
Summary last week

• function f : N → N computable if exists effective procedure computing f(x) on x

• effective procedure for f if exists TM M that leaves output f(x) on tape on input x;

• equivalently defined via other models of computation: µ-recursion, λ-calculus,. . .

• language L recursive(ly enumerable) if exists (total) TM M accepting L (L = L(M))

• property P (semi-)decidable if {x | P(x)} is recursive(ly enumerable)

• TM encoded by some x ∈ {0,1}∗ (program as bit-string) ⇒ countably many TMs

• uncountably many functions N → N ⇒ some (most) functions not computable

• exist TM U that is universal: U on x#y simulates TM Mx (TM having code x) on y

• diagonal d is behaviour exhibited when running Mx on x (itself) for each input x

• complement cd of d distinct from all TM behaviours ⇒ not a TM behaviour

• halting problem HP := {M#x | M halts for input x} not recursive

• if L and ∼L recursively enumerable, then (both) recursive

1

Summary last week

• function f : N → N computable if exists effective procedure computing f(x) on x

• effective procedure for f if exists TM M that leaves output f(x) on tape on input x;

• equivalently defined via other models of computation: µ-recursion, λ-calculus,. . .

• language L recursive(ly enumerable) if exists (total) TM M accepting L (L = L(M))

• property P (semi-)decidable if {x | P(x)} is recursive(ly enumerable)

• TM encoded by some x ∈ {0,1}∗ (program as bit-string) ⇒ countably many TMs

• uncountably many functions N → N ⇒ some (most) functions not computable

• exist TM U that is universal: U on x#y simulates TM Mx (TM having code x) on y

• diagonal d is behaviour exhibited when running Mx on x (itself) for each input x

• complement cd of d distinct from all TM behaviours ⇒ not a TM behaviour

• halting problem HP := {M#x | M halts for input x} not recursive

• if L and ∼L recursively enumerable, then (both) recursive
1

Course themes

• directed and undirected graphs

• relations and functions

• orders and induction

• trees and dags

• finite and infinite counting

• elementary number theory

• Turing machines, algorithms, and complexity

• decidable and undecidable problem

2

Discrete structures

graphs

relations

dags trees

functions

sets cardinals

strings

ordinals

algorithms

orders

3



Recursive/recursively enumerable languages

Definition

A language L (or, more generally, a set) is

• recursively enumerable, if there exists a TM M such that L = L(M)
i.e. L is the set of strings accepted by M

• recursive, if there exists a total TM M, such that L = L(M)
i.e. M is required to halt (accept or reject) on all strings

Theorem

• every recursive set is recursively enumerable;

• if a set and its complement are recursively enumerable, they are recursive;

4

A non-recursive language HP (recapitulation)

Definition (Halting Problem)

HP := {M#x | M halts on input x}

Theorem

HP is not recursive

Definition

behaviour is a map from input words x ∈ {0,1}∗ to either ! (halts) or � (loops).

Proof of Theorem.

Suppose HP were recursive, i.e. there is a total TM K such that L(K) = HP.

1 there is a behaviour cd not exhibited by any TM;

2 using K we could construct a TM CD exhibiting behaviour cd.

Contradiction, so HP is not recursive. 5

(1) there is a behaviour cd not exhibited by any TM

Proof.

Enumerating all TMs as Mε, M0, M1, M00, . . . , their behaviours can be depicted as:

ε 0 1 00 01 10 11 000 001 010 . . .

Mε ! � � ! ! � ! � ! !

M0 � � ! ! � ! ! � � !

M1 � ! � ! � ! ! � � !

M00 ! � � ! ! ! ! � � !

M01 ! ! ! ! � � � ! ! � · · ·
M10 ! ! � ! ! � ! ! � !

...
...

. . .

6

(1) there is a behaviour cd not exhibited by any TM

Proof.

Enumerating all TMs as Mε, M0, M1, M00, . . . , their behaviours can be depicted as:

ε 0 1 00 01 10 11 000 001 010 . . .

Mε ! � � ! ! � ! � ! !

M0 � � ! ! � ! ! � � !

M1 � ! � ! � ! ! � � !

M00 ! � � ! ! ! ! � � !

M01 ! ! ! ! � � � ! ! � · · ·
M10 ! ! � ! ! � ! ! � !

...
...

. . .

diagonal behaviour d = ! � � ! � � . . .

6



(1) there is a behaviour cd not exhibited by any TM

Proof.

Enumerating all TMs as Mε, M0, M1, M00, . . . , their behaviours can be depicted as:

ε 0 1 00 01 10 11 000 001 010 . . .

Mε � � � ! ! � ! � ! !

M0 � ! ! ! � ! ! � � !

M1 � ! ! ! � ! ! � � !

M00 ! � � � ! ! ! � � !

M01 ! ! ! ! ! � � ! ! � · · ·
M10 ! ! � ! ! ! ! ! � !

...
...

. . .

complement diagonal cd = � ! ! � ! ! . . . not exhibited by any TM
6

(2) using K we could construct a TM CD exhibiting behaviour cd

Proof.

Suppose K were a total TM K such that L(K) = HP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx halts on x, otherwise r (no looping; K total)

• if K accepts then we loop, otherwise K rejects and we accept (return t)

Mx halts/loops on x iff K accepts/rejects Mx#x iff CD loops/halts on x
CD exhibits behaviour cd

7

(2) using K we could construct a TM CD exhibiting behaviour cd

Proof.

Suppose K were a total TM K such that L(K) = HP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx halts on x, otherwise r (no looping; K total)

• if K accepts then we loop, otherwise K rejects and we accept (return t)

Mx halts/loops on x iff K accepts/rejects Mx#x iff CD loops/halts on x
CD exhibits behaviour cd

7

(2) using K we could construct a TM CD exhibiting behaviour cd

Proof.

Suppose K were a total TM K such that L(K) = HP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx halts on x, otherwise r (no looping; K total)

• if K accepts then we loop, otherwise K rejects and we accept (return t)

Mx halts/loops on x iff K accepts/rejects Mx#x iff CD loops/halts on x
CD exhibits behaviour cd

7



(2) using K we could construct a TM CD exhibiting behaviour cd

Proof.

Suppose K were a total TM K such that L(K) = HP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx halts on x, otherwise r (no looping; K total)

• if K accepts then we loop, otherwise K rejects and we accept (return t)

Mx halts/loops on x iff K accepts/rejects Mx#x iff CD loops/halts on x
CD exhibits behaviour cd

7

(2) using K we could construct a TM CD exhibiting behaviour cd

Proof.

Suppose K were a total TM K such that L(K) = HP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx halts on x, otherwise r (no looping; K total)

• if K accepts then we loop, otherwise K rejects and we accept (return t)

Mx halts/loops on x iff K accepts/rejects Mx#x iff CD loops/halts on x
CD exhibits behaviour cd

7

(2) using K we could construct a TM CD exhibiting behaviour cd

Proof.

Suppose K were a total TM K such that L(K) = HP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx halts on x, otherwise r (no looping; K total)

• if K accepts then we loop, otherwise K rejects and we accept (return t)

Mx halts/loops on x iff K accepts/rejects Mx#x iff CD loops/halts on x

CD exhibits behaviour cd

7

(2) using K we could construct a TM CD exhibiting behaviour cd

Proof.

Suppose K were a total TM K such that L(K) = HP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

�

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx halts on x, otherwise r (no looping; K total)

• if K accepts then we loop, otherwise K rejects and we accept (return t)

Mx halts/loops on x iff K accepts/rejects Mx#x iff CD loops/halts on x
CD exhibits behaviour cd

7



Complements

Lemma

if L recursive, then so is ∼L

Proof.

If L = L(M) for total TM M, then ∼L = L(M′) for M′ as M but swapping accept, reject

Theorem

∼HP is not recursively enumerable (although HP is)

Proof.

Suppose ∼HP were recursively enumerable.

• then both HP (previous lecture) and ∼HP would be recursively enumerable;

• so both HP and ∼HP would in fact be recursive (previous lecture);

• but that would contradict that HP is not recursive (previous lecture).

So ∼HP is not recursively enumerable.

8

Complements

Lemma

if L recursive, then so is ∼L

Proof.

If L = L(M) for total TM M, then ∼L = L(M′) for M′ as M but swapping accept, reject

Theorem

∼HP is not recursively enumerable (although HP is)

Proof.

Suppose ∼HP were recursively enumerable.

• then both HP (previous lecture) and ∼HP would be recursively enumerable;

• so both HP and ∼HP would in fact be recursive (previous lecture);

• but that would contradict that HP is not recursive (previous lecture).

So ∼HP is not recursively enumerable.
8

Closure properties of recursively enumerable languages

Theorem

recursively enumerable languages are closed under union and intersection, but not
under complement or difference

Proof.

• if L1 = L(M1), L2 = L(M2), running both M1, M2 on a given input x, and accepting if
at least one/both of them accepts, shows closure under union/intersection.

• closure under complement fails as shown by the previous theorem. in particular,
∼HP is not r.e., although HP is. from this it follows that closure under difference
fails since ∼HP = {0,1}∗ − HP and {0,1}∗ is trivially r.e.

Corollary

recursive languages are closed under union, intersection, complement, and difference

by above closure properties and using De Morgan; ∼(L1 ∪ L2) = (∼L1) ∩ (∼L2)

9

Closure properties of recursively enumerable languages

Theorem

recursively enumerable languages are closed under union and intersection, but not
under complement or difference

Proof.

• if L1 = L(M1), L2 = L(M2), running both M1, M2 on a given input x, and accepting if
at least one/both of them accepts, shows closure under union/intersection.

• closure under complement fails as shown by the previous theorem. in particular,
∼HP is not r.e., although HP is. from this it follows that closure under difference
fails since ∼HP = {0,1}∗ − HP and {0,1}∗ is trivially r.e.

Corollary

recursive languages are closed under union, intersection, complement, and difference

by above closure properties and using De Morgan; ∼(L1 ∪ L2) = (∼L1) ∩ (∼L2)

9



Closure properties of recursive languages

Theorem

recursively enumerable languages are closed under union and intersection, but not
under complement or difference

Proof.

• if L1 = L(M1), L2 = L(M2), running both M1, M2 on a given input x, and accepting if
at least one/both of them accepts, shows closure under union/intersection.

• closure under complement fails as shown by the previous theorem. in particular,
∼HP is not r.e., although HP is. from this it follows that closure under difference
fails since ∼HP = {0,1}∗ − HP and {0,1}∗ is trivially r.e.

Corollary

recursive languages are closed under union, intersection, complement, and difference

by above closure properties and using De Morgan; ∼(L1 ∪ L2) = (∼L1) ∩ (∼L2)
9

Another non-recursive language MP

Definition (Membership Problem)

MP := {M#x | M accepts input x}

Theorem

MP is not recursive

Proof.

Suppose MP were recursive, i.e. there is a total TM K such that L(K) = MP.

1 there is a language cd not accepted by any TM;

2 using K we could construct a TM CD accepting cd.

Contradiction, so MP is not recursive.

10

(1) there is a language cd not accepted by any TM

Proof.

Enumerating all TMs as Mε, M0, M1, M00, . . . , their languages can be depicted as:

ε 0 1 00 01 10 11 000 001 010 . . .

Mε × × × X X × × × × X

M0 × × X X × X X × × X

M1 × × × X × × X × × X

M00 X × × X X X X × × X

M01 × X × X × × × X X × · · ·
M10 X X × X × × × × × ×

...
...

. . .

11

(1) there is a language cd not accepted by any TM

Proof.

Enumerating all TMs as Mε, M0, M1, M00, . . . , their languages can be depicted as:

ε 0 1 00 01 10 11 000 001 010 . . .

Mε × × × X X × × × × X

M0 × × X X × X X × × X

M1 × × × X × × X × × X

M00 X × × X X X X × × X

M01 × X × X × × × X X × · · ·
M10 X X × X × × × × × ×

...
...

. . .

diagonal language d = {00, . . .}
11



(1) there is a language cd not accepted by any TM

Proof.

Enumerating all TMs as Mε, M0, M1, M00, . . . , their languages can be depicted as:

ε 0 1 00 01 10 11 000 001 010 . . .

Mε X × × X X × × × × X

M0 × X X X × X X × × X

M1 × × X X × × X × × X

M00 X × × × X X X × × X

M01 × X × X X × × X X × · · ·
M10 X X × X × X × × × ×

...
...

. . .

complement diagonal cd = {ε,0,1,01,10,11, . . .} not accepted by any TM
11

(2) using K we could construct a TM CD accepting cd

Proof.

Suppose K were a total TM K such that L(K) = MP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

r

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx accepts x, otherwise r (no looping; K total)

• if K accepts then we reject, otherwise K rejects and we accept (return t)

Mx accepts/does not accept x iff K accepts/rejects Mx#x iff CD rejects/accepts x
CD accepts cd

12

(2) using K we could construct a TM CD accepting cd

Proof.

Suppose K were a total TM K such that L(K) = MP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

r

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx accepts x, otherwise r (no looping; K total)

• if K accepts then we reject, otherwise K rejects and we accept (return t)

Mx accepts/does not accept x iff K accepts/rejects Mx#x iff CD rejects/accepts x
CD accepts cd

12

(2) using K we could construct a TM CD accepting cd

Proof.

Suppose K were a total TM K such that L(K) = MP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

r

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx accepts x, otherwise r (no looping; K total)

• if K accepts then we reject, otherwise K rejects and we accept (return t)

Mx accepts/does not accept x iff K accepts/rejects Mx#x iff CD rejects/accepts x
CD accepts cd

12



(2) using K we could construct a TM CD accepting cd

Proof.

Suppose K were a total TM K such that L(K) = MP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

r

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx accepts x, otherwise r (no looping; K total)

• if K accepts then we reject, otherwise K rejects and we accept (return t)

Mx accepts/does not accept x iff K accepts/rejects Mx#x iff CD rejects/accepts x
CD accepts cd

12

(2) using K we could construct a TM CD accepting cd

Proof.

Suppose K were a total TM K such that L(K) = MP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

r

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx accepts x, otherwise r (no looping; K total)

• if K accepts then we reject, otherwise K rejects and we accept (return t)

Mx accepts/does not accept x iff K accepts/rejects Mx#x iff CD rejects/accepts x
CD accepts cd

12

(2) using K we could construct a TM CD accepting cd

Proof.

Suppose K were a total TM K such that L(K) = MP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

r

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx accepts x, otherwise r (no looping; K total)

• if K accepts then we reject, otherwise K rejects and we accept (return t)

Mx accepts/does not accept x iff K accepts/rejects Mx#x iff CD rejects/accepts x

CD accepts cd

12

(2) using K we could construct a TM CD accepting cd

Proof.

Suppose K were a total TM K such that L(K) = MP. Construct CD:

x Mx#x x
CD

Mx

K t
r
�

t

r

t

r

in words:

• input string x is first transformed into the string Mx#x

• then run K on Mx#x

• yields t if Mx accepts x, otherwise r (no looping; K total)

• if K accepts then we reject, otherwise K rejects and we accept (return t)

Mx accepts/does not accept x iff K accepts/rejects Mx#x iff CD rejects/accepts x
CD accepts cd

12



Border between in/outside of language

Remark

• language L being recursively enumerable (recursive) depends on its border

• how ‘difficult’ it is to decide that string x is in L (and not in L)

• does not depend on cardinality of L

• but note every finite language recursive (finite case-distinction)

Example

for A set of all strings over alphabet ⊇ {0,1,#}

• ∅ ⊆ HP ⊆ A

• although both ∅,A recursive, HP is not recursive

• sub/superset of recursive or recursively enumerable language need not be so

• may have L0 ⊂ L1 ⊂ L2 ⊂ L3 ⊂ . . . such that L2i recursive, L2i+1 not recursive

13

Border between in/outside of language

Remark

• language L being recursively enumerable (recursive) depends on its border

• how ‘difficult’ it is to decide that string x is in L (and not in L)

• does not depend on cardinality of L

• but note every finite language recursive

Example

for A set of all strings over alphabet ⊇ {0,1,#}
• ∅ ⊆ HP ⊆ A

• although both ∅,A recursive, HP is not recursive

• sub/superset of recursive or recursively enumerable language need not be so

• may have L0 ⊂ L1 ⊂ L2 ⊂ L3 ⊂ . . . such that L2i recursive, L2i+1 not recursive

13

Border between in/outside of language

Remark

• language L being recursively enumerable (recursive) depends on its border

• how ‘difficult’ it is to decide that string x is in L (and not in L)

• does not depend on cardinality of L

• but note every finite language recursive

Example

for A set of all strings over alphabet ⊇ {0,1,#}
• ∅ ⊆ HP ⊆ A

• although both ∅,A recursive, HP is not recursive

• sub/superset of recursive or recursively enumerable language need not be so

• may have L0 ⊂ L1 ⊂ L2 ⊂ L3 ⊂ . . . such that L2i recursive, L2i+1 not recursive

13

Border between in/outside of language

Remark

• language L being recursively enumerable (recursive) depends on its border

• how ‘difficult’ it is to decide that string x is in L (and not in L)

• does not depend on cardinality of L

• but note every finite language recursive

Example

for A set of all strings over alphabet ⊇ {0,1,#}
• ∅ ⊆ HP ⊆ A

• although both ∅,A recursive, HP is not recursive

• sub/superset of recursive or recursively enumerable language need not be so

• may have L0 ⊂ L1 ⊂ L2 ⊂ L3 ⊂ . . . such that L2i recursive, L2i+1 not recursive

13



Border between in/outside of language

Remark

• language L being recursively enumerable (recursive) depends on its border

• how ‘difficult’ it is to decide that string x is in L (and not in L)

• does not depend on cardinality of L

• but note every finite language recursive

Example

for A set of all strings over alphabet ⊇ {0,1,#}
• ∅ ⊆ HP ⊆ A

• although both ∅,A recursive, HP is not recursive

• sub/superset of recursive or recursively enumerable language need not be so

• may have L0 ⊂ L1 ⊂ L2 ⊂ L3 ⊂ . . . such that L2i recursive, L2i+1 not recursive
13

Relating non-recursiveness of HP and MP

similarity between proofs

suppose L = L(K) for some total TM K

• determine cd distinct from L(M) for every TM M by diagonalising away

• show that using K we could construct TM CD with L(CD) = cd

so supposition must be false

avoid redoing diagonalisation?

reducing problems to each other

• solve problem L using solution for problem L′ as sub-routine

• say: reduce L to L′

• x ∈ L iff f(x) ∈ L′ using function f

• L is not more complex than L′

• write: L ≤ L′

• if L not recursive and L ≤ L′, then L′ not recursive

14

Relating non-recursiveness of HP and MP

similarity between proofs

suppose L = L(K) for some total TM K

• determine cd distinct from L(M) for every TM M by diagonalising away

• show that using K we could construct TM CD with L(CD) = cd

so supposition must be false

reducing problems to each other

• solve problem L using solution for problem L′ as sub-routine

• say: reduce L to L′

• x ∈ L iff f(x) ∈ L′ using function f

• L is not more complex than L′

• write: L ≤ L′

• if L not recursive and L ≤ L′, then L′ not recursive

14

Relating non-recursiveness of HP and MP

similarity between proofs

suppose L = L(K) for some total TM K

• determine cd distinct from L(M) for every TM M by diagonalising away

• show that using K we could construct TM CD with L(CD) = cd

so supposition must be false

reducing problems to each other

• solve problem L using solution for problem L′ as sub-routine

• say: reduce L to L′ (reduction from L to L′)

• x ∈ L iff f(x) ∈ L′ using function f

• L is not more complex than L′

• write: L ≤ L′

• if L not recursive and L ≤ L′, then L′ not recursive

14



Relating non-recursiveness of HP and MP

similarity between proofs

suppose L = L(K) for some total TM K

• determine cd distinct from L(M) for every TM M by diagonalising away

• show that using K we could construct TM CD with L(CD) = cd

so supposition must be false

reducing problems to each other

• solve problem L using solution for problem L′ as sub-routine

• say: reduce L to L′

• x ∈ L iff f(x) ∈ L′ using (computable!) function f

• L is not more complex than L′

• write: L ≤ L′

• if L not recursive and L ≤ L′, then L′ not recursive

14

Relating non-recursiveness of HP and MP

similarity between proofs

suppose L = L(K) for some total TM K

• determine cd distinct from L(M) for every TM M by diagonalising away

• show that using K we could construct TM CD with L(CD) = cd

so supposition must be false

reducing problems to each other

• solve problem L using solution for problem L′ as sub-routine

• say: reduce L to L′

• x ∈ L iff f(x) ∈ L′ using function f

• L is not more complex than L′ (may be strictly less so; may be simpler subroutine)

• write: L ≤ L′

• if L not recursive and L ≤ L′, then L′ not recursive

14

Relating non-recursiveness of HP and MP

similarity between proofs

suppose L = L(K) for some total TM K

• determine cd distinct from L(M) for every TM M by diagonalising away

• show that using K we could construct TM CD with L(CD) = cd

so supposition must be false

reducing problems to each other

• solve problem L using solution for problem L′ as sub-routine

• say: reduce L to L′

• x ∈ L iff f(x) ∈ L′ using function f

• L is not more complex than L′

• write: L ≤ L′ (beware: L ⊆ L′ need not imply L ≤ L′!)

• if L not recursive and L ≤ L′, then L′ not recursive

14

Relating non-recursiveness of HP and MP

similarity between proofs

suppose L = L(K) for some total TM K

• determine cd distinct from L(M) for every TM M by diagonalising away

• show that using K we could construct TM CD with L(CD) = cd

so supposition must be false

reducing problems to each other

• solve problem L using solution for problem L′ as sub-routine

• say: reduce L to L′

• x ∈ L iff f(x) ∈ L′ using function f

• L is not more complex than L′

• write: L ≤ L′

• if L not recursive and L ≤ L′, then L′ not recursive 14



Formal definition of reduction

Definition (recall from before)

f : Σ∗ → Σ∗ is computable if ∃ a total TM T with input alphabet Σ, such that on input
x ∈ Σ∗, T writes f(x) on the tape

Definition

For L, L′ ⊆ Σ∗, L is reducible to L′; denoted by L ≤ L′ if ∃ a computable f : Σ∗ → Σ∗

such that x ∈ L⇔ f(x) ∈ M

Theorem

if L not recursive and L ≤ L′, then L′ is not recursive

Proof.

supposing L ≤ L′ by function f by TM T and L′ were recursive by total TM K, then x ∈ L
iff f(x) ∈ L′ iff K accepts f(x). that is, L is recursive using TM that first transforms x into
f(x) by running T and then runs K on f(x). contradiction. so L′ is not recursive.

15

Formal definition of reduction

Definition (recall from before)

f : Σ∗ → Σ∗ is computable if ∃ a total TM T with input alphabet Σ, such that on input
x ∈ Σ∗, T writes f(x) on the tape

Definition

For L, L′ ⊆ Σ∗, L is reducible to L′; denoted by L ≤ L′ if ∃ a computable f : Σ∗ → Σ∗

such that x ∈ L⇔ f(x) ∈ M

Theorem

if L not recursive and L ≤ L′, then L′ is not recursive

Proof.

supposing L ≤ L′ by function f by TM T and L′ were recursive by total TM K, then x ∈ L
iff f(x) ∈ L′ iff K accepts f(x). that is, L is recursive using TM that first transforms x into
f(x) by running T and then runs K on f(x). contradiction. so L′ is not recursive.

15

Formal definition of reduction

Definition (recall from before)

f : Σ∗ → Σ∗ is computable if ∃ a total TM T with input alphabet Σ, such that on input
x ∈ Σ∗, T writes f(x) on the tape

Definition

For L, L′ ⊆ Σ∗, L is reducible to L′; denoted by L ≤ L′ if ∃ a computable f : Σ∗ → Σ∗

such that x ∈ L⇔ f(x) ∈ M

Theorem

if L not recursive and L ≤ L′, then L′ is not recursive

Proof.

supposing L ≤ L′ by function f by TM T and L′ were recursive by total TM K, then x ∈ L
iff f(x) ∈ L′ iff K accepts f(x). that is, L is recursive using TM that first transforms x into
f(x) by running T and then runs K on f(x). contradiction. so L′ is not recursive. 15

Reducing HP to MP ?

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into accept

Lemma

M#x ∈ HP iff f(M#x) ∈ MP

Proof.

M#x ∈ HP ⇒ M halts on x ⇒ M′ accepts x ⇒ M′#x ∈ MP
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ does not halt on x ⇒ M′#x 6∈ MP

Corollary

MP is not recursive

Proof.

since HP is not recursive (assumed known) and HP ≤ MP

16



Reducing HP to MP

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into accept

Lemma

M#x ∈ HP iff f(M#x) ∈ MP

Proof.

M#x ∈ HP ⇒ M halts on x ⇒ M′ accepts x ⇒ M′#x ∈ MP
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ does not halt on x ⇒ M′#x 6∈ MP

Corollary

MP is not recursive

Proof.

since HP is not recursive (assumed known) and HP ≤ MP

16

Reducing HP to MP

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into accept

Lemma

M#x ∈ HP iff f(M#x) ∈ MP

Proof.

M#x ∈ HP ⇒ M halts on x ⇒ M′ accepts x ⇒ M′#x ∈ MP
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ does not halt on x ⇒ M′#x 6∈ MP

Corollary

MP is not recursive

Proof.

since HP is not recursive (assumed known) and HP ≤ MP

16

Reducing HP to MP

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into accept

Lemma

M#x ∈ HP iff f(M#x) ∈ MP

Proof.

M#x ∈ HP ⇒ M halts on x ⇒ M′ accepts x ⇒ M′#x ∈ MP
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ does not halt on x ⇒ M′#x 6∈ MP

Corollary

MP is not recursive

Proof.

since HP is not recursive (assumed known) and HP ≤ MP 16

Reducing MP to HP ?

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into looping

Lemma

M#x ∈ MP iff f(M#x) ∈ HP

Proof.

M#x ∈ MP ⇒ M accepts x ⇒ M′ accepts x ⇒ M′#x ∈ HP
M#x 6∈ MP ⇒ M does not accept x ⇒ M′ does not halt on x ⇒ M′#x 6∈ HP

Corollary

HP is not recursive

Proof.

since MP is not recursive (assumed known) and MP ≤ HP

17



Reducing MP to HP

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into looping

Lemma

M#x ∈ MP iff f(M#x) ∈ HP

Proof.

M#x ∈ MP ⇒ M accepts x ⇒ M′ accepts x ⇒ M′#x ∈ HP
M#x 6∈ MP ⇒ M does not accept x ⇒ M′ does not halt on x ⇒ M′#x 6∈ HP

Corollary

HP is not recursive

Proof.

since MP is not recursive (assumed known) and MP ≤ HP

17

Reducing MP to HP

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into looping

Lemma

M#x ∈ MP iff f(M#x) ∈ HP

Proof.

M#x ∈ MP ⇒ M accepts x ⇒ M′ accepts x ⇒ M′#x ∈ HP
M#x 6∈ MP ⇒ M does not accept x ⇒ M′ does not halt on x ⇒ M′#x 6∈ HP

Corollary

HP is not recursive

Proof.

since MP is not recursive (assumed known) and MP ≤ HP

17

Reducing MP to HP

Definition

f(M#x) = M′#x where M′ is obtained from M by changing reject into looping

Lemma

M#x ∈ MP iff f(M#x) ∈ HP

Proof.

M#x ∈ MP ⇒ M accepts x ⇒ M′ accepts x ⇒ M′#x ∈ HP
M#x 6∈ MP ⇒ M does not accept x ⇒ M′ does not halt on x ⇒ M′#x 6∈ HP

Corollary

HP is not recursive

Proof.

since MP is not recursive (assumed known) and MP ≤ HP 17

More on reducibility

Theorem

≤ is reflexive and transitive

Proof.

• to show reflexivity, take f(x) = x

• to show transitivity, compose the functions

Lemma

there is no program testing whether a given program is a “hello world”-program

Proof.

show HP ≤ “hello world”-program. let f(M#x) be M′#x with M′ a TM that first runs M
on its input, if that halts overwrites tape with “hello world” and then accepts:
M#x ∈ HP ⇒ M halts on x ⇒ M′ is a “hello world”-program
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ is not a “hello world”-program

18



More on reducibility

Theorem

≤ is reflexive and transitive

Proof.

• to show reflexivity, take f(x) = x (the identity function)

• to show transitivity, compose the functions

Lemma

there is no program testing whether a given program is a “hello world”-program

Proof.

show HP ≤ “hello world”-program. let f(M#x) be M′#x with M′ a TM that first runs M
on its input, if that halts overwrites tape with “hello world” and then accepts:
M#x ∈ HP ⇒ M halts on x ⇒ M′ is a “hello world”-program
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ is not a “hello world”-program

18

More on reducibility

Theorem

≤ is reflexive and transitive

Proof.

• to show reflexivity, take f(x) = x

• to show transitivity, compose the functions (run the TMs consecutively)

Lemma

there is no program testing whether a given program is a “hello world”-program

Proof.

show HP ≤ “hello world”-program. let f(M#x) be M′#x with M′ a TM that first runs M
on its input, if that halts overwrites tape with “hello world” and then accepts:
M#x ∈ HP ⇒ M halts on x ⇒ M′ is a “hello world”-program
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ is not a “hello world”-program

18

More on reducibility

Theorem

≤ is reflexive and transitive

Proof.

• to show reflexivity, take f(x) = x

• to show transitivity, compose the functions

Lemma

there is no program testing whether a given program is a “hello world”-program
(prints “hello world” and then accepts)

Proof.

show HP ≤ “hello world”-program. let f(M#x) be M′#x with M′ a TM that first runs M
on its input, if that halts overwrites tape with “hello world” and then accepts:
M#x ∈ HP ⇒ M halts on x ⇒ M′ is a “hello world”-program
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ is not a “hello world”-program

18

More on reducibility

Theorem

≤ is reflexive and transitive

Proof.

• to show reflexivity, take f(x) = x

• to show transitivity, compose the functions

Lemma

there is no program testing whether a given program is a “hello world”-program

Proof.

show HP ≤ “hello world”-program. let f(M#x) be M′#x with M′ a TM that first runs M
on its input, if that halts overwrites tape with “hello world” and then accepts:
M#x ∈ HP ⇒ M halts on x ⇒ M′ is a “hello world”-program
M#x 6∈ HP ⇒ M does not halt on x ⇒ M′ is not a “hello world”-program

18



Regular languages

Question

What languages can be accepted for machines more restricted than TMs?

Regular languages

We consider finite automata. These accept regular languages, and will show these are
recursive, but not necessarily the other way around,

relevance of regular languages

• software for designing and testing of digital circuits

• software components of compiler, e.g. for lexical analysis:

• software for searching in long texts

• software to verify all kinds of systems having a finite number of states

• components of computer games (computer-controlled non-player-character)
19

Deterministic finite automata (DFAs)

Example

∅ and the set of all strings are regular, as are all finite languages.

Definition

A DFA is a 5-tuple A = (Q,Σ, δ, s, F) with

1 Q a finite set of states

2 Σ a finite set of input symbols, (Σ is called the input alphabet)

3 δ : Q× Σ→ Q the transition function

4 s ∈ Q, the start or initial state

5 F ⊆ Q a finite set of accepting or final states

Beware: δ must be defined, for all possible inputs

20

Deterministic finite automata (DFAs)

Example

∅ and the set of all strings are regular, as are all finite languages.

Definition

A DFA is a 5-tuple A = (Q,Σ, δ, s, F) with

1 Q a finite set of states

2 Σ a finite set of input symbols, (Σ is called the input alphabet)

3 δ : Q× Σ→ Q the transition function

4 s ∈ Q, the start or initial state

5 F ⊆ Q a finite set of accepting or final states

Beware: δ must be defined, for all possible inputs

20

Deterministic finite automata (DFAs)

Example

∅ and the set of all strings are regular, as are all finite languages.

Definition

A DFA is a 5-tuple A = (Q,Σ, δ, s, F) with

1 Q a finite set of states

2 Σ a finite set of input symbols, (Σ is called the input alphabet)

3 δ : Q× Σ→ Q the transition function

4 s ∈ Q, the start or initial state

5 F ⊆ Q a finite set of accepting or final states

Beware: δ must be defined, for all possible inputs

20



Transition table

a1 ∈ Σ a2 ∈ Σ · · ·
q1 ∈ Q δ(q1, a1) δ(q1, a2) · · ·
q2 ∈ Q δ(q2, a1)

...
...

Transition graph

For a DFA A = (Q,Σ, δ, s, F), its (directed) transition graph with initial state d and final
states F where:

1 the states are the nodes

2 the edges E are

(p,q) p,q ∈ Q and ∃a ∈ Σ with δ(p, a) = q

3 the edges are labelled by symbols by a function b : E→ Σ defined by

(p,q) 7→ a if δ(p, a) = q

21

Transition table

a1 ∈ Σ a2 ∈ Σ · · ·
q1 ∈ Q δ(q1, a1) δ(q1, a2) · · ·
q2 ∈ Q δ(q2, a1)

...
...

Transition graph

For a DFA A = (Q,Σ, δ, s, F), its (directed) transition graph with initial state d and final
states F where:

1 the states are the nodes

2 the edges E are

(p,q) p,q ∈ Q and ∃a ∈ Σ with δ(p, a) = q

3 the edges are labelled by symbols by a function b : E→ Σ defined by

(p,q) 7→ a if δ(p, a) = q
21

Example

The DFA A = ({q0,q1,q2}, {0,1}, δ,q0, {q2}) with transition table

0 1

→q0 q1 q0

q1 q1 q2

∗q2 q2 q2

has the following transition graph:

q0 q1 q2

1 0 0,1

0 1

22

Definition (extending the transition function)

Let δ be a transition function. The extended transition function δ̂ : Q× Σ∗ → Q is
inductively defined by:

δ̂(q, ε) := q

δ̂(q, xa) := δ(δ̂(q, x), a) x ∈ Σ∗, a ∈ Σ

Definition

Let A = (Q,Σ, δ,q0, F) be a DFA; the language L(A) accepted by A is:

L(A) := {x ∈ Σ∗ | δ̂(q0, x) ∈ F}

23



Definition (extending the transition function)

Let δ be a transition function. The extended transition function δ̂ : Q× Σ∗ → Q is
inductively defined by:

δ̂(q, ε) := q

δ̂(q, xa) := δ(δ̂(q, x), a) x ∈ Σ∗, a ∈ Σ

Definition

Let A = (Q,Σ, δ,q0, F) be a DFA; the language L(A) accepted by A is:

L(A) := {x ∈ Σ∗ | δ̂(q0, x) ∈ F}

23

Definition (extending the transition function)

Let δ be a transition function. The extended transition function δ̂ : Q× Σ∗ → Q is
inductively defined by:

δ̂(q, ε) := q

δ̂(q, xa) := δ(δ̂(q, x), a) x ∈ Σ∗, a ∈ Σ

Definition

Let A = (Q,Σ, δ,q0, F) be a DFA; the language L(A) accepted by A is:

L(A) := {x ∈ Σ∗ | δ̂(q0, x) ∈ F}

23

Example

For the DFA A above, δ̂(q0,0010) = q2

δ̂(q0,0010) is computed recursively as follows:

• δ̂(q0,0010) = δ(δ̂(q0,001),0) = δ(q2,0) = q2

• δ̂(q0,001) = δ(δ̂(q0,00),1) = δ(q1,1) = q2

• δ̂(q0,00) = δ(δ̂(q0,0),0) = δ(q1,0) = q1

• δ̂(q0,0) = δ(δ̂(q0, ε),0) = δ(q0,0) = q1

Example

For the DFA A, we have L(A) = {x01y | x, y ∈ Σ∗}. The language L(A) is the set of all
words in which 01 occurs somewhere (or rather of words not of the form: a number of
1s followed by a number of 0s)

Definition

A formal language L is regular, if ∃ DFA A, such that L(A) = L

24

Example

For the DFA A above, δ̂(q0,0010) = q2

δ̂(q0,0010) is computed recursively as follows:

• δ̂(q0,0010) = δ(δ̂(q0,001),0) = δ(q2,0) = q2

• δ̂(q0,001) = δ(δ̂(q0,00),1) = δ(q1,1) = q2

• δ̂(q0,00) = δ(δ̂(q0,0),0) = δ(q1,0) = q1

• δ̂(q0,0) = δ(δ̂(q0, ε),0) = δ(q0,0) = q1

Example

For the DFA A, we have L(A) = {x01y | x, y ∈ Σ∗}. The language L(A) is the set of all
words in which 01 occurs somewhere (or rather of words not of the form: a number of
1s followed by a number of 0s)

Definition

A formal language L is regular, if ∃ DFA A, such that L(A) = L

24



Example

For the DFA A above, δ̂(q0,0010) = q2

δ̂(q0,0010) is computed recursively as follows:

• δ̂(q0,0010) = δ(δ̂(q0,001),0) = δ(q2,0) = q2

• δ̂(q0,001) = δ(δ̂(q0,00),1) = δ(q1,1) = q2

• δ̂(q0,00) = δ(δ̂(q0,0),0) = δ(q1,0) = q1

• δ̂(q0,0) = δ(δ̂(q0, ε),0) = δ(q0,0) = q1

Example

For the DFA A, we have L(A) = {x01y | x, y ∈ Σ∗}. The language L(A) is the set of all
words in which 01 occurs somewhere (or rather of words not of the form: a number of
1s followed by a number of 0s)

Definition

A formal language L is regular, if ∃ DFA A, such that L(A) = L
24


