σ is

- **decidable** if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursive
- semi-decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursively enumerable

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property P of words over Σ is

- decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursive
- semi-decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursively enumerable

Example

Let P(x) := x is a palindrome of even length; then P is decidable

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property P of words over Σ is

- decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursive
- semi-decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursively enumerable

Example

Let P(x) := x is a palindrome of even length; then P is decidable

Example

Every decidable problem is semi-decidable

Remark

A problem P is

 semi-decidable, if there exists a TM M whose language is the set of words having property P;

Remark

A problem P is

- semi-decidable, if there exists a TM M whose language is the set of words having property P;
- decidable, if there exists a total TM M that accepts exactly the words having property P

Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0,1\}$:

- Number of states
- 2 transition function
- input and tape alphabet
- 4 ...

Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0, 1\}$:

- Number of states
- 2 transition function
- input and tape alphabet
- 4 ...

Example

```
Let M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r) be a TM; encoding over \{0, 1\}
0^{n} \ 1 \ 0^{m} \ 1 \ 0^{k} \ 1 \ 0^{s} \ 1 \ 0^{t} \ 1 \ 0^{r} \ 1 \ 0^{u} \ 1 \ 0^{v} \ 1 \cdots
```

represents $Q = \{0, \dots, n-1\}$, $\Gamma = \{0, \dots, m-1\}$, $\Sigma = \{0, \dots, k-1\}$, $(k \le m)$, s initial state, t accepting state, r rejecting state, u left-end marker, v blank symbol

Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0,1\}$:

- Number of states
- 2 transition function
- 3 input and tape alphabet
- 4 ...

Example

```
Let M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r) be a TM; encoding over \{0, 1\}
0^n \ 1 \ 0^m \ 1 \ 0^k \ 1 \ 0^s \ 1 \ 0^t \ 1 \ 0^r \ 1 \ 0^u \ 1 \ 0^v \ 1 \ \cdots
```

represents $Q = \{0, \dots, n-1\}$, $\Gamma = \{0, \dots, m-1\}$, $\Sigma = \{0, \dots, k-1\}$, $(k \le m)$, S initial state, t accepting state, r rejecting state, u left-end marker, v blank symbol; the symbol 1 is used as separator in the encoding

Example (Continued)

consider M and encode $\delta(p,a)=(q,b,d)$, where c=0 if d=L and c=1 if d=R $0^p \ 1 \ 0^a \ 1 \ 0^d \ 1 \ 0^c \ 1$

Example (Continued)

consider
$$M$$
 and encode $\delta(p,a)=(q,b,d)$, where $c=0$ if $d=L$ and $c=1$ if $d=R$

$$0^p \ 1 \ 0^a \ 1 \ 0^b \ 1 \ 0^c \ 1$$

Example

We encode $M' = (\{s, p, t, r\}, \{0, 1\}, \{0, 1, \vdash, \sqcup\}, \vdash, \sqcup, \delta, s, t, r)$ by

	⊥	0	1	Ц
S	(s,\vdash,R)	(s, 0, R)	(s, 1, R)	(p,\sqcup,L)
p	(t,\vdash,R)	(t, 1, L)	(p, 0, L)	•

We obtain

$$\underbrace{0000}_{n=4} 1 \underbrace{0000}_{m=4} 1 \underbrace{00}_{k=2} 1 \underbrace{\epsilon}_{s} 1 \underbrace{00}_{t} 1 \underbrace{000}_{r} 1 \underbrace{00}_{\vdash} 1 \underbrace{000}_{\vdash} 1 \cdots$$

and, for example, $\delta(p,\vdash)=(t,\vdash,\mathsf{R})$ yields $010^210^210^2101$

A TM U is universal (UTM), if for input of

A TM *U* is universal (UTM), if for input of

- the code Mode of a TM M, and
- the code $\lceil x \rceil$ of an input x for M

A TM *U* is universal (UTM), if for input of

- the code $\lceil M \rceil$ of a TM M, and
- the code $\lceil x \rceil$ of an input x for M

the TM *U* simulates the TM *M* on *x*

A TM *U* is universal (UTM), if for input of

- the code $\lceil M \rceil$ of a TM M, and
- the code $\lceil x \rceil$ of an input x for M

the TM *U* simulates the TM *M* on *x* that is

$$\mathsf{L}(U) = \{ \lceil \mathsf{M} \rceil \# \lceil \mathsf{x} \rceil \mid \mathsf{x} \in \mathsf{L}(\mathsf{M}) \}$$

A TM *U* is universal (UTM), if for input of

- the code Mode of a TM M, and
- the code $\lceil x \rceil$ of an input x for M

the TM *U* simulates the TM *M* on *x* that is

$$\mathsf{L}(U) = \{ \lceil \mathsf{M} \rceil \# \lceil \mathsf{x} \rceil \mid \mathsf{x} \in \mathsf{L}(\mathsf{M}) \}$$

UTM schematically

Notation

To avoid notational clutter, we often omit the 'coding corners':

$$\mathsf{L}(U) = \{ M \# x \mid x \in \mathsf{L}(M) \}$$

Notation

To avoid notational clutter, we often omit the 'coding corners':

$$\mathsf{L}(U) = \{ M \# x \mid x \in \mathsf{L}(M) \}$$

Simulation

■ UTM *U* checks correctness of the encodings; if incorrect, *U* rejects

Notation

To avoid notational clutter, we often omit the 'coding corners':

$$\mathsf{L}(U) = \{ M \# x \mid x \in \mathsf{L}(M) \}$$

Simulation

- **1** UTM *U* checks correctness of the encodings; if incorrect, *U* rejects
- \mathbf{Z} U simulates M using 3 tapes, with input \mathbf{X}
 - Tape 1 contains the encoding of the TM M
 - Tape 2 contains the encoding of the input word x
 - Tape 3 contains the simulated tape of M

Notation

To avoid notational clutter, we often omit the 'coding corners':

$$\mathsf{L}(U) = \{ M \# x \mid x \in \mathsf{L}(M) \}$$

Simulation

- \blacksquare UTM U checks correctness of the encodings; if incorrect, U rejects
- \mathbf{Z} U simulates M using 3 tapes, with input \mathbf{X}
 - Tape 1 contains the encoding of the TM M
 - Tape 2 contains the encoding of the input word x
 - Tape 3 contains the simulated tape of M
- If M accepts, then U accepts; if M rejects, then U reject

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Proof.

- Consider the variation U' of U such that the second tape of U' contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation U_M is obtained from U' by fixing the code of M on the second tape (hardcoding it)
- By definition, U_M executes all steps of M on the input x

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Proof.

- Consider the variation U' of U such that the second tape of U' contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation U_M is obtained from U' by fixing the code of M on the second tape (hardcoding it)
- By definition, U_M executes all steps of M on the input x

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Proof.

- Consider the variation U' of U such that the second tape of U' contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation U_M is obtained from U' by fixing the code of M on the second tape (hardcoding it)
- By definition, U_M executes all steps of M on the input x

Remark

Meta-programming and macros originate with UTMs

The halting problem and the membership problem for TMs are

$$\mathsf{HP} := \{ M \# x \mid M \text{ halts for input } x \}$$

$$\mathsf{MP} := \{ \mathsf{M} \# \mathsf{x} \mid \mathsf{x} \in \mathsf{L}(\mathsf{M}) \}$$

The halting problem and the membership problem for TMs are

$$\begin{aligned} \mathsf{HP} &:= \{ \mathsf{M} \# x \mid \mathsf{M} \text{ halts for input } x \} \\ \mathsf{MP} &:= \{ \mathsf{M} \# x \mid x \in \mathsf{L}(\mathsf{M}) \} \end{aligned}$$

Definition

- **I** M_X is TM (with input alphabet $\{0,1\}$), whose code (with coding alphabet $\{0,1\}$) is X
- \mathbf{Z} if \mathbf{X} is not the code (of some TM), take $\mathbf{M}_{\mathbf{X}}$ arbitrary

The halting problem and the membership problem for TMs are

$$\begin{aligned} \mathsf{HP} &:= \{ \mathsf{M} \# x \mid \mathsf{M} \text{ halts for input } x \} \\ \mathsf{MP} &:= \{ \mathsf{M} \# x \mid x \in \mathsf{L}(\mathsf{M}) \} \end{aligned}$$

Definition

- **I** M_X is TM (with input alphabet $\{0,1\}$), whose code (with coding alphabet $\{0,1\}$) is X
- \mathbf{Z} if \mathbf{X} is not the code (of some TM), take $\mathbf{M}_{\mathbf{X}}$ arbitrary

The halting problem and the membership problem for TMs are

$$\begin{aligned} & \mathsf{HP} := \{ M \# x \mid M \text{ halts for input } x \} \\ & \mathsf{MP} := \{ M \# x \mid x \in \mathsf{L}(M) \} \end{aligned}$$

Definition

- I M_X is TM (with input alphabet $\{0,1\}$), whose code (with coding alphabet $\{0,1\}$) is X
- \mathbf{Z} if \mathbf{X} is not the code (of some TM), take $\mathbf{M}_{\mathbf{X}}$ arbitrary

Enumerating all Turing machines

$$M_{\epsilon}, M_{0}, M_{1}, M_{00}, M_{01}, M_{10}, M_{11}, M_{000}, \dots$$

(ordered with respect to the lexical order)

The halting problem and the membership problem for TMs are

$$HP := \{M\#x \mid M \text{ halts for input } x\}$$

$$MP := \{M\#x \mid x \in L(M)\}$$

Definition

- I M_X is TM (with input alphabet $\{0,1\}$), whose code (with coding alphabet $\{0,1\}$) is X
- \mathbf{Z} if \mathbf{X} is not the code (of some TM), take $\mathbf{M}_{\mathbf{X}}$ arbitrary

Enumerating all Turing machines

$$M_{\epsilon}, M_{0}, M_{1}, M_{00}, M_{01}, M_{10}, M_{11}, M_{000}, \dots$$

(ordered with respect to the lexical order)

Two-dimensional matrix of behaviours (loops \circlearrowright vs. halts !)

indexed by words $w \in \{0,1\}^*$ respectively Turing machines

Two-dimensional matrix of behaviours (loops \circlearrowright vs. halts !)

indexed by words $w \in \{0,1\}^*$ respectively Turing machines

	ϵ	0	1	00	01	10	11	000	001	010	
M_ϵ	-!	\bigcirc	\bigcirc	ļ.	ļ.	Ö	!	Ö	!	!	
M_0	Ö	\bigcirc	!	!	\bigcirc	!	!	\bigcirc	\bigcirc	!	
M_1	Ŏ	!	\bigcirc	!	\bigcirc	!	!	\bigcirc	\bigcirc	!	
M_{00}	!	\bigcirc	\bigcirc	!	!	!	!	\bigcirc	\bigcirc	!	
M_{01}	!	!	!	!	\bigcirc	\bigcirc	\bigcirc	į.	!	\bigcirc	
M_{10}	ļ	ļ.	\bigcirc	!	!	\bigcirc	!	!	\bigcirc	!	
M_{11}	ļ	!	\bigcirc	\bigcirc	!	\bigcirc	!	\bigcirc	!	\bigcirc	
M_{000}	!	!	!	!	\bigcirc	!	!	Ŏ	!	\bigcirc	
M_{001}	Ö	!	ļ.	!	!	\bigcirc	!	ļ.	!	!	
÷						:					٠.,

Claim

the behaviour *cd* corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

Claim

the behaviour *cd* corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

Proof.

Behaviours are functions from finite bit-strings in $\{0,1\}^*$ (inputs) to $\{!,\circlearrowright\}$. Given an enumeration m_{ϵ} , m_0 , m_1 , . . . of such behaviours, indexed by finite bit-strings

$$m_{\epsilon} = m_{\epsilon}(\epsilon)m_{\epsilon}(0)m_{\epsilon}(1)m_{\epsilon}(00)m_{\epsilon}(01)\dots$$

 $m_{0} = m_{0}(\epsilon)m_{0}(0)m_{0}(1)m_{0}(00)m_{0}(01)\dots$
 $m_{1} = m_{1}(\epsilon)m_{1}(0)m_{1}(1)m_{1}(00)m_{1}(01)\dots$
:

behaviour *cd* defined by

$$cd(x) = egin{cases} \circlearrowright & ext{if } m_x(x) = ! \ ! & ext{if } m_x(x) = \circlearrowright \end{cases}$$

is a new behaviour; distinct from each m_x , namely at x: $m_x(x) = \overline{cd(x)} \neq cd(x)$

Claim

the behaviour *cd* corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

Proof.

Behaviours are functions from finite bit-strings in $\{0,1\}^*$ (inputs) to $\{!, \circlearrowright\}$. Given an enumeration m_{ϵ} , m_0 , m_1 , . . . of such behaviours, indexed by finite bit-strings

$$m_{\epsilon} = m_{\epsilon}(\epsilon)m_{\epsilon}(0)m_{\epsilon}(1)m_{\epsilon}(00)m_{\epsilon}(01)\dots$$

 $m_{0} = m_{0}(\epsilon)m_{0}(0)m_{0}(1)m_{0}(00)m_{0}(01)\dots$
 $m_{1} = m_{1}(\epsilon)m_{1}(0)m_{1}(1)m_{1}(00)m_{1}(01)\dots$
:

behaviour cd defined by

$$cd(x) = egin{cases} \circlearrowright & ext{if } m_{x}(x) = ! \ ! & ext{if } m_{x}(x) = \circlearrowright \end{cases}$$

is a new behaviour; distinct from each m_x , namely at x: $m_x(x) = \overline{cd(x)} \neq cd(x)$

HP is not recursive, but recursively enumerable

HP is not recursive, but recursively enumerable

Proof.

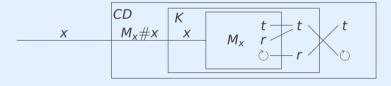
we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

HP is not recursive, but recursively enumerable

Proof.

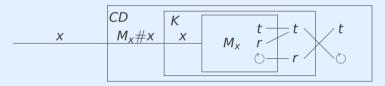
- **I** for proof by contradiction, suppose total TM K such that HP = L(K) were to exist
- 2 then we could construct a TM CD, based on K, as follows



HP is not recursive, but recursively enumerable

Proof.

- **1** for proof by contradiction, suppose total TM K such that HP = L(K) were to exist
- 2 then we could construct a TM CD, based on K, as follows

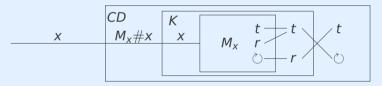


- 3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
 - M_{10} loops on 10, so K rejects $M_{10}\#10$ and CD halts on (accepts) 10; indeed cd(10) = !
 - M_{001} halts on 001, so K accepts $M_{001}\#001$ and CD loops on 001; indeed cd(001) = 0

HP is not recursive, but recursively enumerable

Proof.

- **I** for proof by contradiction, suppose total TM K such that HP = L(K) were to exist
- \blacksquare then we could construct a TM CD, based on K, as follows

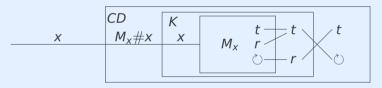


- 3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
 - M_{10} loops on 10, so K rejects $M_{10}\#10$ and CD halts on (accepts) 10; indeed cd(10) = !
 - M_{001} halts on 001, so K accepts $M_{001}\#001$ and CD loops on 001; indeed cd(001) = 0
- 4 Behaviour cd distinct from that of any TM M_x , so CD not a TM, so K not a TM.

HP is not recursive, but recursively enumerable

Proof.

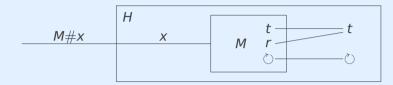
- 1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist
- 2 then we could construct a TM CD, based on K, as follows



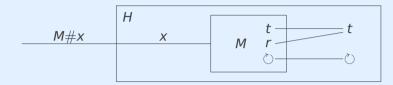
- CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
 - M_{10} loops on 10, so K rejects $M_{10}\#10$ and CD halts on (accepts) 10; indeed cd(10)=!
 - M_{001} halts on 001, so K accepts $M_{001}\#001$ and CD loops on 001; indeed cd(001) = 0
- Behaviour *cd* distinct from that of any TM M_X , so *CD* not a TM, so *K* not a TM. Contradiction

We sketch why HP is recursively enumerable; to that end we construct the following $\mathsf{TM}\ H$, based on the universal TM

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM



We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM



23

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM

Corollary

The set \sim HP is not recursively enumerable

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM

Corollary

The set \sim HP is not recursively enumerable

Proof.

Suppose \sim HP were recursively enumerable; then both HP and \sim HP would be recursively enumerable, hence HP would be recursive. Contradiction

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM

Corollary

The set \sim HP is not recursively enumerable

Proof.

Suppose \sim HP were recursively enumerable; then both HP and \sim HP would be recursively enumerable, hence HP would be recursive. Contradiction