Summary last week

- function $f: \mathbb{N} \rightarrow \mathbb{N}$ computable if exists effective procedure computing $f(x)$ on x
- effective procedure for f if exists TM M that leaves output $f(x)$ on tape on input x;
- equivalently defined via other models of computation: μ-recursion, λ-calculus,...
- language L recursive(ly enumerable) if exists (total) TM M accepting $L(L=L(M))$
- property P (semi-)decidable if $\{x \mid P(x)\}$ is recursive(ly enumerable)

Summary last week

- function $f: \mathbb{N} \rightarrow \mathbb{N}$ computable if exists effective procedure computing $f(x)$ on x
- effective procedure for f if exists TM M that leaves output $f(x)$ on tape on input x;
- equivalently defined via other models of computation: μ-recursion, λ-calculus,...
- language L recursive(ly enumerable) if exists (total) TM M accepting $L(L=L(M))$
- property P (semi-)decidable if $\{x \mid P(x)\}$ is recursive(ly enumerable)
- TM encoded by some $x \in\{0,1\}^{*}$ (program as bit-string) \Rightarrow countably many TMs
- uncountably many functions $\mathbb{N} \rightarrow \mathbb{N} \Rightarrow$ some (most) functions not computable
- exist TM U that is universal: U on $x \# y$ simulates TM M_{x} (TM having code x) on y
- diagonal d is behaviour exhibited when running M_{x} on x (itself) for each input x
- complement $c d$ of d distinct from all TM behaviours \Rightarrow not a TM behaviour
- halting problem $\mathrm{HP}:=\{M \# x \mid M$ halts for input $x\}$ not recursive
- if L and $\sim L$ recursively enumerable, then (both) recursive

Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem

Discrete structures

Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

- recursively enumerable, if there exists a TM M such that $L=L(M)$ i.e. L is the set of strings accepted by M
- recursive, if there exists a total TM M, such that $L=L(M)$ i.e. M is required to halt (accept or reject) on all strings

Theorem

- every recursive set is recursively enumerable;
- if a set and its complement are recursively enumerable, they are recursive;

A non-recursive language HP (recapitulation)

Definition (Halting Problem)

HP $:=\{M \# x \mid M$ halts on input $x\}$

Theorem

HP is not recursive

Definition

behaviour is a map from input words $x \in\{0,1\}^{*}$ to either! (halts) or 厄 (loops).

Proof of Theorem.

Suppose HP were recursive, i.e. there is a total TM K such that $L(K)=$ HP.
1 there is a behaviour cd not exhibited by any TM;
2 using K we could construct a TM CD exhibiting behaviour cd
Contradiction, so HP is not recursive.

(1) there is a behaviour cd not exhibited by any TM

Proof.

Enumerating all TMs as $M_{\epsilon}, M_{0}, M_{1}, M_{00}, \ldots$, their behaviours can be depicted as:

	ϵ	0	1	00	01	10	11	000	001	010	\ldots
M_{ϵ}	$!$	\circlearrowright	\circlearrowright	$!$	$!$	\circlearrowright	$!$	\circlearrowright	$!$	$!$	
M_{0}	\circlearrowright	\circlearrowright	$!$	$!$	\circlearrowright	$!$	$!$	\circlearrowright	\circlearrowright	$!$	
M_{1}	\circlearrowright	$!$	\circlearrowright	$!$	\circlearrowright	$!$	$!$	\circlearrowright	\circlearrowright	$!$	
M_{00}	$!$	\circlearrowright	\circlearrowright	$!$	$!$	$!$	$!$	\circlearrowright	\circlearrowright	$!$	
M_{01}	$!$	$!$	$!$	$!$	\circlearrowright	\circlearrowright	\circlearrowright	$!$	$!$	\circlearrowright	\ldots
M_{10}	$!$	$!$	\circlearrowright	$!$	$!$	\circlearrowright	$!$	$!$	\circlearrowright	$!$	
\vdots						\vdots					\ddots

(1) there is a behaviour cd not exhibited by any TM

Proof.

Enumerating all TMs as $M_{\epsilon}, M_{0}, M_{1}, M_{00}, \ldots$, their behaviours can be depicted as:

	ϵ	0	1	00	01	10	11	000	001	010	\ldots
M_{ϵ}	$!$	\circlearrowright	\circlearrowright	$!$	$!$	\circlearrowright	$!$	\circlearrowright	$!$	$!$	
M_{0}	\circlearrowright	\circlearrowright	$!$	$!$	\circlearrowright	$!$	$!$	\circlearrowright	\circlearrowright	$!$	
M_{1}	\circlearrowright	$!$	\circlearrowright	$!$	\circlearrowright	$!$	$!$	\circlearrowright	0	$!$	
M_{00}	$!$	\circlearrowright	\circlearrowright	$!$	$!$	$!$	$!$	0	0	$!$	
M_{01}	$!$	$!$	$!$	$!$	\circlearrowright	0	\circlearrowright	$!$	$!$	\circlearrowright	\ldots
M_{10}	$!$	$!$	\circlearrowright	$!$	$!$	0	$!$	$!$	\circlearrowright	$!$	
\vdots					\vdots					\ddots	

Proof．											
Enumerating all TMs as $M_{\epsilon}, M_{0}, M_{1}, M_{00}, \ldots$, their behaviours can be depict											
	ϵ	0	1	00	01	10	11	000	001	010	．．．
M_{ϵ}	こ	厄	厄	！	！	厄	！	厄	！	！	
M_{0}	O	$!$	$!$	！	\circlearrowright	！	！	厄	O	！	
M_{1}	O	$!$	！	！	\circlearrowright	！	！	\circlearrowright	厄	！	
M_{00}	！	〕	\circlearrowright	厄	！	！	！	厄	厄	！	
M_{01}	！	$!$	$!$	！	！	厄	ठ	！	！	厄	\cdots
M_{10}	！	$!$	厄	！	！	！	！	！	厄	！	
：						：					\checkmark

complement diagonal $c d=\circlearrowright!!\circlearrowright!!\ldots$ not exhibited by any TM

（2）using K we could construct a TM $C D$ exhibiting behaviour cd

Proof．

Suppose K were a total $\mathrm{TM} K$ such that $L(K)=$ HP．Construct $C D$ ：

（2）using K we could construct a TM $C D$ exhilitind behaviour $c d$

Proof．

Suppose K were a total TM K such that $L(K)=$ HP．Construct $C D$ ：

in words：
－input string x is first transformed into the string $M_{x} \# x$

（2）using K we could construct a TM $C D$ exhibiting behaviour $c d$

Proof．

Suppose K were a total TM K such that $L(K)=$ HP．Construct $C D$ ：

in words：
－input string x is first transformed into the string $M_{x} \# x$
－then run K on $M_{x} \# x$

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{x} halts on x, otherwise r (no looping; K total)

(2) using K we could construct a TM $C D$ exhibiting behaviour cd

Proof.

Suppose K were a total $\mathrm{TM} K$ such that $L(K)=$ HP. Construct $C D$

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{X} halts on x, otherwise r (no looping; K total)
- if K accepts then we loop, otherwise K rejects and we accept (return t)

(2) using K we could construct a TM $C D$ exhiliting behaviour $C d$

Proof.

Suppose K were a total TM K such that $L(K)=$ HP. Construct $C D$:

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{x} halts on x, otherwise r (no looping; K total)
- if K accepts then we loop, otherwise K rejects and we accept (return t)
M_{x} halts/loops on x iff K accepts/rejects $M_{x} \# x$ iff $C D$ loops/halts on x
(2) using K we could construct a TM $C D$ exhibiting behaviour $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ HP. Construct $C D$:

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{x} halts on x, otherwise r (no looping; K total)
- if K accepts then we loop, otherwise K rejects and we accept (return t)
M_{x} halts/loops on x iff K accepts/rejects $M_{x} \# x$ iff $C D$ loops/halts on x $C D$ exhibits behaviour $c d$

Complements

Lemma
 if L recursive, then so is $\sim L$

Proof.

If $L=L(M)$ for total $T M M$, then $\sim L=L\left(M^{\prime}\right)$ for M^{\prime} as M but swapping accept, reject

Complements

Lemma

if L recursive, then so is $\sim L$

Proof.

If $L=L(M)$ for total TM M, then $\sim L=L\left(M^{\prime}\right)$ for M^{\prime} as M but swapping accept, reject

Theorem

~HP is not recursively enumerable (although HP is)

Proof.

Suppose ~HP were recursively enumerable.

- then both HP (previous lecture) and ~HP would be recursively enumerable;
- so both HP and ~HP would in fact be recursive (previous lecture);
- but that would contradict that HP is not recursive (previous lecture)

So ~HP is not recursively enumerable.

Closure properties of recursively enumerable languages

Theorem

recursively enumerable languages are closed under union and intersection, but not under complement or difference

Proof.

- if $L_{1}=L\left(M_{1}\right), L_{2}=L\left(M_{2}\right)$, running both M_{1}, M_{2} on a given input x, and accepting if at least one/both of them accepts, shows closure under union/intersection.
- closure under complement fails as shown by the previous theorem. in particular, \sim HP is not r.e., although HP is. from this it follows that closure under difference fails since $\sim H P=\{0,1\}^{*}-H P$ and $\{0,1\}^{*}$ is trivially r.e.

Closure properties of recursive languages

Theorem

recursively enumerable languages are closed under union and intersection, but not under complement or difference

Proof.

- if $L_{1}=L\left(M_{1}\right), L_{2}=L\left(M_{2}\right)$, running both M_{1}, M_{2} on a given input x, and accepting if at least one/both of them accepts, shows closure under union/intersection.
- closure under complement fails as shown by the previous theorem. in particular, $\sim H P$ is not r.e., although HP is. from this it follows that closure under difference fails since $\sim H P=\{0,1\}^{*}-H P$ and $\{0,1\}^{*}$ is trivially r.e.

Corollary

recursive languages are closed under union, intersection, complement, and difference by above closure properties and using De Morgan; $\sim\left(L_{1} \cup L_{2}\right)=\left(\sim L_{1}\right) \cap\left(\sim L_{2}\right)$

(1) there is a language $c d$ not accepted by any TM

Proof.

Enumerating all TMs as $M_{\epsilon}, M_{0}, M_{1}, M_{00}, \ldots$, their languages can be depicted as:

	ϵ	0	1	00	01	10	11	000	001	010	\ldots
M_{ϵ}	\times	\times	\times	\checkmark	\checkmark	\times	\times	\times	\times	\checkmark	
M_{0}	\times	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark	\times	\times	\checkmark	
M_{1}	\times	\times	\times	\checkmark	\times	\times	\checkmark	\times	\times	\checkmark	
M_{00}	\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	
M_{01}	\times	\checkmark	\times	\checkmark	\times	\times	\times	\checkmark	\checkmark	\times	\ldots
M_{10}	\checkmark	\checkmark	\times	\checkmark	\times	\times	\times	\times	\times	\times	
\vdots						\vdots					\ddots

Another non-recursive language MP

Definition (Membership Problem)

MP $:=\{M \# x \mid M$ accepts input $x\}$

Theorem

MP is not recursive

Proof.

Suppose MP were recursive, i.e. there is a total TM K such that $L(K)=$ MP.
1 there is a language cd not accepted by any TM;
2 using K we could construct a TM CD accepting $c d$.
Contradiction, so MP is not recursive.
(1) there is a language cd not accepted by any TM

Proof.

Enumerating all TMs as $M_{\epsilon}, M_{0}, M_{1}, M_{00}, \ldots$, their languages can be depicted as:

	ϵ	0	1	00	01	10	11	000	001	010	\ldots
M_{ϵ}	\times	\times	\times	\checkmark	\checkmark	\times	\times	\times	\times	\checkmark	
M_{0}	\times	\times	\checkmark	\checkmark	\times	\checkmark	\checkmark	\times	\times	\checkmark	
M_{1}	\times	\times	\times	\checkmark	\times	\times	\checkmark	\times	\times	\checkmark	
M_{00}	\checkmark	\times	\times	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times	\checkmark	
M_{01}	\times	\checkmark	\times	\checkmark	\times	\times	\times	\checkmark	\checkmark	\times	\ldots
M_{10}	\checkmark	\checkmark	\times	\checkmark	\times	\times	\times	\times	\times	\times	
\vdots					\vdots					\ddots	

(1) there is a language $c d$ not accepted by any TM
Proof.
Enumerating all TMs as $M_{\epsilon}, M_{0}, M_{1}, M_{00}, \ldots$, their languages can be depict

| | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| M_{ϵ} | \checkmark | \times | \times | \checkmark | \checkmark | \times | \times | \times | \times | \checkmark | |
| M_{0} | \times | \checkmark | \checkmark | \checkmark | \times | \checkmark | \checkmark | \times | \times | \checkmark | |
| M_{1} | \times | \times | \checkmark | \checkmark | \times | \times | \checkmark | \times | \times | \checkmark | |
| M_{00} | \checkmark | \times | \times | \times | \checkmark | \checkmark | \checkmark | \times | \times | \checkmark | |
| M_{01} | \times | \checkmark | \times | \checkmark | \checkmark | \times | \times | \checkmark | \checkmark | \times | \ldots |
| M_{10} | \checkmark | \checkmark | \times | \checkmark | \times | \checkmark | \times | \times | \times | \times | |
| \vdots | | | | | | \vdots | | | | | \ddots |

complement diagonal $c d=\{\epsilon, 0,1,01,10,11, \ldots\}$ not accepted by any TM

(2) using K we could construct a TM $C D$ accepting $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ MP. Construct $C D$:

in words:

- input string x is first transformed into the string $M_{x} \# x$

(2) using K we could construct a TM $C D$ accepting $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ MP. Construct $C D$:

(2) using K we could construct a TM $C D$ accepting $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ MP. Construct CD:

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$

(2) using K we could construct a TM $C D$ accepting $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ MP. Construct $C D$:

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{x} accepts x, otherwise r (no looping; K total)

(2) using K we could construct a TM $C D$ accepting $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ MP. Construct $C D$:

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{x} accepts x, otherwise r (no looping; K total)
- if K accepts then we reject, otherwise K rejects and we accept (return t)

(2) using K we could construct a TM $C D$ accepting $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ MP. Construct $C D$:

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{X} accepts x, otherwise r (no looping; K total)
- if K accepts then we reject, otherwise K rejects and we accept (return t)
M_{x} accepts/does not accept x iff K accepts/rejects $M_{x} \# x$ iff $C D$ rejects/accepts x
(2) using K we could construct a TM $C D$ accepting $c d$

Proof.

Suppose K were a total TM K such that $L(K)=$ MP. Construct $C D$:

in words:

- input string x is first transformed into the string $M_{x} \# x$
- then run K on $M_{x} \# x$
- yields t if M_{x} accepts x, otherwise r (no looping; K total)
- if K accepts then we reject, otherwise K rejects and we accept (return t)
M_{x} accepts/does not accept x iff K accepts/rejects $M_{x} \# x$ iff $C D$ rejects/accepts x $C D$ accepts $c d$

Border between in/outside of language

Remark

- language L being recursively enumerable (recursive) depends on its border
- how 'difficult' it is to decide that string x is in L (and not in L)
- does not depend on cardinality of L
- but note every finite language recursive (finite case-distinction)

Border between in/outside of language

Remark

- language L being recursively enumerable (recursive) depends on its border
- how 'difficult' it is to decide that string x is in L (and not in L)
- does not depend on cardinality of L
- but note every finite language recursive

```
Example
for }A\mathrm{ set of all strings over alphabet }\supseteq{0,1,#
    - \emptyset\subseteqHP\subseteqA
    - although both \emptyset,A recursive, HP is not recursive
```

Border between in/outside of language

Remark

- language L being recursively enumerable (recursive) depends on its border
- how 'difficult' it is to decide that string x is in L (and not in L)
- does not depend on cardinality of L
- but note every finite language recursive

Example

for A set of all strings over alphabet $\supseteq\{0,1, \#\}$

- $\emptyset \subseteq H P \subseteq A$

Border between in/outside of language

Remark

- language L being recursively enumerable (recursive) depends on its border
- how 'difficult' it is to decide that string x is in L (and not in L)
- does not depend on cardinality of L
- but note every finite language recursive

Example

for A set of all strings over alphabet $\supseteq\{0,1, \#\}$

- $\emptyset \subseteq H P \subseteq A$
- although both \emptyset, A recursive, HP is not recursive
- sub/superset of recursive or recursively enumerable language need not be so

Border between in/outside of language

Remark

- language L being recursively enumerable (recursive) depends on its border
- how 'difficult' it is to decide that string x is in L (and not in L)
- does not depend on cardinality of L
- but note every finite language recursive

Example
 for A set of all strings over alphabet $\supseteq\{0,1, \#\}$
 - $\emptyset \subseteq H P \subseteq A$
 - although both \emptyset, A recursive, HP is not recursive
 - sub/superset of recursive or recursively enumerable language need not be so
 - may have $L_{0} \subset L_{1} \subset L_{2} \subset L_{3} \subset \ldots$ such that $L_{2 i}$ recursive, $L_{2 i+1}$ not recursive

Relating non-recursiveness of HP and MP

similarity between proofs

suppose $L=L(K)$ for some total TM K

- determine $c d$ distinct from $L(M)$ for every TM M by diagonalising away
- show that using K we could construct TM $C D$ with $L(C D)=c d$
so supposition must be false

reducing problems to each other

- solve problem L using solution for problem L^{\prime} as sub-routine

Relating non-recursiveness of HP and MP

similarity between proofs

suppose $L=L(K)$ for some total TM K

- determine $c d$ distinct from $L(M)$ for every TM M by diagonalising away
- show that using K we could construct TM $C D$ with $L(C D)=c d$
so supposition must be false
avoid redoing diagonalisation?

Relating non-recursiveness of HP and MP

similarity between proofs

suppose $L=L(K)$ for some total TM K

- determine $c d$ distinct from $L(M)$ for every TM M by diagonalising away
- show that using K we could construct TM $C D$ with $L(C D)=c d$
so supposition must be false

reducing problems to each other

- solve problem L using solution for problem L^{\prime} as sub-routine
- say: reduce L to L^{\prime} (reduction from L to L^{\prime})

Relating non-recursiveness of HP and MP

similarity between proofs

suppose $L=L(K)$ for some total TM K

- determine $c d$ distinct from $L(M)$ for every TM M by diagonalising away
- show that using K we could construct TM $C D$ with $L(C D)=c d$
so supposition must be false

reducing problems to each other

- solve problem L using solution for problem L^{\prime} as sub-routine
- say: reduce L to L^{\prime}
- $x \in L$ iff $f(x) \in L^{\prime}$ using (computable!) function f

Relating non-recursiveness of HP and MP

similarity between proofs

suppose $L=L(K)$ for some total TM K

- determine $c d$ distinct from $L(M)$ for every TM M by diagonalising away
- show that using K we could construct TM $C D$ with $L(C D)=c d$
so supposition must be false

reducing problems to each other

- solve problem L using solution for problem L^{\prime} as sub-routine
- say: reduce L to L^{\prime}
- $x \in L$ iff $f(x) \in L^{\prime}$ using function f
- L is not more complex than L^{\prime} (may be strictly less so; may be simpler subroutine)

Relating non-recursiveness of HP and MP

similarity between proofs

suppose $L=L(K)$ for some total TM K

- determine $c d$ distinct from $L(M)$ for every TM M by diagonalising away
- show that using K we could construct TM $C D$ with $L(C D)=c d$
so supposition must be false

reducing problems to each other

- solve problem L using solution for problem L^{\prime} as sub-routine
- say: reduce L to L^{\prime}
- $x \in L$ iff $f(x) \in L^{\prime}$ using function f
- L is not more complex than L^{\prime}
- write: $L \leq L^{\prime}$ (beware: $L \subseteq L^{\prime}$ need not imply $L \leq L^{\prime}$!)

Relating non-recursiveness of HP and MP

similarity between proofs

suppose $L=L(K)$ for some total TM K

- determine $c d$ distinct from $L(M)$ for every TM M by diagonalising away
- show that using K we could construct TM $C D$ with $L(C D)=c d$
so supposition must be false

reducing problems to each other

- solve problem L using solution for problem L^{\prime} as sub-routine
- say: reduce L to L^{\prime}
- $x \in L$ iff $f(x) \in L^{\prime}$ using function f
- L is not more complex than L^{\prime}
- write: $L \leq L^{\prime}$
- if L not recursive and $L \leq L^{\prime}$, then L^{\prime} not recursive

Formal definition of reduction

Definition (recall from before)

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if \exists a total TM T with input alphabet Σ, such that on input $x \in \Sigma^{*}, T$ writes $f(x)$ on the tape

Formal definition of reduction

Definition (recall from before)

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if \exists a total TM T with input alphabet Σ, such that on input $x \in \Sigma^{*}, T$ writes $f(x)$ on the tape

Definition

For $L, L^{\prime} \subseteq \Sigma^{*}, L$ is reducible to L^{\prime}; denoted by $L<L^{\prime}$ if \exists a computable $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $x \in L \Leftrightarrow f(x) \in M$

Formal definition of reduction

Definition (recall from before)

$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if \exists a total TM T with input alphabet Σ, such that on input $x \in \Sigma^{*}, T$ writes $f(x)$ on the tape

Definition

For $L, L^{\prime} \subseteq \Sigma^{*}, L$ is reducible to L^{\prime}; denoted by $L \leq L^{\prime}$ if \exists a computable $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $x \in L \Leftrightarrow f(x) \in M$

Theorem

if L not recursive and $L \leq L^{\prime}$, then L^{\prime} is not recursive

Proof.

supposing $L \leq L^{\prime}$ by function f by $T M T$ and L^{\prime} were recursive by total $T M K$, then $x \in L$ iff $f(x) \in L^{\prime}$ iff K accepts $f(x)$. that is, L is recursive using TM that first transforms x into $f(x)$ by running T and then runs K on $f(x)$. contradiction. so L^{\prime} is not recursive.

Reducing HP to MP ?

Reducing HP to MP

Definition

$f(M \# x)=M^{\prime} \# x$ where M^{\prime} is obtained from M by changing reject into accept

Reducing HP to MP

Definition

$f(M \# x)=M^{\prime} \# x$ where M^{\prime} is obtained from M by changing reject into accept

Lemma

$M \# x \in \operatorname{HP}$ iff $f(M \# x) \in M P$

Proof.

$M \# x \in \mathrm{HP} \Rightarrow M$ halts on $x \Rightarrow M^{\prime}$ accepts $x \Rightarrow M^{\prime} \# x \in M P$
$M \# x \notin \mathrm{HP} \Rightarrow M$ does not halt on $x \Rightarrow M^{\prime}$ does not halt on $x \Rightarrow M^{\prime} \# x \notin \mathrm{MP}$

Reducing HP to MP

Reducing MP to HP ?

Definition

$f(M \# x)=M^{\prime} \# x$ where M^{\prime} is obtained from M by changing reject into accept

Lemma
 $M \# x \in \mathrm{HP}$ iff $f(M \# x) \in \mathrm{MP}$

Proof.

$M \# x \in \mathrm{HP} \Rightarrow M$ halts on $x \Rightarrow M^{\prime}$ accepts $x \Rightarrow M^{\prime} \# x \in M P$
$M \# x \notin \mathrm{HP} \Rightarrow M$ does not halt on $x \Rightarrow M^{\prime}$ does not halt on $x \Rightarrow M^{\prime} \# x \notin M P$

Corollary

MP is not recursive

Proof.

since HP is not recursive (assumed known) and HP $\leq M P$

Reducing MP to HP

Definition

$f(M \# x)=M^{\prime} \# x$ where M^{\prime} is obtained from M by changing reject into looping

Reducing MP to HP

Definition

$f(M \# x)=M^{\prime} \# x$ where M^{\prime} is obtained from M by changing reject into looping

Lemma

$M \# x \in \operatorname{MP} \operatorname{iff} f(M \# x) \in H P$

Proof.

$M \# x \in M P \Rightarrow M$ accepts $x \Rightarrow M^{\prime}$ accepts $x \Rightarrow M^{\prime} \# x \in H P$
$M \# x \notin \mathrm{MP} \Rightarrow M$ does not accept $x \Rightarrow M^{\prime}$ does not halt on $x \Rightarrow M^{\prime} \# x \notin \mathrm{HP}$

Reducing MP to HP

More on reducibility

Theorem
 sis reflexive and transitive

More on reducibility

Theorem
 sis reflexive and transitive

Proof.

- to show reflexivity, take $f(x)=x$ (the identity function)

More on reducibility

Theorem

< is reflexive and transitive

Proof.

- to show reflexivity, take $f(x)=x$
- to show transitivity, compose the functions (run the TMs consecutively)

More on reducibility

Theorem
\leq is reflexive and transitive
Proof.
- to show reflexivity, take $f(x)=x$
- to show transitivity, compose the functions

Lemma

there is no program testing whether a given program is a "hello world"-program (prints "hello world" and then accepts)

More on reducibility

Theorem

<is reflexive and transitive

Proof.

- to show reflexivity, take $f(x)=x$
- to show transitivity, compose the functions

Lemma

there is no program testing whether a given program is a "hello world"-program

Proof.

show HP \leq "hello world"-program. let $f(M \# x)$ be $M^{\prime} \# x$ with M^{\prime} a TM that first runs M on its input, if that halts overwrites tape with "hello world" and then accepts:
$M \# x \in \mathrm{HP} \Rightarrow M$ halts on $x \Rightarrow M^{\prime}$ is a "hello world"-program
$M \# x \notin \mathrm{HP} \Rightarrow M$ does not halt on $x \Rightarrow M^{\prime}$ is not a "hello world"-program

Regular languages

Question

What languages can be accepted for machines more restricted than TMs?

Regular languages

We consider finite automata. These accept regular languages, and will show these are recursive, but not necessarily the other way around,

relevance of regular languages

- software for designing and testing of digital circuits
- software components of compiler, e.g. for lexical analysis:
- software for searching in long texts
- software to verify all kinds of systems having a finite number of states
- components of computer games (computer-controlled non-player-character)

Deterministic finite automata (DFAs)

Example

\emptyset and the set of all strings are regular, as are all finite languages

Definition

A DFA is a 5-tuple $A=(Q, \Sigma, \delta, s, F)$ with
$1 Q$ a finite set of states
2Σ a finite set of input symbols, (Σ is called the input alphabet)
$3 \delta: Q \times \Sigma \rightarrow Q$ the transition function
$4 s \in Q$, the start or initial state
$5 F \subseteq Q$ a finite set of accepting or final states

- 19

Deterministic finite automata (DFAs)

Example

\emptyset and the set of all strings are regular, as are all finite languages.

Deterministic finite automata (DFAs)

Example

\emptyset and the set of all strings are regular, as are all finite languages

Definition

A DFA is a 5-tuple $A=(Q, \Sigma, \delta, s, F)$ with
$1 Q$ a finite set of states
2Σ a finite set of input symbols, (Σ is called the input alphabet)
$3 \delta: Q \times \Sigma \rightarrow Q$ the transition function
$4 s \in Q$, the start or initial state
$5 F \subseteq Q$ a finite set of accepting or final states
Beware: δ must be defined, for all possible inputs

Transition table

	$a_{1} \in \Sigma$	$a_{2} \in \Sigma$	\cdots
$q_{1} \in Q$	$\delta\left(q_{1}, a_{1}\right)$	$\delta\left(q_{1}, a_{2}\right)$	\cdots
$q_{2} \in Q$	$\delta\left(q_{2}, a_{1}\right)$		
\vdots	\vdots		

Transition table

	$a_{1} \in \Sigma$	$a_{2} \in \Sigma$	\cdots
$q_{1} \in Q$	$\delta\left(q_{1}, a_{1}\right)$	$\delta\left(q_{1}, a_{2}\right)$	\cdots
$q_{2} \in Q$	$\delta\left(q_{2}, a_{1}\right)$		
\vdots	\vdots		

Transition graph

For a DFA $A=(Q, \Sigma, \delta, s, F)$, its (directed) transition graph with initial state d and final states F where:
1 the states are the nodes
2 the edges E are

$$
(p, q) \quad p, q \in Q \text { and } \exists a \in \Sigma \text { with } \delta(p, a)=q
$$

3 the edges are labelled by symbols by a function $b: E \rightarrow \Sigma$ defined by

$$
(p, q) \mapsto a \quad \text { if } \delta(p, a)=q
$$

Definition (extending the transition function)

Let δ be a transition function. The extended transition function $\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$ is inductively defined by:

$$
\begin{aligned}
\hat{\delta}(q, \epsilon) & :=q \\
\hat{\delta}(q, x a) & :=\delta(\hat{\delta}(q, x), a) \quad x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Definition (extending the transition function)

Let δ be a transition function. The extended transition function $\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$ is inductively defined by:

$$
\begin{aligned}
\hat{\delta}(q, \epsilon) & :=q \\
\hat{\delta}(q, x a) & :=\delta(\hat{\delta}(q, x), a) \quad x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Definition

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA; the language $L(A)$ accepted by A is:

$$
\mathrm{L}(A):=\left\{x \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, x\right) \in F\right\}
$$

Example

For the DFA A above, $\hat{\delta}\left(q_{0}, 0010\right)=q_{2}$

```
\(\hat{\delta}\left(q_{0}, 0010\right)\) is computed recursively as follows:
- \(\hat{\delta}\left(q_{0}, 0010\right)=\delta\left(\hat{\delta}\left(q_{0}, 001\right), 0\right)=\delta\left(q_{2}, 0\right)=q_{2}\)
- \(\hat{\delta}\left(q_{0}, 001\right)=\delta\left(\hat{\delta}\left(q_{0}, 00\right), 1\right)=\delta\left(q_{1}, 1\right)=q_{2}\)
- \(\hat{\delta}\left(q_{0}, 00\right)=\delta\left(\hat{\delta}\left(q_{0}, 0\right), 0\right)=\delta\left(q_{1}, 0\right)=q_{1}\)
- \(\hat{\delta}\left(q_{0}, 0\right)=\delta\left(\hat{\delta}\left(q_{0}, \epsilon\right), 0\right)=\delta\left(q_{0}, 0\right)=q_{1}\)
```


Definition (extending the transition function)

Let δ be a transition function. The extended transition function $\hat{\delta}: Q \times \Sigma^{*} \rightarrow Q$ is inductively defined by:

$$
\begin{aligned}
\hat{\delta}(q, \epsilon) & :=q \\
\hat{\delta}(q, x a) & :=\delta(\hat{\delta}(q, x), a) \quad x \in \Sigma^{*}, a \in \Sigma
\end{aligned}
$$

Definition

Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA; the language $L(A)$ accepted by A is:

$$
\mathrm{L}(A):=\left\{x \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, x\right) \in F\right\}
$$

```
Example
For the DFA A above, \hat{\delta}}(\mp@subsup{q}{0}{},0010)=\mp@subsup{q}{2}{
\delta}(\mp@subsup{q}{0}{},0010) is computed recursively as follows
    - \hat{\delta}(\mp@subsup{q}{0}{},0010)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},001),0)=\delta(\mp@subsup{q}{2}{},0)=\mp@subsup{q}{2}{}
    - \hat{\delta}(\mp@subsup{q}{0}{},001)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},00),1)=\delta(\mp@subsup{q}{1}{},1)=\mp@subsup{q}{2}{}
    - \hat{\delta}}(\mp@subsup{q}{0}{},00)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},0),0)=\delta(\mp@subsup{q}{1}{},0)=\mp@subsup{q}{1}{
    - \hat{\delta}}(\mp@subsup{q}{0}{},0)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},\epsilon),0)=\delta(\mp@subsup{q}{0}{},0)=\mp@subsup{q}{1}{
```


Example

For the DFA A, we have $L(A)=\left\{x 01 y \mid x, y \in \Sigma^{*}\right\}$. The language $L(A)$ is the set of all words in which 01 occurs somewhere (or rather of words not of the form: a number of 1 s followed by a number of 0 s)

```
Example
For the DFA A above, \hat{\delta}}(\mp@subsup{q}{0}{},0010)=\mp@subsup{q}{2}{
\hat { \delta } ( q _ { 0 } , 0 0 1 0 ) ~ i s ~ c o m p u t e d ~ r e c u r s i v e l y ~ a s ~ f o l l o w s :
    - \hat{\delta}(\mp@subsup{q}{0}{},0010)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},001),0)=\delta(q2,0)=\mp@subsup{q}{2}{}
    - \hat{\delta}(\mp@subsup{q}{0}{},001)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},00),1)=\delta(\mp@subsup{q}{1}{},1)=\mp@subsup{q}{2}{}
    - \hat{\delta}(\mp@subsup{q}{0}{},00)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},0),0)=\delta(\mp@subsup{q}{1}{},0)=\mp@subsup{q}{1}{}
    - \hat{\delta}(\mp@subsup{q}{0}{},0)=\delta(\hat{\delta}(\mp@subsup{q}{0}{},\epsilon),0)=\delta(\mp@subsup{q}{0}{},0)=\mp@subsup{q}{1}{}
```


Example

For the DFA A, we have $L(A)=\left\{x 01 y \mid x, y \in \Sigma^{*}\right\}$. The language $L(A)$ is the set of all words in which 01 occurs somewhere (or rather of words not of the form: a number of 1 s followed by a number of 0 s)

Definition

A formal language L is regular, if \exists DFA A, such that $L(A)=L$

