Summary last week

- divide and conquer algorithms, e.g. mergesort
- have asymptotic complexities given by recurrences $T(n) = \ldots T(< n) \ldots$
- may find a closed-form solution for a recurrence by:
- self-substitution and looking for pattern; or
- guessing and verifying; or
- generating functions (not this course); or
- master theorem: $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ if $n = b^k$ for k > 0, otherwise *c*:

$$T(n) \in \begin{cases} \Theta(n^{\log_b a}) & \text{if } a > b^s \\ \Theta(n^s \log n) & \text{if } a = b^s \\ \Theta(n^s) & \text{if } a < b^s \end{cases}$$

for *T* increasing, $a \ge 1$, b > 1, c > 0, and $f \in \Theta(n^s)$ with $s \ge 0$.

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags

1

3

- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Limitations of algorithms (recall from 3rd lecture)

• There are more functions $f : \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;

Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f : \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.

Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f : \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).

Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f : \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).

Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f : \mathbb{N} \to \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).

• ...

4

Limitations of algorithms (recall from 3rd lecture)

- There are more functions *f* : N → N than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).
- ...

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

Function defined by a TM (recall from 3rd lecture)

Definition

а ТМ *М*

• accepts $x \in \Sigma^*$, if $\exists y, n$:

$$(s, \vdash_{\boldsymbol{X}} \sqcup^{\infty}, 0) \xrightarrow{*}_{M} (\boldsymbol{t}, y, n)$$

• rejects $x \in \Sigma^*$, if $\exists y, n$:

$$(s,\vdash_{\boldsymbol{X}}\sqcup^{\infty},0)\xrightarrow[M]{*}(\boldsymbol{r},y,n)$$

- halt on input x, if x is accepted or rejected
- does not halt on input x, if x is neither accepted nor rejected
- is total, if *M* halts on all inputs

Function defined by a TM (recall from 3rd lecture)

а ТМ *М*

Definition

• accepts $x \in \Sigma^*$, if $\exists y, n$:

$$(s, \vdash_{\mathbf{X}}\sqcup^{\infty}, 0) \xrightarrow{*} (t, y, n)$$

• rejects $x \in \Sigma^*$, if $\exists y, n$:

 $(s,\vdash_{\boldsymbol{X}}\sqcup^{\infty},0)\xrightarrow[M]{*}(\boldsymbol{r},y,n)$

- halt on input x, if x is accepted or rejected
- does not halt on input x, if x is neither accepted nor rejected
- is total, if *M* halts on all inputs

Definition

A function $f : A \to B$ is defined by a TM *M* for every $x \in A$, *M* accepts input *x* with f(y) on the tape (and does not halt or rejects on inputs $x \notin A$).

Computable functions

Idea of computability

 $f: \mathbb{N} \to \mathbb{N}$ computable if there is an effective procedure to compute f(n) for input n

Idea of computability

 $f: \mathbb{N} \to \mathbb{N}$ computable if there is an effective procedure to compute f(n) for input n

Definition (computability via TM)

 $f: \mathbb{N} \to \mathbb{N}$ computable if it can be defined by a TM

Examples of computable functions

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, ...

Examples of computable functions

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, ...

Example

- any function programmable in some programming language square root, counting the number of 3s, compression, etc.
- effective \neq efficient

factorial, Ackermann function (complexity far worse than exponential)

Examples of computable functions

remark

6

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, ...

Example

- any function programmable in some programming language square root, counting the number of 3s, compression, etc.
- effective \neq efficient factorial, Ackermann function (complexity far worse than exponential)
- unbounded search functions the least number that has property *P* (need not exist)

Examples of computable functions

remark

computability equivalently defined via models of computation: μ -recursive functions, λ -calculus, register machines, term rewriting, ...

Example

- any function programmable in some programming language square root, counting the number of 3s, compression, etc.
- effective \neq efficient
 factorial, Ackermann function (complexity far worse than exponential)
- unbounded search functions the least number that has property *P* (need not exist)
- functions defined by finite cases f(n) = n if n odd, otherwise n^2

Limits of computability

Lemma

there exist functions that are not computable (more functions than programs)

Proof.

Limits of computability

Lemma

there **exist** functions that are **not** computable

Proof.

• any program may be encoded by a finite bit-string

Limits of computability

Lemma

there exist functions that are not computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are **countably** many programs; (recall $\bigcup_i \{0, 1\}^i$ is countable)

Limits of computability

Lemma

there **exist** functions that are **not** computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0, 1\}^i$ is countable)
- there are uncountably many functions $\mathbb{N} o \mathbb{N}$ (recall $\mathbb{N} o \{0,1\}$ is uncountable)

Limits of computability

Lemma

there exist functions that are not computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0, 1\}^i$ is countable)
- there are uncountably many functions $\mathbb{N} \to \mathbb{N}$ (recall $\mathbb{N} \to \{0,1\}$ is uncountable)
- $\bullet \ \Rightarrow \mbox{some}$ function $\mathbb{N} \ \rightarrow \ \mathbb{N}$ is not computable

Theorem

concrete non-computable functions (diagonalise away from TM behaviours)

Limits of computability

Lemma

there **exist** functions that are **not** computable

Proof.

- any program may be encoded by a finite bit-string
- \Rightarrow there are countably many programs; (recall $\bigcup_i \{0, 1\}^i$ is countable)
- there are uncountably many functions $\mathbb{N} \to \mathbb{N}$ (recall $\mathbb{N} \to \{0,1\}$ is uncountable)
- $\bullet \ \Rightarrow \mbox{some function} \ \mathbb{N} \ \rightarrow \ \mathbb{N} \ \mbox{is not computable}$

Theorem

concrete non-computable functions

rest of this lecture, details of the above: coding, diagonalising way

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

- recursively enumerable, if there exists a TM *M* such that L = L(M) i.e. *L* is the set of strings accepted by *M*
- recursive, if there exists a total TM M, such that L = L(M) i.e. M is required to halt (accept or reject) on all strings

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

- recursively enumerable, if there exists a TM M such that L = L(M)
 i.e. L is the set of strings accepted by M
- recursive, if there exists a total TM M, such that L = L(M)
 i.e. M is required to halt (accept or reject) on all strings

Church–Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

- recursively enumerable, if there exists a TM *M* such that L = L(M)i.e. *L* is the set of strings accepted by *M*
- recursive, if there exists a total TM M, such that L = L(M)i.e. M is required to halt (accept or reject) on all strings

Church-Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

Computable function vs. recursive sets

Partial function $f : \mathbb{N} \to \mathbb{N}$ is computable iff $L_f = \{x \# f(x) \mid x \in \mathbb{N}\}$ is recursively enumerable. Total f is computable iff L_f is recursive.

Theorem

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Theorem

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Proof.

Because *L* is recursive, there exists a total TM *M* such that L = L(M). Let the TM *M'* be obtained from *M* by exchanging its accepting and rejecting states. Because *M* is total, so is *M'*. Therefore, *M'* accepts a word iff *M* rejects it, hence $\sim L = L(M')$, i.e. $\sim L$ is recursive.

Theorem

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Proof.

Because *L* is recursive, there exists a total TM *M* such that L = L(M). Let the TM *M'* be obtained from *M* by exchanging its accepting and rejecting states. Because *M* is total, so is *M'*. Therefore, *M'* accepts a word iff *M* rejects it, hence $\sim L = L(M')$, i.e. $\sim L$ is recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable set is recursive.

Theorem

Let $L \subseteq \Sigma^*$ be a recursive language over some alphabet Σ ; then $\sim L$ is recursive.

Proof.

Because *L* is recursive, there exists a total TM *M* such that L = L(M). Let the TM *M'* be obtained from *M* by exchanging its accepting and rejecting states. Because *M* is total, so is *M'*. Therefore, *M'* accepts a word iff *M* rejects it, hence $\sim L = L(M')$, i.e. $\sim L$ is recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable set is recursive.

Proof.

The first part of the theorem follows from the definitions; the second part we will show later

Theorem

If both L and \sim L are recursively enumerable, then L is recursive.

Theorem

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

• $\exists \mathsf{TM} M_1, M_2 \text{ with } L = \mathsf{L}(M_1) \text{ and } \sim (L) = \mathsf{L}(M_2)$

10

Theorem

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \mathsf{TM} M_1, M_2 \text{ with } L = \mathsf{L}(M_1) \text{ and } \sim(L) = \mathsf{L}(M_2)$
- define TM *M*['], such that its tape has two 'halves' (or a TM with 2-tapes):

	ĥ												›	
С	С	С	d	d	d	С	ĉ	d	С	d	С	\square		

Theorem

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \mathsf{TM} M_1, M_2 \text{ with } L = \mathsf{L}(M_1) \text{ and } \sim (L) = \mathsf{L}(M_2)$
- define TM M', such that its tape has two 'halves' (or a TM with 2-tapes):

b	ĥ	а	b	а	а	а	а	b	а	а	а	Π.
С	С	С	d	d	d	С	ĉ	d	С	d	С	

• M_1 is simulated on the upper tape and M_2 on the lower tape

Theorem

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \mathsf{TM} M_1, M_2 \text{ with } L = \mathsf{L}(M_1) \text{ and } \sim (L) = \mathsf{L}(M_2)$
- define TM *M*', such that its tape has two 'halves' (or a TM with 2-tapes):

- M_1 is simulated on the upper tape and M_2 on the lower tape
- if M_1 accepts x, then M' accepts x
- if M_2 accepts x, then M' rejects x

Theorem

If both L and \sim L are recursively enumerable, then L is recursive.

Proof.

- $\exists \mathsf{TM} M_1, M_2 \text{ with } L = \mathsf{L}(M_1) \text{ and } \sim (L) = \mathsf{L}(M_2)$
- define TM M', such that its tape has two 'halves' (or a TM with 2-tapes):

b	ĥ	а	b	а	а	а	а	b	а	а	а	>
С	С	С	d	d	d	С	ĉ	d	С	d	С)

- M_1 is simulated on the upper tape and M_2 on the lower tape
- if M_1 accepts x, then M' accepts x
- if M_2 accepts x, then M' rejects x

11

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property P of words over Σ is

- decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursive
- semi-decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursively enumerable

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property ${\it P}$ of words over Σ is

- decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursive
- semi-decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursively enumerable

Example

Let P(x) := x is a palindrome of even length; then P is decidable

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property ${\it P}$ of words over Σ is

- decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursive
- semi-decidable if the set $\{x \in \Sigma^* \mid x \text{ has property } P\}$ is recursively enumerable

Example

Let P(x) := x is a palindrome of even length; then *P* is decidable

Example

Every decidable problem is semi-decidable

Remark

A problem *P* is

 semi-decidable, if there exists a TM M whose language is the set of words having property P;

12

Remark

A problem P is

- semi-decidable, if there exists a TM M whose language is the set of words having property P;
- decidable, if there exists a total TM M that accepts exactly the words having property P

Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0, 1\}$:

- 1 Number of states
- 2 transition function
- input and tape alphabet
- 4

Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0, 1\}$: 1 Number of states

2 transition function

3 input and tape alphabet

4

Example

Let $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ be a TM; encoding over $\{0, 1\}$

 $0^{n} 1 0^{m} 1 0^{k} 1 0^{s} 1 0^{t} 1 0^{r} 1 0^{u} 1 0^{v} 1 \cdots$

represents $Q = \{0, ..., n-1\}$, $\Gamma = \{0, ..., m-1\}$, $\Sigma = \{0, ..., k-1\}$, $(k \leq m)$, *s* initial state, *t* accepting state, *r* rejecting state, *u* left-end marker, *v* blank symbol

Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0, 1\}$:

- Number of states
- 2 transition function
- input and tape alphabet

4

Example

Let $M = (Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)$ be a TM; encoding over $\{0, 1\}$

 $0^{n} 1 0^{m} 1 0^{k} 1 0^{s} 1 0^{t} 1 0^{r} 1 0^{u} 1 0^{v} 1 \cdots$

represents $Q = \{0, ..., n-1\}$, $\Gamma = \{0, ..., m-1\}$, $\Sigma = \{0, ..., k-1\}$, $(k \leq m)$, *s* initial state, *t* accepting state, *r* rejecting state, *u* left-end marker, *v* blank symbol; the symbol 1 is used as separator in the encoding

13

Example (Continued)

consider *M* and encode $\delta(\mathbf{p}, \mathbf{a}) = (\mathbf{q}, \mathbf{b}, \mathbf{d})$, where $\mathbf{c} = 0$ if $\mathbf{d} = L$ and $\mathbf{c} = 1$ if $\mathbf{d} = R$ 0^{p} 1 0^{a} 1 0^{q} 1 0^{b} 1 0^{c} 1

Example (Continued)

consider *M* and encode $\delta(\mathbf{p}, \mathbf{a}) = (\mathbf{q}, \mathbf{b}, \mathbf{d})$, where $\mathbf{c} = 0$ if $\mathbf{d} = L$ and $\mathbf{c} = 1$ if $\mathbf{d} = R$ 0^{p} 1 0^{a} 1 0^{q} 1 0^{b} 1 0^{c} 1

Example					
We encode $M' = (\{s, p, d\})$	t,r	$\}, \{0, 1\}, \{$	[0 , 1 ,dash,dash,dash]	$\}, \vdash, \sqcup, \delta, s$, <i>t</i> , <i>r</i>) by
		F	0	1	Ц
-	s	(<i>s</i> ,⊢,R)	(<i>s</i> , 0, R)	(s, 1, R) (p, 0, L)	(<i>p</i> , ⊔, L)
	р	(t, \vdash, R)	(<i>t</i> , 1, L)	(p, 0, L)	•
We obtain					
$\underbrace{0000}_{n=4}$	1 <u>00</u> m	$\underbrace{000}_{=4} 1 \underbrace{00}_{k=2}$	$1 \underbrace{\epsilon}_{s} 1 \underbrace{0}_{s}$	$\underbrace{00}_{t} 1 \underbrace{000}_{r} 1$	
and, for example, $\delta(\pmb{p}, \pmb{arepsilon})$	-) =	$= (t, \vdash, R)$	yields 01	0 ² 10 ² 10 ²	101

Definition

A TM *U* is universal (UTM), if for input of

Definition

A TM *U* is universal (UTM), if for input of ● the code *M* of a TM *M*, and

- the code $\lceil x \rceil$ of an input x for M

15

Definition

- A TM U is universal (UTM), if for input of
 the code 「M[¬] of a TM M, and
- the code $\lceil x \rceil$ of an input x for M

the TM U simulates the TM M on x

Definition

A TM U is universal (UTM), if for input of

• the code **M** of a TM *M*, and

• the code $\lceil x \rceil$ of an input x for M

the TM *U* simulates the TM *M* on *x* that is

 $\mathsf{L}(U) = \{ \ulcorner M \urcorner \# \ulcorner x \urcorner \mid x \in \mathsf{L}(M) \}$

Definition

A TM U is universal (UTM), if for input of

• the code $\lceil M \rceil$ of a TM M, and

• the code $\lceil x \rceil$ of an input x for M

the TM **U** simulates the TM **M** on x that is

 $\mathsf{L}(U) = \{ \ulcorner M \urcorner \# \ulcorner x \urcorner \mid x \in \mathsf{L}(M) \}$

UTM schematically

Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the 'coding corners':

 $\mathsf{L}(U) = \{ M \# x \mid x \in \mathsf{L}(M) \}$

16

Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the 'coding corners': $\mathsf{L}(U) = \{ M \# x \mid x \in \mathsf{L}(M) \}$

Simulation

I UTM *U* checks correctness of the encodings; if incorrect, *U* rejects

Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the 'coding corners': $L(U) = \{M \# x \mid x \in L(M)\}$

Simulation

1 UTM *U* checks correctness of the encodings; if incorrect, *U* rejects

2 *U* simulates *M* using 3 tapes, with input *x*

- Tape 1 contains the encoding of the TM M
- Tape 2 contains the encoding of the input word x
- Tape 3 contains the simulated tape of M

Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the 'coding corners': $L(U) = \{M \# x \mid x \in L(M)\}$

Simulation

- **1** UTM *U* checks correctness of the encodings; if incorrect, *U* rejects
- 2 U simulates M using 3 tapes, with input x
 - Tape 1 contains the encoding of the TM M
 - Tape 2 contains the encoding of the input word x
 - Tape 3 contains the simulated tape of M

I If M accepts, then U accepts; if M rejects, then U reject

Lemma

17

17

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Lemma

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Proof.

- Consider the variation U' of U such that the second tape of U' contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation U_M is obtained from U' by fixing the code of M on the second tape (hardcoding it)
- By definition, U_M executes all steps of M on the input x

Lemma

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Proof.

- Consider the variation *U*' of *U* such that the second tape of *U*' contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation U_M is obtained from U' by fixing the code of M on the second tape (hardcoding it)
- By definition, U_M executes all steps of M on the input x

Lemma

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called U_M , that simulates M on all inputs.

Proof.

- Consider the variation U' of U such that the second tape of U' contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation U_M is obtained from U' by fixing the code of M on the second tape (hardcoding it)
- By definition, U_M executes all steps of M on the input x

Remark

Meta-programming and macros originate with UTMs

Definition

The halting problem and the membership problem for TMs are

 $HP := \{M \# x \mid M \text{ halts for input } x\}$ $MP := \{M \# x \mid x \in L(M)\}$

18

18

Definition

The halting problem and the membership problem for TMs are $HP := \{M \# x \mid M \text{ halts for input } x\}$ $MP := \{M \# x \mid x \in L(M)\}$

Definition

- **1** M_x is TM (with input alphabet $\{0, 1\}$), whose code (with coding alphabet $\{0, 1\}$) is x
- 2 if x is not the code (of some TM), take M_x arbitrary

Definition

The halting problem and the membership problem for TMs are $HP := \{M \# x \mid M \text{ halts for input } x\}$ $MP := \{M \# x \mid x \in L(M)\}$

Definition

- **M**_x is TM (with input alphabet $\{0, 1\}$), whose code (with coding alphabet $\{0, 1\}$) is x
- 2 if x is not the code (of some TM), take M_x arbitrary

Definition

The halting problem and the membership problem for TMs are $HP := \{M \# x \mid M \text{ halts for input } x\}$ $MP := \{M \# x \mid x \in L(M)\}$

Definition

M_x is TM (with input alphabet {0,1}), whose code (with coding alphabet {0,1}) is x

2 if \mathbf{x} is not the code (of some TM), take $M_{\mathbf{x}}$ arbitrary

Enumerating all Turing machines

 $M_{\epsilon}, M_{0}, M_{1}, M_{00}, M_{01}, M_{10}, M_{11}, M_{000}, \dots$

(ordered with respect to the lexical order)

Definition

The halting problem and the membership problem for TMs are $HP := \{M \# x \mid M \text{ halts for input } x\}$ $MP := \{M \# x \mid x \in L(M)\}$

Definition

- M_x is TM (with input alphabet {0,1}), whose code (with coding alphabet {0,1}) is x
- **2** if x is not the code (of some TM), take M_x arbitrary

Enumerating all Turing machines

 $M_{\epsilon}, M_{0}, M_{1}, M_{00}, M_{01}, M_{10}, M_{11}, M_{000}, \dots$

(ordered with respect to the lexical order)

19

Two-dimensional matrix of behaviours (loops \circlearrowright vs. halts !)
indexed by words $w \in \{0,1\}^*$ respectively Turing machines

Two-dimensional matrix of behaviours (loops 🖱 vs. halts !)

indexed by words $w \in \{0,1\}^*$ respectively Turing machines												
		ϵ	0	1	00	01	10	11	000	001	010	
	M_{ϵ}	1	\circlearrowright	\circlearrowright	ļ	ļ	Ŏ	ļ	Ò	ļ	!	
	M_0	Ö	Q	ļ	ļ	\circlearrowright	ļ	!	\bigcirc	\bigcirc	!	
	M_1	Ö	!	\bigcirc	ļ	\bigcirc	ļ	ļ	\bigcirc	Ŏ	!	
	M_{00}	!	\bigcirc	\circlearrowright	!	ļ	ļ	!	\bigcirc	\bigcirc	!	
	M_{01}	!	!	ļ	ļ	Ŏ	\bigcirc	Ò	!	!	Ŏ	
	M_{10}	!	!	\bigcirc	ļ	ļ	\circlearrowright	ļ	!	\bigcirc	!	
	M_{11}	!	!	\circlearrowright	\bigcirc	ļ	\bigcirc	1	\bigcirc	!	Ŏ	
	M ₀₀₀	!	!	ļ	ļ	\bigcirc	ļ	ļ	Q	!	Ŏ	
	M_{001}	Ö	!	ļ	ļ	ļ	\bigcirc	ļ	!	1	!	
	÷						÷					њ. П

Claim

the behaviour *cd* corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

Claim

the behaviour *cd* corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

20

Proof.

Behaviours are functions from finite bit-strings in $\{0,1\}^*$ (inputs) to $\{!, \circlearrowright\}$. Given an enumeration m_{ϵ} , m_0 , m_1 , ... of such behaviours, indexed by finite bit-strings

$$m_{\epsilon} = m_{\epsilon}(\epsilon)m_{\epsilon}(0)m_{\epsilon}(1)m_{\epsilon}(00)m_{\epsilon}(01)\dots$$

$$m_{0} = m_{0}(\epsilon)m_{0}(0)m_{0}(1)m_{0}(00)m_{0}(01)\dots$$

$$m_{1} = m_{1}(\epsilon)m_{1}(0)m_{1}(1)m_{1}(00)m_{1}(01)\dots$$

:

behaviour cd defined by

$$cd(x) = \begin{cases} \circlearrowright & \text{if } m_x(x) = !\\ ! & \text{if } m_x(x) = \circlearrowright \end{cases}$$

is a new behaviour; distinct from each m_x , namely at x: $m_x(x) = \overline{cd(x)} \neq cd(x)$

Claim

the behaviour *cd* corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

Proof.

Behaviours are functions from finite bit-strings in $\{0,1\}^*$ (inputs) to $\{!, \circlearrowright\}$. Given an enumeration m_{ϵ} , m_0 , m_1 , ... of such behaviours, indexed by finite bit-strings

$$\begin{split} m_{\epsilon} &= m_{\epsilon}(\epsilon)m_{\epsilon}(0)m_{\epsilon}(1)m_{\epsilon}(00)m_{\epsilon}(01)\dots \\ m_{0} &= m_{0}(\epsilon)m_{0}(0)m_{0}(1)m_{0}(00)m_{0}(01)\dots \\ m_{1} &= m_{1}(\epsilon)m_{1}(0)m_{1}(1)m_{1}(00)m_{1}(01)\dots \\ \vdots \end{split}$$

behaviour cd defined by

$$cd(x) = \begin{cases} \circlearrowright & \text{if } m_x(x) = \\ ! & \text{if } m_x(x) = \end{cases}$$

 \circlearrowright

is a **new** behaviour; distinct from each m_x , namely at x: $m_x(x) = \overline{cd(x)} \neq cd(x)$

Theorem

HP is not recursive, but recursively enumerable

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM *K* such that HP = L(K) were to exist 2 then we could construct a TM *CD*, based on *K*, as follows

21

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

- **1** for proof by contradiction, suppose total TM K such that HP = L(K) were to exist
- **2** then we could construct a TM **CD**, based on *K*, as follows

3 *CD* exhibits behaviour *cd*. For the earlier behaviour matrix we, e.g., have:

- M_{10} loops on 10, so K rejects M_{10} #10 and CD halts on (accepts) 10; indeed cd(10) = !
- M_{001} halts on 001, so K accepts M_{001} #001 and CD loops on 001; indeed $cd(001) = \bigcirc$

Theorem

HP is not recursive, but recursively enumerable

Proof.

22

we first show non-recursiveness

1 for proof by contradiction, suppose total TM *K* such that HP = L(K) were to exist 2 then we could construct a TM *CD*, based on *K*, as follows

CD exhibits behaviour *cd*. For the earlier behaviour matrix we, e.g., have:

- M_{10} loops on 10, so K rejects M_{10} #10 and CD halts on (accepts) 10; indeed cd(10) = !
- M_{001} halts on 001, so K accepts M_{001} #001 and CD loops on 001; indeed $cd(001) = \bigcirc$

4 Behaviour *cd* distinct from that of any TM M_x , so *CD* not a TM, so *K* not a TM.

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

- **1** for proof by contradiction, suppose total TM K such that HP = L(K) were to exist
- **2** then we could construct a TM CD, based on K, as follows

CD exhibits behaviour *cd*. For the earlier behaviour matrix we, e.g., have:

- M_{10} loops on 10, so K rejects M_{10} #10 and CD halts on (accepts) 10; indeed cd(10) = !
- M_{001} halts on 001, so K accepts M_{001} #001 and CD loops on 001; indeed $cd(001) = \bigcirc$
- I Behaviour *cd* distinct from that of any TM M_x , so *CD* not a TM, so *K* not a TM. Contradiction.

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following TM H, based on the universal TM

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM *H*, based on the universal TM

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM *H*, based on the universal TM

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM *H*, based on the universal TM

Corollary

The set \sim HP is not recursively enumerable

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM *H*, based on the universal TM

Corollary

The set \sim HP is not recursively enumerable

Proof.

Suppose \sim HP were recursively enumerable; then both HP and \sim HP would be recursively enumerable, hence HP would be recursive. Contradiction

23

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM *H*, based on the universal TM

23

Corollary

The set ~ HP *is not recursively enumerable*

Proof.

Suppose \sim HP were recursively enumerable; then both HP and \sim HP would be recursively enumerable, hence HP would be recursive. Contradiction