## Summary last week

- divide and conquer algorithms, e.g. mergesort
- have asymptotic complexities given by recurrences $T(n)=\ldots T(<n) \ldots$
- may find a closed-form solution for a recurrence by:
- self-substitution and looking for pattern; or
- guessing and verifying; or
- generating functions (not this course); or
- master theorem: $T(n)=a \cdot T\left(\frac{n}{b}\right)+f(n)$ if $n=b^{k}$ for $k>0$, otherwise $c$ :

$$
T(n) \in \begin{cases}\Theta\left(n^{\log _{b} a}\right) & \text { if } a>b^{s} \\ \Theta\left(n^{s} \log n\right) & \text { if } a=b^{s} \\ \Theta\left(n^{s}\right) & \text { if } a<b^{s}\end{cases}
$$

for $T$ increasing, $a \geqslant 1, b>1, c>0$, and $f \in \Theta\left(n^{s}\right)$ with $s \geqslant 0$.

## Discrete structures



## Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;


## Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.


## Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).


## Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).


## Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).
- ...


## Limitations of algorithms (recall from 3rd lecture)

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), .. . No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).
- ...


## Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

## Function defined by a TM (recall from 3rd lecture)

## Definition

## a TM M

- accepts $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \xrightarrow[M]{*}(t, y, n)
$$

- rejects $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \xrightarrow[M]{*}(r, y, n)
$$

- halt on input $x$, if $x$ is accepted or rejected
- does not halt on input $x$, if $x$ is neither accepted nor rejected
- is total, if $M$ halts on all inputs


## Definition

A function $f: A \rightarrow B$ is defined by a TM $M$ for every $x \in A, M$ accepts input $x$ with $f(y)$ on the tape (and does not halt or rejects on inputs $x \notin A$ ).

## Function defined by a TM (recall from 3rd lecture)

## Definition

## a TM M

- accepts $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \underset{M}{*}(t, y, n)
$$

- rejects $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \underset{M}{*}(r, y, n)
$$

- halt on input $x$, if $x$ is accepted or rejected
- does not halt on input $x$, if $x$ is neither accepted nor rejected
- is total, if $M$ halts on all inputs


## Computable functions

## Idea of computability

$f: \mathbb{N} \rightarrow \mathbb{N}$ computable if there is an effective procedure to compute $f(n)$ for input $n$

## Computable functions

## Idea of computability

$f: \mathbb{N} \rightarrow \mathbb{N}$ computable if there is an effective procedure to compute $f(n)$ for input $n$

## Definition (computability via TM)

$f: \mathbb{N} \rightarrow \mathbb{N}$ computable if it can be defined by a TM

## Examples of computable functions

## remark

computability equivalently defined via models of computation: $\mu$-recursive functions $\lambda$-calculus, register machines, term rewriting, ...

## Example

- any function programmable in some programming language square root, counting the number of 3 s , compression, etc.
- effective $\neq$ efficient
factorial, Ackermann function (complexity far worse than exponential)


## remark

computability equivalently defined via models of computation: $\mu$-recursive functions, $\lambda$-calculus, register machines, term rewriting, . .

## Examples of computable functions

## remark

computability equivalently defined via models of computation: $\mu$-recursive functions, $\lambda$-calculus, register machines, term rewriting, ...

## Example

- any function programmable in some programming language square root, counting the number of 3 s , compression, etc.
- effective $\neq$ efficient factorial, Ackermann function (complexity far worse than exponential)
unbounded search functions the least number that has property $P$ (need not exist)

Examples of computable functions

```
remark
computability equivalently defined via models of computation: \(\mu\)-recursive functions,
\(\lambda\)-calculus, register machines, term rewriting, ...
```


## Example

```
- any function programmable in some programming language square root, counting the number of 3 s , compression, etc
- effective \(\neq\) efficient
factorial, Ackermann function (complexity far worse than exponential)
- unbounded search functions
the least number that has property \(P\) (need not exist)
- functions defined by finite cases
\(f(n)=n\) if \(n\) odd, otherwise \(n^{2}\)
```


## Limits of computability

| Lemma |
| :--- |
| there exist functions that are not computable |
| Proof. |
| - any program may be encoded by a finite bit-string |

Limits of computability

## Lemma

there exist functions that are not computable (more functions than programs)

## Proof.

## Limits of computability

## Lemma

there exist functions that are not computable

## Proof.

- any program may be encoded by a finite bit-string
- $\Rightarrow$ there are countably many programs; (recall $\bigcup_{i}\{0,1\}^{i}$ is countable)


## Limits of computability

## Lemma

there exist functions that are not computable

## Proof.

- any program may be encoded by a finite bit-string
- $\Rightarrow$ there are countably many programs; (recall $\bigcup_{i}\{0,1\}^{i}$ is countable)
- there are uncountably many functions $\mathbb{N} \rightarrow \mathbb{N}$ (recall $\mathbb{N} \rightarrow\{0,1\}$ is uncountable)


## Limits of computability

## Lemma

there exist functions that are not computable

## Proof.

- any program may be encoded by a finite bit-string
- $\Rightarrow$ there are countably many programs; (recall $\bigcup_{i}\{0,1\}^{i}$ is countable)
- there are uncountably many functions $\mathbb{N} \rightarrow \mathbb{N}$ (recall $\mathbb{N} \rightarrow\{0,1\}$ is uncountable)
- $\Rightarrow$ some function $\mathbb{N} \rightarrow \mathbb{N}$ is not computable


## Theorem

concrete non-computable functions
rest of this lecture, details of the above: coding, diagonalising way

## Limits of computability

## Lemma

there exist functions that are not computable

## Proof.

- any program may be encoded by a finite bit-string
- $\Rightarrow$ there are countably many programs; (recall $\bigcup_{i}\{0,1\}^{i}$ is countable)
- there are uncountably many functions $\mathbb{N} \rightarrow \mathbb{N}$ (recall $\mathbb{N} \rightarrow\{0,1\}$ is uncountable)
- $\Rightarrow$ some function $\mathbb{N} \rightarrow \mathbb{N}$ is not computable


## Theorem

concrete non-computable functions (diagonalise away from TM behaviours)

## Recursive/recursively enumerable languages

## Definition

A language $L$ (or, more generally, a set) is

- recursively enumerable, if there exists a TM $M$ such that $L=L(M)$ i.e. $L$ is the set of strings accepted by $M$
- recursive, if there exists a total TM $M$, such that $L=L(M)$ i.e. $M$ is required to halt (accept or reject) on all strings


## Recursive/recursively enumerable languages

## Definition

A language $L$ (or, more generally, a set) is

- recursively enumerable, if there exists a TM $M$ such that $L=L(M)$
i.e. $L$ is the set of strings accepted by $M$
- recursive, if there exists a total TM $M$, such that $L=\mathrm{L}(M)$
i.e. $M$ is required to halt (accept or reject) on all strings


## Church-Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

## Recursive/recursively enumerable languages

## Definition

## A language $L$ (or, more generally, a set) is

- recursively enumerable, if there exists a TM $M$ such that $L=L(M)$
i.e. $L$ is the set of strings accepted by $M$
- recursive, if there exists a total TM $M$, such that $L=\mathrm{L}(M)$
i.e. $M$ is required to halt (accept or reject) on all strings


## Church-Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

## Computable function vs. recursive sets

Partial function $f: \mathbb{N} \rightarrow \mathbb{N}$ is computable iff $L_{f}=\{x \# f(x) \mid x \in \mathbb{N}\}$ is recursively enumerable. Total $f$ is computable iff $L_{f}$ is recursive.

## Theorem

Let $L \subseteq \Sigma^{*}$ be a recursive language over some alphabet $\Sigma$; then $\sim L$ is recursive.

## Theorem

Let $L \subseteq \Sigma^{*}$ be a recursive language over some alphabet $\Sigma$; then $\sim L$ is recursive.

## Proof.

Because $L$ is recursive, there exists a total TM $M$ such that $L=L(M)$. Let the TM $M^{\prime}$ be obtained from $M$ by exchanging its accepting and rejecting states. Because $M$ is total, so is $M^{\prime}$. Therefore, $M^{\prime}$ accepts a word iff $M$ rejects it, hence $\sim L=L\left(M^{\prime}\right)$, i.e. $\sim L$ is recursive.

## Theorem

```
Let \(L \subseteq \Sigma^{*}\) be a recursive language over some alphabet \(\Sigma\); then \(\sim L\) is recursive.
```


## Proof.

```
Because \(L\) is recursive, there exists a total TM \(M\) such that \(L=\mathrm{L}(M)\). Let the TM \(M^{\prime}\) be obtained from \(M\) by exchanging its accepting and rejecting states. Because \(M\) is total, so is \(M^{\prime}\). Therefore, \(M^{\prime}\) accepts a word iff \(M\) rejects it, hence \(\sim L=L\left(M^{\prime}\right)\), i.e. \(\sim L\) is recursive
```


## Theorem

```
Every recursive set is recursively enumerable, but not every recursively enumerable set is recursive.
```


## Theorem

Let $L \subseteq \Sigma^{*}$ be a recursive language over some alphabet $\Sigma$; then $\sim L$ is recursive.

## Proof.

Because $L$ is recursive, there exists a total TM $M$ such that $L=L(M)$. Let the TM $M^{\prime}$ be obtained from $M$ by exchanging its accepting and rejecting states. Because $M$ is total, so is $M^{\prime}$. Therefore, $M^{\prime}$ accepts a word iff $M$ rejects it, hence $\sim L=L\left(M^{\prime}\right)$, i.e. $\sim L$ is recursive.

## Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable set is recursive.

## Proof.

The first part of the theorem follows from the definitions; the second part we will show later

## Theorem

If both $L$ and $\sim L$ are recursively enumerable, then $L$ is recursive.

If both $L$ and $\sim L$ are recursively enumerable, then $L$ is recursive

## Proof.

- $\exists$ TM $M_{1}, M_{2}$ with $L=\mathrm{L}\left(M_{1}\right)$ and $\sim(L)=\mathrm{L}\left(M_{2}\right)$


## Theorem

If both $L$ and $\sim L$ are recursively enumerable, then $L$ is recursive.

## Proof.

- $\exists$ TM $M_{1}, M_{2}$ with $L=L\left(M_{1}\right)$ and $\sim(L)=L\left(M_{2}\right)$
- define TM $M^{\prime}$, such that its tape has two 'halves' (or a TM with 2-tapes):

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline b & \hat{b} & a & b & a & a & a & a & b & a & a & a \\
\hline c & c & c & d & d & d & c & \hat{c} & d & c & d & c \\
\hline
\end{array}
$$

## Theorem

If both $L$ and $\sim L$ are recursively enumerable, then $L$ is recursive.

## Proof.

- $\exists \mathrm{TM} M_{1}, M_{2}$ with $L=\mathrm{L}\left(M_{1}\right)$ and $\sim(L)=\mathrm{L}\left(M_{2}\right)$
- define TM $M^{\prime}$, such that its tape has two 'halves' (or a TM with 2-tapes):

$$
\left.\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline b & \hat{b} & a & b & a & a & a & a & b & a & a & a \\
\hline c & c & c & d & d & d & c & \hat{c} & d & c & d & c \\
\hline
\end{array}\right\} \ldots
$$

- $M_{1}$ is simulated on the upper tape and $M_{2}$ on the lower tape
- if $M_{1}$ accepts $x$, then $M^{\prime}$ accepts $x$
- if $M_{2}$ accepts $x$, then $M^{\prime}$ rejects $x$


## Theorem

If both $L$ and $\sim L$ are recursively enumerable, then $L$ is recursive

## Proof.

- $\exists \mathrm{TM} M_{1}, M_{2}$ with $L=\mathrm{L}\left(M_{1}\right)$ and $\sim(L)=\mathrm{L}\left(M_{2}\right)$
- define TM $M^{\prime}$, such that its tape has two 'halves' (or a TM with 2-tapes):

| $b$ | $\hat{b}$ | $a$ | $b$ | $a$ | $a$ | $a$ | $a$ | $b$ | $a$ | $a$ | $a$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $c$ | $c$ | $c$ | $d$ | $d$ | $d$ | $c$ | $\hat{c}$ | $d$ | $c$ | $d$ | $c$ |

- $M_{1}$ is simulated on the upper tape and $M_{2}$ on the lower tape


## Theorem

If both $L$ and $\sim L$ are recursively enumerable, then $L$ is recursive.

## Proof.

- $\exists \mathrm{TM} M_{1}, M_{2}$ with $L=\mathrm{L}\left(M_{1}\right)$ and $\sim(L)=\mathrm{L}\left(M_{2}\right)$
- define TM $M^{\prime}$, such that its tape has two 'halves' (or a TM with 2-tapes):

- $M_{1}$ is simulated on the upper tape and $M_{2}$ on the lower tape
- if $M_{1}$ accepts $x$, then $M^{\prime}$ accepts $x$
- if $M_{2}$ accepts $x$, then $M^{\prime}$ rejects $x$


## Decidable/semi-decidable properties

## Definition

Let $\Sigma$ be an alphabet. A property $P$ of words over $\Sigma$ is

- decidable if the set $\left\{x \in \Sigma^{*} \mid x\right.$ has property $\left.P\right\}$ is recursive
- semi-decidable if the set $\left\{x \in \Sigma^{*} \mid x\right.$ has property $\left.P\right\}$ is recursively enumerable


## Decidable/semi-decidable properties

## Definition

Let $\Sigma$ be an alphabet. A property $P$ of words over $\Sigma$ is

- decidable if the set $\left\{x \in \Sigma^{*} \mid x\right.$ has property $\left.P\right\}$ is recursive
- semi-decidable if the set $\left\{x \in \Sigma^{*} \mid x\right.$ has property $\left.P\right\}$ is recursively enumerable


## Example

Let $P(x):=x$ is a palindrome of even length; then $P$ is decidable

## Decidable/semi-decidable properties

## Definition

Let $\Sigma$ be an alphabet. A property $P$ of words over $\Sigma$ is

- decidable if the set $\left\{x \in \Sigma^{*} \mid x\right.$ has property $\left.P\right\}$ is recursive
- semi-decidable if the set $\left\{x \in \Sigma^{*} \mid x\right.$ has property $\left.P\right\}$ is recursively enumerable


## Example

Let $P(x):=x$ is a palindrome of even length; then $P$ is decidable

```
Example
Every decidable problem is semi-decidable
```


## Remark

## A problem $P$ is

- semi-decidable, if there exists a TM $M$ whose language is the set of words having property P;


## Remark

A problem $P$ is

- semi-decidable, if there exists a TM $M$ whose language is the set of words having property $P$;
- decidable, if there exists a total TM $M$ that accepts exactly the words having property $P$

```
Encoding TMs
TMs can be encoded by representing all necessary information as words over {0,1}:
    1 Number of states
    2 transition function
    3}\mathrm{ input and tape alphabet
    4 ...
```

```
Example
Let M = (Q, \Sigma, \Gamma,\vdash,\sqcup,\delta,s,t,r) be a TM; encoding over {0,1}
    0n}
represents Q ={0,\ldots,n-1},\Gamma={0,\ldots,m-1},\Sigma={0,\ldots,k-1},(k\leqslantm), s initial
state, }t\mathrm{ accepting state, r rejecting state, }u\mathrm{ left-end marker, v blank symbol
```


## Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0,1\}$ :
1 Number of states
2 transition function
3 input and tape alphabet
4 ...

## Encoding TMs

TMs can be encoded by representing all necessary information as words over $\{0,1\}$ :
1 Number of states
2 transition function
3 input and tape alphabet
4 ...

## Example

$$
\text { Let } M=(Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r) \text { be a TM; encoding over }\{0,1\}
$$


represents $Q=\{0, \ldots, n-1\}, \Gamma=\{0, \ldots, m-1\}, \Sigma=\{0, \ldots, k-1\},(k \leqslant m)$, s initial state, $t$ accepting state, $r$ rejecting state, $u$ left-end marker, $v$ blank symbol; the symbol 1 is used as separator in the encoding

```
Example (Continued)
consider M and encode }\delta(p,a)=(q,b,d)\mathrm{ , where }c=0\mathrm{ if }d=L\mathrm{ and }c=1\mathrm{ if }d=\textrm{R
0
```


## Definition

A TM $U$ is universal (UTM), if for input of

## Example (Continued)

consider $M$ and encode $\delta(p, a)=(q, b, d)$, where $c=0$ if $d=\mathrm{L}$ and $c=1$ if $d=\mathrm{R}$

$$
0^{p} 110^{a} 110^{a} 110^{b} 110^{c} 1
$$

Example
We encode $M^{\prime}=(\{s, p, t, r\},\{0,1\},\{0,1, \vdash, \sqcup\}, \vdash, \sqcup, \delta, s, t, r)$ by

|  | $\vdash$ | 0 | 1 | $\sqcup$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, \vdash, \mathrm{R})$ | $(s, 0, \mathrm{R})$ | $(s, 1, \mathrm{R})$ | $(p, \sqcup, \mathrm{~L})$ |
| $p$ | $(t, \vdash, \mathrm{R})$ | $(t, 1, \mathrm{~L})$ | $(p, 0, \mathrm{~L})$ | $\cdot$ |

We obtain
$\underbrace{0000}_{n=4} 1 \underbrace{0000}_{m=4} 1 \underbrace{00}_{k=2} 1 \underbrace{\epsilon}_{s} 1 \underbrace{00}_{t} 1 \underbrace{000}_{r} 1 \underbrace{00}_{\vdash} 1 \underbrace{000}_{\sqcup} 1$.
and, for example, $\delta(p, \vdash)=(t, \vdash, \mathrm{R})$ yields $010^{2} 10^{2} 10^{2} 101$

## Definition

A TM $U$ is universal (UTM), if for input of

- the code $\ulcorner M\urcorner$ of a TM $M$, and
- the code $\ulcorner x\urcorner$ of an input $x$ for $M$


## Definition

A TM $U$ is universal (UTM), if for input of

- the code $\ulcorner M\urcorner$ of a TM $M$, and
- the code $\ulcorner x\urcorner$ of an input $x$ for $M$
the TM $U$ simulates the TM $M$ on $x$


## Definition

A TM $U$ is universal (UTM), if for input of

- the code $\ulcorner M\urcorner$ of a TM $M$, and
- the code $\ulcorner x\urcorner$ of an input $x$ for $M$
the TM $U$ simulates the TM $M$ on $x$ that is

$$
\mathrm{L}(U)=\{\ulcorner M\urcorner \#\ulcorner x\urcorner \mid x \in \mathrm{~L}(M)\}
$$

## Definition

A TM $U$ is universal (UTM), if for input of

- the code $\ulcorner M\urcorner$ of a TM $M$, and
- the code $\ulcorner x\urcorner$ of an input $x$ for $M$
the TM $U$ simulates the TM $M$ on $x$ that is

$$
\mathrm{L}(U)=\{\ulcorner M\urcorner \#\ulcorner x\urcorner \mid x \in \mathrm{~L}(M)\}
$$

## UTM schematically



Simulation by a universal Turing machine

## Notation

To avoid notational clutter, we often omit the 'coding corners':

$$
\mathrm{L}(U)=\{M \# x \mid x \in \mathrm{~L}(M)\}
$$

Simulation by a universal Turing machine

## Notation

To avoid notational clutter, we often omit the 'coding corners':

$$
\mathrm{L}(U)=\{M \# x \mid x \in \mathrm{~L}(M)\}
$$

## Simulation

1 UTM $U$ checks correctness of the encodings; if incorrect, $U$ rejects

## Simulation by a universal Turing machine

## Notation

To avoid notational clutter, we often omit the 'coding corners':

$$
\mathrm{L}(U)=\{M \# x \mid x \in \mathrm{~L}(M)\}
$$

## Simulation

1 UTM $U$ checks correctness of the encodings; if incorrect, $U$ rejects
$2 U$ simulates $M$ using 3 tapes, with input $x$

- Tape 1 contains the encoding of the TM $M$
- Tape 2 contains the encoding of the input word $x$
- Tape 3 contains the simulated tape of $M$


## Lemma

Let $U$ be a UTM and $M$ an arbitrary TM. Then there exists a specialisation of $U$, called $U_{M}$, that simulates $M$ on all inputs.

## Simulation by a universal Turing machine

## Notation

To avoid notational clutter, we often omit the 'coding corners':

$$
\mathrm{L}(U)=\{M \# x \mid x \in \mathrm{~L}(M)\}
$$

## Simulation

1 UTM $U$ checks correctness of the encodings; if incorrect, $U$ rejects
$2 U$ simulates $M$ using 3 tapes, with input $x$

- Tape 1 contains the encoding of the TM $M$
- Tape 2 contains the encoding of the input word $x$
- Tape 3 contains the simulated tape of $M$

3 If $M$ accepts, then $U$ accepts; if $M$ rejects, then $U$ reject

## Lemma

Let $U$ be a UTM and $M$ an arbitrary TM. Then there exists a specialisation of $U$, called $U_{M}$, that simulates $M$ on all inputs.

## Proof.

- Consider the variation $U^{\prime}$ of $U$ such that the second tape of $U^{\prime}$ contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation $U_{M}$ is obtained from $U^{\prime}$ by fixing the code of $M$ on the second tape (hardcoding it)
- By definition, $U_{M}$ executes all steps of $M$ on the input $x$


## Lemma

Let $U$ be a UTM and $M$ an arbitrary TM. Then there exists a specialisation of $U$, called $U_{M}$, that simulates $M$ on all inputs.

## Proof.

- Consider the variation $U^{\prime}$ of $U$ such that the second tape of $U^{\prime}$ contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation $U_{M}$ is obtained from $U^{\prime}$ by fixing the code of $M$ on the second tape (hardcoding it)
- By definition, $U_{M}$ executes all steps of $M$ on the input $x$


## Lemma

Let $U$ be a UTM and $M$ an arbitrary TM. Then there exists a specialisation of $U$, called $U_{M}$, that simulates $M$ on all inputs.

## Proof.

- Consider the variation $U^{\prime}$ of $U$ such that the second tape of $U^{\prime}$ contains the encoding of the TM to be simulated, and the first tape the (decoded) input
- The desired specialisation $U_{M}$ is obtained from $U^{\prime}$ by fixing the code of $M$ on the second tape (hardcoding it)
- By definition, $U_{M}$ executes all steps of $M$ on the input $x$


## Remark

Meta-programming and macros originate with UTMs

## Definition

The halting problem and the membership problem for TMs are

$$
\begin{aligned}
& \text { HP }:=\{M \# x \mid M \text { halts for input } x\} \\
& M P:=\{M \# x \mid x \in L(M)\}
\end{aligned}
$$

Definition
The halting problem and the membership problem for TMs are

\[\)|  HP : $=\{M \# x \mid M \text { halts for input } x\}$ |
| :--- |

\]

$$
M P:=\{M \# x \mid x \in \mathrm{~L}(M)\}
$$

Definition
1 $M_{X}$ is TM (with input alphabet $\{0,1\}$ ), whose code (with coding alphabet $\{0,1\}$ ) is
$x$
2 if $x$ is not the code (of some TM), take $M_{x}$ arbitrary

2 if $x$ is not the code (of some TM), take $M_{x}$ arbitrary

## Definition

The halting problem and the membership problem for TMs are

$$
\begin{aligned}
& \mathrm{HP}:=\{M \# x \mid M \text { halts for input } x\} \\
& \mathrm{MP}:=\{M \# x \mid x \in \mathrm{~L}(M)\}
\end{aligned}
$$

```
Definition
1 1 M _ { X } \text { is TM (with input alphabet \{0,1\}), whose code (with coding alphabet \{0,1\}) is}
    x
2 if x is not the code (of some TM), take M}\mp@subsup{M}{x}{}\mathrm{ arbitrary
```


## Definition

The halting problem and the membership problem for TMs are

$$
\begin{aligned}
& \mathrm{HP}:=\{M \# x \mid M \text { halts for input } x\} \\
& \mathrm{MP}:=\{M \# x \mid x \in \mathrm{~L}(M)\}
\end{aligned}
$$

## Definition

$1 M_{X}$ is TM (with input alphabet $\{0,1\}$ ), whose code (with coding alphabet $\{0,1\}$ ) is $x$
2 if $x$ is not the code (of some TM), take $M_{x}$ arbitrary

## Enumerating all Turing machines

$$
M_{\epsilon}, M_{0}, M_{1}, M_{00}, M_{01}, M_{10}, M_{11}, M_{000}, \ldots
$$

(ordered with respect to the lexical order)

## Definition

The halting problem and the membership problem for TMs are

$$
\begin{aligned}
& \mathrm{HP}:=\{M \# x \mid M \text { halts for input } x\} \\
& \mathrm{MP}:=\{M \# x \mid x \in \mathrm{~L}(M)\}
\end{aligned}
$$

## Definition

$1 M_{x}$ is TM (with input alphabet $\{0,1\}$ ), whose code (with coding alphabet $\{0,1\}$ ) is $x$
2 if $x$ is not the code (of some TM), take $M_{x}$ arbitrary

## Enumerating all Turing machines

$$
M_{\epsilon}, M_{0}, M_{1}, M_{00}, M_{01}, M_{10}, M_{11}, M_{000}, \ldots
$$

(ordered with respect to the lexical order)

## Two-dimensional matrix of behaviours (loops vs. halts!) <br> indexed by words $w \in\{0,1\}^{*}$ respectively Turing machines

## Two-dimensional matrix of behaviours (loops vs. halts !)

indexed by words $w \in\{0,1\}^{*}$ respectively Turing machines

|  | $\epsilon$ | 0 | 1 | 00 | 01 | 10 | 11 | 000 | 001 | 010 | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $M_{\epsilon}$ | $!$ | $\circlearrowright$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $!$ | $\circlearrowright$ | $!$ | $!$ |  |
| $M_{0}$ | $\circlearrowright$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $\circlearrowright$ | $!$ |  |
| $M_{1}$ | $\circlearrowright$ | $!$ | $\circlearrowright$ | $!$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $\circlearrowright$ | $!$ |  |
| $M_{00}$ | $!$ | $\circlearrowright$ | $\circlearrowright$ | $!$ | $!$ | $!$ | $!$ | $\circlearrowright$ | $\circlearrowright$ | $!$ |  |
| $M_{01}$ | $!$ | $!$ | $!$ | $!$ | $\circlearrowright$ | $\circlearrowright$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $\ldots$ |
| $M_{10}$ | $!$ | $!$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $!$ |  |
| $M_{11}$ | $!$ | $!$ | $\circlearrowright$ | $\circlearrowright$ | $!$ | $\circlearrowright$ | $!$ | $\circlearrowright$ | $!$ | $\circlearrowright$ |  |
| $M_{000}$ | $!$ | $!$ | $!$ | $!$ | $\circlearrowright$ | $!$ | $!$ | $\circlearrowright$ | $!$ | $\circlearrowright$ |  |
| $M_{001}$ | $\circlearrowright$ | $!$ | $!$ | $!$ | $!$ | $\circlearrowright$ | $!$ | $!$ | $!$ | $!$ |  |
| $\vdots$ |  |  |  |  | $\vdots$ |  |  |  |  | $\ddots$ |  |

## Claim

the behaviour cd corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

## Claim

the behaviour cd corresponding to the complement of the behaviour at the diagonal is not the behaviour of any TM

## Proof.

Behaviours are functions from finite bit-strings in $\{0,1\}^{*}$ (inputs) to $\{!, \circlearrowright\}$.
Given an enumeration $m_{\epsilon}, m_{0}, m_{1}, \ldots$ of such behaviours, indexed by finite bit-strings

$$
\begin{aligned}
m_{\epsilon} & =m_{\epsilon}(\epsilon) m_{\epsilon}(0) m_{\epsilon}(1) m_{\epsilon}(00) m_{\epsilon}(01) \ldots \\
m_{0} & =m_{0}(\epsilon) m_{0}(0) m_{0}(1) m_{0}(00) m_{0}(01) \ldots \\
m_{1} & =m_{1}(\epsilon) m_{1}(0) m_{1}(1) m_{1}(00) m_{1}(01) \ldots
\end{aligned}
$$

behaviour cd defined by

$$
c d(x)= \begin{cases}0 & \text { if } m_{x}(x)=! \\ ! & \text { if } m_{x}(x)=0\end{cases}
$$

is a new behaviour; distinct from each $m_{x}$, namely at $x$ : $m_{x}(x)=\overline{c d(x)} \neq c d(x)$

## Claim

the behaviour cd corresponding to the complement of the behaviour at the diagonal, is not the behaviour of any TM

## Proof.

$B e h a v i o u r s$ are functions from finite bit-strings in $\{0,1\}^{*}$ (inputs) to $\{!, \circlearrowright\}$.
Given an enumeration $m_{\epsilon}, m_{0}, m_{1}, \ldots$ of such behaviours, indexed by finite bit-strings

$$
\begin{aligned}
m_{\epsilon} & =m_{\epsilon}(\epsilon) m_{\epsilon}(0) m_{\epsilon}(1) m_{\epsilon}(00) m_{\epsilon}(01) \ldots \\
m_{0} & =m_{0}(\epsilon) m_{0}(0) m_{0}(1) m_{0}(00) m_{0}(01) \ldots \\
m_{1} & =m_{1}(\epsilon) m_{1}(0) m_{1}(1) m_{1}(00) m_{1}(01) \ldots
\end{aligned}
$$

behaviour cd defined by

$$
c d(x)= \begin{cases}\circlearrowright & \text { if } m_{x}(x)=! \\ ! & \text { if } m_{x}(x)=0\end{cases}
$$

is a new behaviour; distinct from each $m_{x}$, namely at $x$ : $m_{x}(x)=\overline{c d(x)} \neq c d(x)$

## Theorem

HP is not recursive, but recursively enumerable

## Theorem

HP is not recursive, but recursively enumerable

## Proof.

## we first show non-recursiveness

1 for proof by contradiction, suppose total $\mathrm{TM} K$ such that $\mathrm{HP}=\mathrm{L}(K)$ were to exist

## Theorem

HP is not recursive, but recursively enumerable

## Proof.

we first show non-recursiveness
1 for proof by contradiction, suppose total $\mathrm{TM} K$ such that $\mathrm{HP}=\mathrm{L}(K)$ were to exist
2 then we could construct a TM CD, based on $K$, as follows


## Theorem

HP is not recursive, but recursively enumerable

## Proof.

we first show non-recursiveness
1 for proof by contradiction, suppose total TM $K$ such that HP $=\mathrm{L}(K)$ were to exist
2 then we could construct a TM CD, based on $K$, as follows

$3 C D$ exhibits behaviour $c d$. For the earlier behaviour matrix we, e.g., have:

- $M_{10}$ loops on 10 , so $K$ rejects $M_{10} \# 10$ and $C D$ halts on (accepts) 10 ; indeed $c d(10)=$ !
- $M_{001}$ halts on 001, so K accepts $M_{001} \# 001$ and $C D$ loops on 001 ; indeed $c d(001)=\circlearrowright$


## Theorem

HP is not recursive, but recursively enumerable

## Proof.

we first show non-recursiveness
1 for proof by contradiction, suppose total TM $K$ such that $\mathrm{HP}=\mathrm{L}(K)$ were to exist
2 then we could construct a TM CD, based on $K$, as follows

| $x$ | $\begin{aligned} & C D \\ & M_{x} \# x \end{aligned}$ | $K_{x}$ | $M_{X}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

$3 C D$ exhibits behaviour $c d$. For the earlier behaviour matrix we, e.g., have:

- $M_{10}$ loops on 10 , so $K$ rejects $M_{10} \# 10$ and $C D$ halts on (accepts) 10 ; indeed $c d(10)=$
- $M_{001}$ halts on 001, so $K$ accepts $M_{001} \# 001$ and $C D$ loops on 001; indeed $c d(001)=\circlearrowright$

4 Behaviour cd distinct from that of any TM $M_{x}$, so $C D$ not a TM, so $K$ not a TM.
Contradiction.

## Theorem

HP is not recursive, but recursively enumerable

## Proof.

we first show non-recursiveness
1 for proof by contradiction, suppose total TM $K$ such that $\mathrm{HP}=\mathrm{L}(K)$ were to exist
2 then we could construct a TM CD, based on $K$, as follows

$3 C D$ exhibits behaviour $c d$. For the earlier behaviour matrix we, e.g., have:

- $M_{10}$ loops on 10 , so $K$ rejects $M_{10} \# 10$ and $C D$ halts on (accepts) 10 ; indeed $c d(10)=$ !
- $M_{001}$ halts on 001, so $K$ accepts $M_{001} \# 001$ and $C D$ loops on 001; indeed $c d(001)=\circlearrowright$

4 Behaviour cd distinct from that of any TM $M_{x}$, so $C D$ not a TM, so $K$ not a TM.

## Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following TM $H$, based on the universal TM


## Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM


## Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM


## Corollary

The set $\sim \mathrm{HP}$ is not recursively enumerable

## Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM


## Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following (not necessarily total) TM H, based on the universal TM


## Corollary

The set $\sim \mathrm{HP}$ is not recursively enumerable

## Proof.

Suppose $\sim$ HP were recursively enumerable; then both HP and $\sim H P$ would be
recursively enumerable, hence HP would be recursive. Contradiction

## Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following ( not necessarily total) TM H, based on the universal TM


## Corollary

The set $\sim$ HP is not recursively enumerable

## Proof.

Suppose $\sim$ HP were recursively enumerable; then both HP and $\sim$ HP would be recursively enumerable, hence HP would be recursive. Contradiction

