
Summary last week

• divide and conquer algorithms, e.g. mergesort

• have asymptotic complexities given by recurrences T(n) = . . . T(< n) . . .

• may find a closed-form solution for a recurrence by:

• self-substitution and looking for pattern; or

• guessing and verifying; or

• generating functions (not this course); or

• master theorem: T(n) = a · T(nb) + f(n) if n = bk for k > 0, otherwise c:

T(n) ∈


Θ(nlogb a) if a > bs

Θ(ns log n) if a = bs

Θ(ns) if a < bs

for T increasing, a > 1, b > 1, c > 0, and f ∈ Θ(ns) with s > 0.
1

Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

2

Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders

3

Limitations of algorithms (recall from 3rd lecture)

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

4

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem


Limitations of algorithms (recall from 3rd lecture)

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

4

Limitations of algorithms (recall from 3rd lecture)

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

4

Limitations of algorithms (recall from 3rd lecture)

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

4

Limitations of algorithms (recall from 3rd lecture)

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

4

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem
https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem


Limitations of algorithms (recall from 3rd lecture)

• There are more functions f : N → N than there are algorithms (programs, TMs);
so some functions cannot be represented by algorithms;

• No algorithms for checking interesting properties of programs (TMs) themselves;
termination (halting problem), reachability (unreachable code), . . . No interesting
property of programs can be programmed.

• No algorithm for checking whether a formula in first-order logic is universally valid
(Entscheidungsproblem).

• No algorithm for checking whether Diophantine equations have a solution
(Hilbert’s 10th problem).

• . . .

Remark

These limitations will be addressed in the last few weeks of course (i.e. now)

4

Function defined by a TM (recall from 3rd lecture)

Definition

a TM M

• accepts x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(t, y,n)

• rejects x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(r, y,n)

• halt on input x, if x is accepted or rejected

• does not halt on input x, if x is neither accepted nor rejected

• is total, if M halts on all inputs

Definition

A function f : A→ B is defined by a TM M for every x ∈ A, M accepts input x with f(y)
on the tape (and does not halt or rejects on inputs x 6∈ A).

5

Function defined by a TM (recall from 3rd lecture)

Definition

a TM M

• accepts x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(t, y,n)

• rejects x ∈ Σ∗, if ∃ y, n:

(s,`xt∞,0)
∗−→
M

(r, y,n)

• halt on input x, if x is accepted or rejected

• does not halt on input x, if x is neither accepted nor rejected

• is total, if M halts on all inputs

Definition

A function f : A→ B is defined by a TM M for every x ∈ A, M accepts input x with f(y)
on the tape (and does not halt or rejects on inputs x 6∈ A).

5

Computable functions

Idea of computability

f : N → N computable if there is an effective procedure to compute f(n) for input n

Definition (computability via TM)

f : N → N computable if it can be defined by a TM

6

https://en.wikipedia.org/wiki/Halting_problem
https://en.wikipedia.org/wiki/Unreachable_code
https://en.wikipedia.org/wiki/Entscheidungsproblem
https://en.wikipedia.org/wiki/Hilbert's_tenth_problem


Computable functions

Idea of computability

f : N → N computable if there is an effective procedure to compute f(n) for input n

Definition (computability via TM)

f : N → N computable if it can be defined by a TM

6

Examples of computable functions

remark

computability equivalently defined via models of computation: µ-recursive functions,
λ-calculus, register machines, term rewriting, . . .

Example

• any function programmable in some programming language
square root, counting the number of 3s, compression, etc.

• effective 6= efficient
factorial, Ackermann function (complexity far worse than exponential)

• unbounded search functions
the least number that has property P (need not exist)

• functions defined by finite cases
f(n) = n if n odd, otherwise n2

7

Examples of computable functions

remark

computability equivalently defined via models of computation: µ-recursive functions,
λ-calculus, register machines, term rewriting, . . .

Example

• any function programmable in some programming language
square root, counting the number of 3s, compression, etc.

• effective 6= efficient
factorial, Ackermann function (complexity far worse than exponential)

• unbounded search functions
the least number that has property P (need not exist)

• functions defined by finite cases
f(n) = n if n odd, otherwise n2

7

Examples of computable functions

remark

computability equivalently defined via models of computation: µ-recursive functions,
λ-calculus, register machines, term rewriting, . . .

Example

• any function programmable in some programming language
square root, counting the number of 3s, compression, etc.

• effective 6= efficient
factorial, Ackermann function (complexity far worse than exponential)

• unbounded search functions
the least number that has property P (need not exist)

• functions defined by finite cases
f(n) = n if n odd, otherwise n2

7



Examples of computable functions

remark

computability equivalently defined via models of computation: µ-recursive functions,
λ-calculus, register machines, term rewriting, . . .

Example

• any function programmable in some programming language
square root, counting the number of 3s, compression, etc.

• effective 6= efficient
factorial, Ackermann function (complexity far worse than exponential)

• unbounded search functions
the least number that has property P (need not exist)

• functions defined by finite cases
f(n) = n if n odd, otherwise n2

7

Limits of computability

Lemma

there exist functions that are not computable (more functions than programs)

Proof.

• any program may be encoded by a finite bit-string

• ⇒ there are countably many programs; (recall
⋃

i{0,1}i is countable)

• there are uncountably many functions N → N (recall N → {0,1} is uncountable)

• ⇒ some function N → N is not computable

Theorem

concrete non-computable functions

rest of this lecture, details of the above: coding, diagonalising way

8

Limits of computability

Lemma

there exist functions that are not computable

Proof.

• any program may be encoded by a finite bit-string

• ⇒ there are countably many programs; (recall
⋃

i{0,1}i is countable)

• there are uncountably many functions N → N (recall N → {0,1} is uncountable)

• ⇒ some function N → N is not computable

Theorem

concrete non-computable functions

rest of this lecture, details of the above: coding, diagonalising way

8

Limits of computability

Lemma

there exist functions that are not computable

Proof.

• any program may be encoded by a finite bit-string

• ⇒ there are countably many programs; (recall
⋃

i{0,1}i is countable)

• there are uncountably many functions N → N (recall N → {0,1} is uncountable)

• ⇒ some function N → N is not computable

Theorem

concrete non-computable functions

rest of this lecture, details of the above: coding, diagonalising way

8



Limits of computability

Lemma

there exist functions that are not computable

Proof.

• any program may be encoded by a finite bit-string

• ⇒ there are countably many programs; (recall
⋃

i{0,1}i is countable)

• there are uncountably many functions N → N (recall N → {0,1} is uncountable)

• ⇒ some function N → N is not computable

Theorem

concrete non-computable functions

rest of this lecture, details of the above: coding, diagonalising way

8

Limits of computability

Lemma

there exist functions that are not computable

Proof.

• any program may be encoded by a finite bit-string

• ⇒ there are countably many programs; (recall
⋃

i{0,1}i is countable)

• there are uncountably many functions N → N (recall N → {0,1} is uncountable)

• ⇒ some function N → N is not computable

Theorem

concrete non-computable functions (diagonalise away from TM behaviours)

rest of this lecture, details of the above: coding, diagonalising way

8

Limits of computability

Lemma

there exist functions that are not computable

Proof.

• any program may be encoded by a finite bit-string

• ⇒ there are countably many programs; (recall
⋃

i{0,1}i is countable)

• there are uncountably many functions N → N (recall N → {0,1} is uncountable)

• ⇒ some function N → N is not computable

Theorem

concrete non-computable functions

rest of this lecture, details of the above: coding, diagonalising way
8

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

• recursively enumerable, if there exists a TM M such that L = L(M)
i.e. L is the set of strings accepted by M

• recursive, if there exists a total TM M, such that L = L(M)
i.e. M is required to halt (accept or reject) on all strings

Church–Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

Computable function vs. recursive sets

Partial function f : N → N is computable iff Lf = {x#f(x) | x ∈ N } is recursively
enumerable. Total f is computable iff Lf is recursive.

9



Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

• recursively enumerable, if there exists a TM M such that L = L(M)
i.e. L is the set of strings accepted by M

• recursive, if there exists a total TM M, such that L = L(M)
i.e. M is required to halt (accept or reject) on all strings

Church–Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

Computable function vs. recursive sets

Partial function f : N → N is computable iff Lf = {x#f(x) | x ∈ N } is recursively
enumerable. Total f is computable iff Lf is recursive.

9

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

• recursively enumerable, if there exists a TM M such that L = L(M)
i.e. L is the set of strings accepted by M

• recursive, if there exists a total TM M, such that L = L(M)
i.e. M is required to halt (accept or reject) on all strings

Church–Turing-Thesis

Every problem that is algorithmically solvable is solvable by a Turing machine

Computable function vs. recursive sets

Partial function f : N → N is computable iff Lf = {x#f(x) | x ∈ N } is recursively
enumerable. Total f is computable iff Lf is recursive.

9

Theorem

Let L ⊆ Σ∗ be a recursive language over some alphabet Σ; then ∼L is recursive.

Proof.

Because L is recursive, there exists a total TM M such that L = L(M). Let the TM M′ be
obtained from M by exchanging its accepting and rejecting states. Because M is total,
so is M′. Therefore, M′ accepts a word iff M rejects it, hence ∼L = L(M′), i.e. ∼L is
recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable
set is recursive.

Proof.

The first part of the theorem follows from the definitions; the second part we will show
later

10

Theorem

Let L ⊆ Σ∗ be a recursive language over some alphabet Σ; then ∼L is recursive.

Proof.

Because L is recursive, there exists a total TM M such that L = L(M). Let the TM M′ be
obtained from M by exchanging its accepting and rejecting states. Because M is total,
so is M′. Therefore, M′ accepts a word iff M rejects it, hence ∼L = L(M′), i.e. ∼L is
recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable
set is recursive.

Proof.

The first part of the theorem follows from the definitions; the second part we will show
later

10



Theorem

Let L ⊆ Σ∗ be a recursive language over some alphabet Σ; then ∼L is recursive.

Proof.

Because L is recursive, there exists a total TM M such that L = L(M). Let the TM M′ be
obtained from M by exchanging its accepting and rejecting states. Because M is total,
so is M′. Therefore, M′ accepts a word iff M rejects it, hence ∼L = L(M′), i.e. ∼L is
recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable
set is recursive.

Proof.

The first part of the theorem follows from the definitions; the second part we will show
later

10

Theorem

Let L ⊆ Σ∗ be a recursive language over some alphabet Σ; then ∼L is recursive.

Proof.

Because L is recursive, there exists a total TM M such that L = L(M). Let the TM M′ be
obtained from M by exchanging its accepting and rejecting states. Because M is total,
so is M′. Therefore, M′ accepts a word iff M rejects it, hence ∼L = L(M′), i.e. ∼L is
recursive.

Theorem

Every recursive set is recursively enumerable, but not every recursively enumerable
set is recursive.

Proof.

The first part of the theorem follows from the definitions; the second part we will show
later

10

Theorem

If both L and ∼L are recursively enumerable, then L is recursive.

Proof.

• ∃ TM M1, M2 with L = L(M1) and ∼(L) = L(M2)

• define TM M′, such that its tape has two ‘halves’ (or a TM with 2-tapes):

· · ·b b̂ a b a a a a b a a a
c c c d d d c ĉ d c d c

• M1 is simulated on the upper tape and M2 on the lower tape

• if M1 accepts x, then M′ accepts x

• if M2 accepts x, then M′ rejects x

11

Theorem

If both L and ∼L are recursively enumerable, then L is recursive.

Proof.

• ∃ TM M1, M2 with L = L(M1) and ∼(L) = L(M2)

• define TM M′, such that its tape has two ‘halves’ (or a TM with 2-tapes):

· · ·b b̂ a b a a a a b a a a
c c c d d d c ĉ d c d c

• M1 is simulated on the upper tape and M2 on the lower tape

• if M1 accepts x, then M′ accepts x

• if M2 accepts x, then M′ rejects x

11



Theorem

If both L and ∼L are recursively enumerable, then L is recursive.

Proof.

• ∃ TM M1, M2 with L = L(M1) and ∼(L) = L(M2)

• define TM M′, such that its tape has two ‘halves’ (or a TM with 2-tapes):

· · ·b b̂ a b a a a a b a a a
c c c d d d c ĉ d c d c

• M1 is simulated on the upper tape and M2 on the lower tape

• if M1 accepts x, then M′ accepts x

• if M2 accepts x, then M′ rejects x

11

Theorem

If both L and ∼L are recursively enumerable, then L is recursive.

Proof.

• ∃ TM M1, M2 with L = L(M1) and ∼(L) = L(M2)

• define TM M′, such that its tape has two ‘halves’ (or a TM with 2-tapes):

· · ·b b̂ a b a a a a b a a a
c c c d d d c ĉ d c d c

• M1 is simulated on the upper tape and M2 on the lower tape

• if M1 accepts x, then M′ accepts x

• if M2 accepts x, then M′ rejects x

11

Theorem

If both L and ∼L are recursively enumerable, then L is recursive.

Proof.

• ∃ TM M1, M2 with L = L(M1) and ∼(L) = L(M2)

• define TM M′, such that its tape has two ‘halves’ (or a TM with 2-tapes):

· · ·b b̂ a b a a a a b a a a
c c c d d d c ĉ d c d c

• M1 is simulated on the upper tape and M2 on the lower tape

• if M1 accepts x, then M′ accepts x

• if M2 accepts x, then M′ rejects x

11

Theorem

If both L and ∼L are recursively enumerable, then L is recursive.

Proof.

• ∃ TM M1, M2 with L = L(M1) and ∼(L) = L(M2)

• define TM M′, such that its tape has two ‘halves’ (or a TM with 2-tapes):

· · ·b b̂ a b a a a a b a a a
c c c d d d c ĉ d c d c

• M1 is simulated on the upper tape and M2 on the lower tape

• if M1 accepts x, then M′ accepts x

• if M2 accepts x, then M′ rejects x

11



Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property P of words over Σ is

• decidable if the set {x ∈ Σ∗ | x has property P} is recursive

• semi-decidable if the set {x ∈ Σ∗ | x has property P} is recursively enumerable

Example

Let P(x) := x is a palindrome of even length; then P is decidable

Example

Every decidable problem is semi-decidable

12

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property P of words over Σ is

• decidable if the set {x ∈ Σ∗ | x has property P} is recursive

• semi-decidable if the set {x ∈ Σ∗ | x has property P} is recursively enumerable

Example

Let P(x) := x is a palindrome of even length; then P is decidable

Example

Every decidable problem is semi-decidable

12

Decidable/semi-decidable properties

Definition

Let Σ be an alphabet. A property P of words over Σ is

• decidable if the set {x ∈ Σ∗ | x has property P} is recursive

• semi-decidable if the set {x ∈ Σ∗ | x has property P} is recursively enumerable

Example

Let P(x) := x is a palindrome of even length; then P is decidable

Example

Every decidable problem is semi-decidable

12

Remark

A problem P is

• semi-decidable, if there exists a TM M whose language is the set of words having
property P;

• decidable, if there exists a total TM M that accepts exactly the words having
property P

13



Remark

A problem P is

• semi-decidable, if there exists a TM M whose language is the set of words having
property P;

• decidable, if there exists a total TM M that accepts exactly the words having
property P

13

Encoding TMs

TMs can be encoded by representing all necessary information as words over {0,1}:
1 Number of states

2 transition function

3 input and tape alphabet

4 . . .

Example

Let M = (Q,Σ, Γ,`,t, δ, s, t, r) be a TM; encoding over {0,1}

0n 1 0m 1 0k 1 0s 1 0t 1 0r 1 0u 1 0v 1 · · ·

represents Q = {0, . . . ,n− 1}, Γ = {0, . . . ,m− 1}, Σ = {0, . . . , k − 1}, (k 6 m), s initial
state, t accepting state, r rejecting state, u left-end marker, v blank symbol; the
symbol 1 is used as separator in the encoding

14

Encoding TMs

TMs can be encoded by representing all necessary information as words over {0,1}:
1 Number of states

2 transition function

3 input and tape alphabet

4 . . .

Example

Let M = (Q,Σ, Γ,`,t, δ, s, t, r) be a TM; encoding over {0,1}

0n 1 0m 1 0k 1 0s 1 0t 1 0r 1 0u 1 0v 1 · · ·

represents Q = {0, . . . ,n− 1}, Γ = {0, . . . ,m− 1}, Σ = {0, . . . , k − 1}, (k 6 m), s initial
state, t accepting state, r rejecting state, u left-end marker, v blank symbol

; the
symbol 1 is used as separator in the encoding

14

Encoding TMs

TMs can be encoded by representing all necessary information as words over {0,1}:
1 Number of states

2 transition function

3 input and tape alphabet

4 . . .

Example

Let M = (Q,Σ, Γ,`,t, δ, s, t, r) be a TM; encoding over {0,1}

0n 1 0m 1 0k 1 0s 1 0t 1 0r 1 0u 1 0v 1 · · ·

represents Q = {0, . . . ,n− 1}, Γ = {0, . . . ,m− 1}, Σ = {0, . . . , k − 1}, (k 6 m), s initial
state, t accepting state, r rejecting state, u left-end marker, v blank symbol; the
symbol 1 is used as separator in the encoding

14



Example (Continued)

consider M and encode δ(p, a) = (q,b,d), where c = 0 if d = L and c = 1 if d = R

0p 1 0a 1 0q 1 0b 1 0c 1

Example

We encode M′ = ({s,p, t, r}, {0,1}, {0,1,`,t},`,t, δ, s, t, r) by

` 0 1 t
s (s,`,R) (s,0,R) (s,1,R) (p,t, L)

p (t,`,R) (t,1, L) (p,0, L) ·

We obtain

0000︸ ︷︷ ︸
n=4

1 0000︸ ︷︷ ︸
m=4

1 00︸︷︷︸
k=2

1 ε︸︷︷︸
s

1 00︸︷︷︸
t

1 000︸︷︷︸
r

1 00︸︷︷︸
`

1 000︸︷︷︸
t

1 · · ·

and, for example, δ(p,`) = (t,`,R) yields 0102102102101

15

Example (Continued)

consider M and encode δ(p, a) = (q,b,d), where c = 0 if d = L and c = 1 if d = R

0p 1 0a 1 0q 1 0b 1 0c 1

Example

We encode M′ = ({s,p, t, r}, {0,1}, {0,1,`,t},`,t, δ, s, t, r) by

` 0 1 t
s (s,`,R) (s,0,R) (s,1,R) (p,t, L)

p (t,`,R) (t,1, L) (p,0, L) ·

We obtain

0000︸ ︷︷ ︸
n=4

1 0000︸ ︷︷ ︸
m=4

1 00︸︷︷︸
k=2

1 ε︸︷︷︸
s

1 00︸︷︷︸
t

1 000︸︷︷︸
r

1 00︸︷︷︸
`

1 000︸︷︷︸
t

1 · · ·

and, for example, δ(p,`) = (t,`,R) yields 0102102102101

15

Definition

A TM U is universal (UTM), if for input of

• the code pMq of a TM M, and

• the code pxq of an input x for M

the TM U simulates the TM M on x that is

L(U) = {pMq#pxq | x ∈ L(M)}

UTM schematically

pMq#pxq pxq

U

M
t
r
�

t
r
�

16

Definition

A TM U is universal (UTM), if for input of
• the code pMq of a TM M, and

• the code pxq of an input x for M

the TM U simulates the TM M on x that is

L(U) = {pMq#pxq | x ∈ L(M)}

UTM schematically

pMq#pxq pxq

U

M
t
r
�

t
r
�

16



Definition

A TM U is universal (UTM), if for input of
• the code pMq of a TM M, and

• the code pxq of an input x for M

the TM U simulates the TM M on x

that is

L(U) = {pMq#pxq | x ∈ L(M)}

UTM schematically

pMq#pxq pxq

U

M
t
r
�

t
r
�

16

Definition

A TM U is universal (UTM), if for input of
• the code pMq of a TM M, and

• the code pxq of an input x for M

the TM U simulates the TM M on x that is

L(U) = {pMq#pxq | x ∈ L(M)}

UTM schematically

pMq#pxq pxq

U

M
t
r
�

t
r
�

16

Definition

A TM U is universal (UTM), if for input of
• the code pMq of a TM M, and

• the code pxq of an input x for M

the TM U simulates the TM M on x that is

L(U) = {pMq#pxq | x ∈ L(M)}

UTM schematically

pMq#pxq pxq

U

M
t
r
�

t
r
�

16

Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the ‘coding corners’:

L(U) = {M#x | x ∈ L(M)}

Simulation

1 UTM U checks correctness of the encodings; if incorrect, U rejects

2 U simulates M using 3 tapes, with input x
• Tape 1 contains the encoding of the TM M

• Tape 2 contains the encoding of the input word x

• Tape 3 contains the simulated tape of M

3 If M accepts, then U accepts; if M rejects, then U reject

17



Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the ‘coding corners’:

L(U) = {M#x | x ∈ L(M)}

Simulation

1 UTM U checks correctness of the encodings; if incorrect, U rejects

2 U simulates M using 3 tapes, with input x
• Tape 1 contains the encoding of the TM M

• Tape 2 contains the encoding of the input word x

• Tape 3 contains the simulated tape of M

3 If M accepts, then U accepts; if M rejects, then U reject

17

Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the ‘coding corners’:

L(U) = {M#x | x ∈ L(M)}

Simulation

1 UTM U checks correctness of the encodings; if incorrect, U rejects

2 U simulates M using 3 tapes, with input x
• Tape 1 contains the encoding of the TM M

• Tape 2 contains the encoding of the input word x

• Tape 3 contains the simulated tape of M

3 If M accepts, then U accepts; if M rejects, then U reject

17

Simulation by a universal Turing machine

Notation

To avoid notational clutter, we often omit the ‘coding corners’:

L(U) = {M#x | x ∈ L(M)}

Simulation

1 UTM U checks correctness of the encodings; if incorrect, U rejects

2 U simulates M using 3 tapes, with input x
• Tape 1 contains the encoding of the TM M

• Tape 2 contains the encoding of the input word x

• Tape 3 contains the simulated tape of M

3 If M accepts, then U accepts; if M rejects, then U reject

17

Lemma

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called
UM, that simulates M on all inputs.

Proof.

• Consider the variation U′ of U such that the second tape of U′ contains the
encoding of the TM to be simulated, and the first tape the (decoded) input

• The desired specialisation UM is obtained from U′ by fixing the code of M on the
second tape (hardcoding it)

• By definition, UM executes all steps of M on the input x

Remark

Meta-programming and macros originate with UTMs

18

https://www.tiobe.com/tiobe-index/


Lemma

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called
UM, that simulates M on all inputs.

Proof.

• Consider the variation U′ of U such that the second tape of U′ contains the
encoding of the TM to be simulated, and the first tape the (decoded) input

• The desired specialisation UM is obtained from U′ by fixing the code of M on the
second tape (hardcoding it)

• By definition, UM executes all steps of M on the input x

Remark

Meta-programming and macros originate with UTMs

18

Lemma

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called
UM, that simulates M on all inputs.

Proof.

• Consider the variation U′ of U such that the second tape of U′ contains the
encoding of the TM to be simulated, and the first tape the (decoded) input

• The desired specialisation UM is obtained from U′ by fixing the code of M on the
second tape (hardcoding it)

• By definition, UM executes all steps of M on the input x

Remark

Meta-programming and macros originate with UTMs

18

Lemma

Let U be a UTM and M an arbitrary TM. Then there exists a specialisation of U, called
UM, that simulates M on all inputs.

Proof.

• Consider the variation U′ of U such that the second tape of U′ contains the
encoding of the TM to be simulated, and the first tape the (decoded) input

• The desired specialisation UM is obtained from U′ by fixing the code of M on the
second tape (hardcoding it)

• By definition, UM executes all steps of M on the input x

Remark

Meta-programming and macros originate with UTMs

18

Definition

The halting problem and the membership problem for TMs are

HP := {M#x | M halts for input x}
MP := {M#x | x ∈ L(M)}

Definition

1 Mx is TM (with input alphabet {0,1}), whose code (with coding alphabet {0,1}) is
x

2 if x is not the code (of some TM), take Mx arbitrary

Enumerating all Turing machines

Mε,M0,M1,M00,M01,M10,M11,M000, . . .

(ordered with respect to the lexical order)

19

https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/


Definition

The halting problem and the membership problem for TMs are

HP := {M#x | M halts for input x}
MP := {M#x | x ∈ L(M)}

Definition

1 Mx is TM (with input alphabet {0,1}), whose code (with coding alphabet {0,1}) is
x

2 if x is not the code (of some TM), take Mx arbitrary

Enumerating all Turing machines

Mε,M0,M1,M00,M01,M10,M11,M000, . . .

(ordered with respect to the lexical order)

19

Definition

The halting problem and the membership problem for TMs are

HP := {M#x | M halts for input x}
MP := {M#x | x ∈ L(M)}

Definition

1 Mx is TM (with input alphabet {0,1}), whose code (with coding alphabet {0,1}) is
x

2 if x is not the code (of some TM), take Mx arbitrary

Enumerating all Turing machines

Mε,M0,M1,M00,M01,M10,M11,M000, . . .

(ordered with respect to the lexical order)

19

Definition

The halting problem and the membership problem for TMs are

HP := {M#x | M halts for input x}
MP := {M#x | x ∈ L(M)}

Definition

1 Mx is TM (with input alphabet {0,1}), whose code (with coding alphabet {0,1}) is
x

2 if x is not the code (of some TM), take Mx arbitrary

Enumerating all Turing machines

Mε,M0,M1,M00,M01,M10,M11,M000, . . .

(ordered with respect to the lexical order)

19

Definition

The halting problem and the membership problem for TMs are

HP := {M#x | M halts for input x}
MP := {M#x | x ∈ L(M)}

Definition

1 Mx is TM (with input alphabet {0,1}), whose code (with coding alphabet {0,1}) is
x

2 if x is not the code (of some TM), take Mx arbitrary

Enumerating all Turing machines

Mε,M0,M1,M00,M01,M10,M11,M000, . . .

(ordered with respect to the lexical order)

19



Two-dimensional matrix of behaviours (loops � vs. halts !)

indexed by words w ∈ {0,1}∗ respectively Turing machines

ε 0 1 00 01 10 11 000 001 010 . . .

Mε ! � � ! ! � ! � ! !

M0 � � ! ! � ! ! � � !

M1 � ! � ! � ! ! � � !

M00 ! � � ! ! ! ! � � !

M01 ! ! ! ! � � � ! ! � · · ·
M10 ! ! � ! ! � ! ! � !

M11 ! ! � � ! � ! � ! �

M000 ! ! ! ! � ! ! � ! �

M001 � ! ! ! ! � ! ! ! !
...

...
. . .

20

Two-dimensional matrix of behaviours (loops � vs. halts !)

indexed by words w ∈ {0,1}∗ respectively Turing machines

ε 0 1 00 01 10 11 000 001 010 . . .

Mε ! � � ! ! � ! � ! !

M0 � � ! ! � ! ! � � !

M1 � ! � ! � ! ! � � !

M00 ! � � ! ! ! ! � � !

M01 ! ! ! ! � � � ! ! � · · ·
M10 ! ! � ! ! � ! ! � !

M11 ! ! � � ! � ! � ! �

M000 ! ! ! ! � ! ! � ! �

M001 � ! ! ! ! � ! ! ! !
...

...
. . .

20

Claim

the behaviour cd corresponding to the complement of the behaviour at the diagonal,
is not the behaviour of any TM

Proof.

Behaviours are functions from finite bit-strings in {0,1}∗ (inputs) to {!,�}.
Given an enumeration mε, m0, m1, . . . of such behaviours, indexed by finite bit-strings

mε = mε(ε)mε(0)mε(1)mε(00)mε(01) . . .

m0 = m0(ε)m0(0)m0(1)m0(00)m0(01) . . .

m1 = m1(ε)m1(0)m1(1)m1(00)m1(01) . . .
...

behaviour cd defined by

cd(x) =

{
� if mx(x) = !

! if mx(x) = �

is a new behaviour; distinct from each mx, namely at x: mx(x) = cd(x) 6= cd(x)

21

Claim

the behaviour cd corresponding to the complement of the behaviour at the diagonal,
is not the behaviour of any TM

Proof.

Behaviours are functions from finite bit-strings in {0,1}∗ (inputs) to {!,�}.
Given an enumeration mε, m0, m1, . . . of such behaviours, indexed by finite bit-strings

mε = mε(ε)mε(0)mε(1)mε(00)mε(01) . . .

m0 = m0(ε)m0(0)m0(1)m0(00)m0(01) . . .

m1 = m1(ε)m1(0)m1(1)m1(00)m1(01) . . .
...

behaviour cd defined by

cd(x) =

{
� if mx(x) = !

! if mx(x) = �

is a new behaviour; distinct from each mx, namely at x: mx(x) = cd(x) 6= cd(x) 21



Claim

the behaviour cd corresponding to the complement of the behaviour at the diagonal,
is not the behaviour of any TM

Proof.

Behaviours are functions from finite bit-strings in {0,1}∗ (inputs) to {!,�}.
Given an enumeration mε, m0, m1, . . . of such behaviours, indexed by finite bit-strings

mε = mε(ε)mε(0)mε(1)mε(00)mε(01) . . .

m0 = m0(ε)m0(0)m0(1)m0(00)m0(01) . . .

m1 = m1(ε)m1(0)m1(1)m1(00)m1(01) . . .
...

behaviour cd defined by

cd(x) =

{
� if mx(x) = !

! if mx(x) = �

is a new behaviour; distinct from each mx, namely at x: mx(x) = cd(x) 6= cd(x) 21

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

2 then we could construct a TM CD, based on K, as follows

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
• M10 loops on 10, so K rejects M10#10 and CD halts on (accepts) 10; indeed cd(10) = !
• M001 halts on 001, so K accepts M001#001 and CD loops on 001; indeed cd(001) = �

4 Behaviour cd distinct from that of any TM Mx, so CD not a TM, so K not a TM.
Contradiction.

22

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

2 then we could construct a TM CD, based on K, as follows

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
• M10 loops on 10, so K rejects M10#10 and CD halts on (accepts) 10; indeed cd(10) = !
• M001 halts on 001, so K accepts M001#001 and CD loops on 001; indeed cd(001) = �

4 Behaviour cd distinct from that of any TM Mx, so CD not a TM, so K not a TM.

Contradiction.

22

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

2 then we could construct a TM CD, based on K, as follows

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
• M10 loops on 10, so K rejects M10#10 and CD halts on (accepts) 10; indeed cd(10) = !
• M001 halts on 001, so K accepts M001#001 and CD loops on 001; indeed cd(001) = �

4 Behaviour cd distinct from that of any TM Mx, so CD not a TM, so K not a TM.

Contradiction.

22



Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

2 then we could construct a TM CD, based on K, as follows

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
• M10 loops on 10, so K rejects M10#10 and CD halts on (accepts) 10; indeed cd(10) = !
• M001 halts on 001, so K accepts M001#001 and CD loops on 001; indeed cd(001) = �

4 Behaviour cd distinct from that of any TM Mx, so CD not a TM, so K not a TM.

Contradiction.

22

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

2 then we could construct a TM CD, based on K, as follows

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
• M10 loops on 10, so K rejects M10#10 and CD halts on (accepts) 10; indeed cd(10) = !
• M001 halts on 001, so K accepts M001#001 and CD loops on 001; indeed cd(001) = �

4 Behaviour cd distinct from that of any TM Mx, so CD not a TM, so K not a TM.

Contradiction.

22

Theorem

HP is not recursive, but recursively enumerable

Proof.

we first show non-recursiveness

1 for proof by contradiction, suppose total TM K such that HP = L(K) were to exist

2 then we could construct a TM CD, based on K, as follows

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

3 CD exhibits behaviour cd. For the earlier behaviour matrix we, e.g., have:
• M10 loops on 10, so K rejects M10#10 and CD halts on (accepts) 10; indeed cd(10) = !
• M001 halts on 001, so K accepts M001#001 and CD loops on 001; indeed cd(001) = �

4 Behaviour cd distinct from that of any TM Mx, so CD not a TM, so K not a TM.
Contradiction. 22

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following
TM H, based on the universal TM

M#x x
H

M
t
r
�

t

�

Corollary

The set ∼HP is not recursively enumerable

Proof.

Suppose ∼HP were recursively enumerable; then both HP and ∼HP would be
recursively enumerable, hence HP would be recursive. Contradiction

23



Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following
(not necessarily total) TM H, based on the universal TM

M#x x
H

M
t
r
�

t

�

Corollary

The set ∼HP is not recursively enumerable

Proof.

Suppose ∼HP were recursively enumerable; then both HP and ∼HP would be
recursively enumerable, hence HP would be recursive. Contradiction

23

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following
(not necessarily total) TM H, based on the universal TM

M#x x
H

M
t
r
�

t

�

Corollary

The set ∼HP is not recursively enumerable

Proof.

Suppose ∼HP were recursively enumerable; then both HP and ∼HP would be
recursively enumerable, hence HP would be recursive. Contradiction

23

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following
(not necessarily total) TM H, based on the universal TM

M#x x
H

M
t
r
�

t

�

Corollary

The set ∼HP is not recursively enumerable

Proof.

Suppose ∼HP were recursively enumerable; then both HP and ∼HP would be
recursively enumerable, hence HP would be recursive. Contradiction

23

Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following
(not necessarily total) TM H, based on the universal TM

M#x x
H

M
t
r
�

t

�

Corollary

The set ∼HP is not recursively enumerable

Proof.

Suppose ∼HP were recursively enumerable; then both HP and ∼HP would be
recursively enumerable, hence HP would be recursive. Contradiction

23



Proof (Continued).

We sketch why HP is recursively enumerable; to that end we construct the following
(not necessarily total) TM H, based on the universal TM

M#x x
H

M
t
r
�

t

�

Corollary

The set ∼HP is not recursively enumerable

Proof.

Suppose ∼HP were recursively enumerable; then both HP and ∼HP would be
recursively enumerable, hence HP would be recursive. Contradiction

23


