## Summary last week

- correctness and complexity statements and proofs of Floyd's algorithm
- proof method: proof by contradiction
- relations as digraphs; whether elements relate, not how
- properties of relations: reflexivity, symmetry, transitivity, ...
- closing a relation with respect to a property
- Warshall's transitive closure algorithm
- functions as relations; every element related to some unique element
- defining functions by specifications


## Summary last week

## Theorem

The following overwrites the adjacency matrix $A$ of $R$, with that of $R^{+}$

$$
\begin{aligned}
& \text { For } r \text { from } 0 \text { to } n-1 \text { repeat: } \\
& \text { Set } N=A \text {. } \\
& \text { For } i \text { from } 0 \text { to } n-1 \text { repeat: } \\
& \text { For } j \text { from } 0 \text { to } n-1 \text { repeat: } \\
& \text { Set } N_{i j}=\max \left(A_{i j}, A_{i r} \cdot A_{r j}\right) \\
& \text { Set } A=N .
\end{aligned}
$$

## Proof.

as for Floyd

## Course themes

- directed and undirected graphs
- relations and functions
- orders and induction
- trees and dags
- finite and infinite counting
- elementary number theory
- Turing machines, algorithms, and complexity
- decidable and undecidable problem


## Discrete structures



## Functions as relations

## Definition

A function on $M$ is a relation $R$ on $M$ such that
1 for all $x \in M$, there exists $y$ such that $x R$ (totality)
2 for all $x, y, y^{\prime} \in M$ if $x R y$ and $x R y^{\prime}$ then $y=y^{\prime}$, i.e. $R$ relates uniquely. we then write $R(x)$ to denote $y$.

## Functions as relations

## Definition

A function on $M$ is a relation $R$ on $M$ such that
1 for all $x \in M$, there exists $y$ such that $x R y$ (totality)
2 for all $x, y, y^{\prime} \in M$ if $x R y$ and $x R y^{\prime}$ then $y=y^{\prime}$, i.e. $R$ relates uniquely.
we then write $R(x)$ to denote $y$.

## Example

- The squaring function on natural numbers is the relation $\{(0,0),(1,1),(2,4),(3,9),(4,16), \ldots\}$.
- Taking the square root is not a function on natural numbers, since, e.g., the square root of 2 is not a natural number (existence fails)
- Taking the square root is not a function on the real numbers either, since, e.g., both -2 and 2 are square roots of 4 (uniqueness (also) fails)


## Functions as relations

## Definition

A function on $M$ is a relation $R$ on $M$ such that
1 for all $x \in M$, there exists $y$ such that $x R y$ (totality)
2 for all $x, y, y^{\prime} \in M$ if $x R y$ and $x R y^{\prime}$ then $y=y^{\prime}$, i.e. $R$ relates uniquely.
we then write $R(x)$ to denote $y$.

## Specification of functions

A function is said to be defined by some specification this expresses that there exists a unique relation satisfying the specification and the relation is a function.

## Example

The function $f$ on natural numbers defined by

- $f(n)=n ? \vee \operatorname{or} f(n)=-1 ? \times \operatorname{or} f(n)=f(n) ? \times$
- $f(0)=10$ and $f(1)=2 ? \times$ or $f(0)=0$ and $f(n+1)=f(n) ? \checkmark \ldots$


## How to represent functions?

## How to represent functions?

## Problem

Domains are typically infinite. Then representation by

- list of tuples? infinitely many tuples!
- adjacency matrix? infinitely many rows,columns!
- ...?


## How to represent functions?

## Problem

Domains are typically infinite. Then representation by

- list of tuples? infinitely many tuples!
- adjacency matrix? infinitely many rows,columns!
- ...?


## Solution

Represent functions by algorithms. Many ways of defining algorithms, e.g. as Turing machines, Java programs, Haskell programs, ... but all equivalent

## Limitations of algorithms

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;


## Limitations of algorithms

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.


## Limitations of algorithms

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).


## Limitations of algorithms

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).


## Limitations of algorithms

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).
- ...


## Limitations of algorithms

- There are more functions $f: \mathbb{N} \rightarrow \mathbb{N}$ than there are algorithms (programs, TMs); so some functions cannot be represented by algorithms;
- No algorithms for checking interesting properties of programs (TMs) themselves; termination (halting problem), reachability (unreachable code), ... No interesting property of programs can be programmed.
- No algorithm for checking whether a formula in first-order logic is universally valid (Entscheidungsproblem).
- No algorithm for checking whether Diophantine equations have a solution (Hilbert's 10th problem).


## Remark

These limitations will be addressed in the last few weeks of course

## Functions as imperative programs

## Definition

A deterministic 1-tape Turingmachine (TM) $M$ is a 9-tuple

$$
M=(Q, \Sigma, \Gamma, \vdash, \sqcup, \delta, s, t, r)
$$

$1 Q$ is a finite set of states
$2 \Sigma$ is a set of input symbols
3 「 is a finite set of tape symbols with $\Sigma \subseteq \Gamma$
$4 \vdash \in \Gamma \backslash \Sigma$ is the left-end marker symbol
$5 \sqcup \in \Gamma(\sqcup \neq \vdash)$, is the blank symbol
6 $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\}$ is the transition function
$7 s \in Q$, the initial or start state
$8 t \in Q$, the accepting state
$9 r \in Q$, the rejecting state $(t \neq r)$

## Transition function

$\delta(p, a)=(q, b, d)$ means that if TM $M$ is in state $p$ and reads symbol $a$, then
$1 M$ replaces $a$ with $b$ on the tape
2 the read/write-head moves one step in direction d
$3 M$ goes into state $q$

## Transition function

$\delta(p, a)=(q, b, d)$ means that if TM $M$ is in state $p$ and reads symbol $a$, then
$1 M$ replaces $a$ with $b$ on the tape
2 the read/write-head moves one step in direction $d$
$3 M$ goes into state $q$

## Additional constraints

- The left-end marker cannot be overwritten

$$
\forall p \in Q, \exists q \in Q \quad \delta(p, \vdash)=(q, \vdash, \mathrm{R})
$$

## Transition function

$\delta(p, a)=(q, b, d)$ means that if TM $M$ is in state $p$ and reads symbol $a$, then
$1 M$ replaces $a$ with $b$ on the tape
2 the read/write-head moves one step in direction $d$
$3 M$ goes into state $q$

## Additional constraints

- The left-end marker cannot be overwritten

$$
\forall p \in Q, \exists q \in Q \quad \delta(p, \vdash)=(q, \vdash, \mathrm{R})
$$

- If TM is in the accepting/rejecting state, it will stay in that state

$$
\forall b \in \Gamma \pi_{1}(\delta(t, b))=t \text { and } \pi_{1}(\delta(r, b))=r
$$

Here $\pi_{1}$ denotes projection on the first component

## Example

Let $M=(\{s, p, t, r\},\{0,1\},\{\vdash, \sqcup, 0,1\}, \vdash, \sqcup, \delta, s, t, r)$ be a TM. Then $\delta$ can be specified by a transition table

|  | $\vdash$ | 0 | 1 | $\sqcup$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, \vdash, \mathrm{R})$ | $(s, 0, \mathrm{R})$ | $(s, 1, \mathrm{R})$ | $(p, \sqcup, \mathrm{~L})$ |
| $p$ | $(t, \vdash, \mathrm{R})$ | $(t, 1, \mathrm{~L})$ | $(p, 0, \mathrm{~L})$ | $\cdot$ |

## Example

Let $M=(\{s, p, t, r\},\{0,1\},\{\vdash, \sqcup, 0,1\}, \vdash, \sqcup, \delta, s, t, r)$ be a TM. Then $\delta$ can be specified by a transition table

|  | $\vdash$ | 0 | 1 | $\sqcup$ |
| :---: | :---: | :---: | :---: | :---: |
| $s$ | $(s, \vdash, \mathrm{R})$ | $(s, 0, \mathrm{R})$ | $(s, 1, \mathrm{R})$ | $(p, \sqcup, \mathrm{~L})$ |
| $p$ | $(t, \vdash, \mathrm{R})$ | $(t, 1, \mathrm{~L})$ | $(p, 0, \mathrm{~L})$ | $\cdot$ |

or by a transition graph
1/1/R
$0 / 0 / \mathrm{R}$
$\vdash / \vdash / \mathrm{R}$

## Words

Definition (Alphabet)
Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Words

Definition (Alphabet)
Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Words

## Definition (Alphabet)

Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits


## Words

## Definition (Alphabet)

Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits


## Words

## Definition (Alphabet)

Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits


## Words

## Definition (Alphabet)

Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits


## Definition (Word)

$w=\left(w_{0}, \ldots, w_{n-1}\right) \in \Sigma^{n}$ is a word or string of length $\ell(w)=n$ over $\Sigma$

## Words

## Definition (Alphabet)

Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits


## Definition (Word)

$w=\left(w_{0}, \ldots, w_{n-1}\right) \in \Sigma^{n}$ is a word or string of length $\ell(w)=n$ over $\Sigma$ $\Sigma^{*}$ is the set of all words over $\Sigma$

## Words

## Definition (Alphabet)

Set $\Sigma$ is an alphabet $a \in \Sigma$ is a symbol

## Example

- $\mathbb{B}=\{0,1\}$ is the binary alphabet
- $\{a, b, \ldots, z\}$ is the alphabet of letters
- $\{0,1,2,3,4,5,6,7,8,9\}$ is the alphabet of digits


## Definition (Word)

$w=\left(w_{0}, \ldots, w_{n-1}\right) \in \Sigma^{n}$ is a word or string of length $\ell(w)=n$ over $\Sigma$
$\Sigma^{*}$ is the set of all words over $\Sigma$

## Remark

As in ETI, we omit parentheses in words; words of length 1 are denoted by symbols ${ }^{10}$

## Definition

A configuration of a TM $M$ is a triple ( $p, x, n$ ) comprising
$1 p \in Q$ its state
$2 x=y \sqcup^{\infty}$ its tape content, $y \in \Gamma^{*}$
$3 n \in \mathbb{N}$ the position of the read/write-head

## Definition

A configuration of a TM $M$ is a triple ( $p, x, n$ ) comprising
$1 p \in Q$ its state
$2 x=y \sqcup^{\infty}$ its tape content, $y \in \Gamma^{*}$
$3 n \in \mathbb{N}$ the position of the read/write-head

## Definition

The initial or start configuration for input $x \in \Sigma^{*}$ is:

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right)
$$

## Definition

A configuration of a TM $M$ is a triple ( $p, x, n$ ) comprising
$1 p \in Q$ its state
$2 x=y \sqcup^{\infty}$ its tape content, $y \in \Gamma^{*}$
$3 n \in \mathbb{N}$ the position of the read/write-head

## Definition

The initial or start configuration for input $x \in \Sigma^{*}$ is:

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right)
$$

## Example

For the TM M of the previous example

$$
\left(s, \vdash 0010 \sqcup^{\infty}, 0\right) \underset{M}{\stackrel{*}{\longrightarrow}}\left(t, \vdash 0011 \sqcup^{\infty}, 3\right)
$$

## The step function of a TM

## Definition

Let $n \in \mathbb{N}$ and $y=y_{0} \cdots y_{m-1} \in \Gamma^{*}$ with $m>n$; the relation $\xrightarrow[M]{1}$ is defined by:

$$
\left(p, y \sqcup^{\infty}, n\right) \underset{M}{\longrightarrow} \begin{cases}\left(q, y_{0} \ldots b \ldots y_{m-1} \sqcup^{\infty}, n-1\right) & \delta\left(\begin{array}{l}
M \\
\left.p, y_{n}\right)=(q, b, L) \\
\left(q, y_{0} \ldots b \ldots y_{m-1} \sqcup^{\infty}, n+1\right)
\end{array}\right. \\
\delta\left(p, y_{n}\right)=(q, b, R)\end{cases}
$$

## The step function of a TM

## Definition

Let $n \in \mathbb{N}$ and $y=y_{0} \cdots y_{m-1} \in \Gamma^{*}$ with $m>n$; the relation $\xrightarrow[M]{\frac{1}{M}}$ is defined by:

$$
\left(p, y \sqcup^{\infty}, n\right) \underset{M}{\underset{M}{l}} \begin{cases}\left(q, y_{0} \ldots b \ldots y_{m-1} \sqcup^{\infty}, n-1\right) & \delta\left(\begin{array}{c}
M \\
\left.p, y_{n}\right)=(q, b, \mathrm{~L}) \\
\left(q, y_{0} \ldots b \ldots y_{m-1} \sqcup^{\infty}, n+1\right)
\end{array}\right. \\
\delta\left(p, y_{n}\right)=(q, b, \mathrm{R})\end{cases}
$$

## Definition

$\xrightarrow[M]{*}$ is the reflexive-transitive closure of $\underset{M}{l}$. That is, it corresponds to a finite sequence Of consecutive steps.

## Definition

a TM M

- accepts $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \underset{M}{*}(t, y, n)
$$

- rejects $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \underset{M}{\stackrel{*}{\longrightarrow}}(r, y, n)
$$

- halt on input $x$, if $x$ is accepted or rejected
- does not halt in input $x$, if $x$ is neither accepted nor rejected
- is total, if $M$ halts on all inputs


## Definition

a TM M

- accepts $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \underset{M}{\stackrel{*}{\longrightarrow}}(t, y, n)
$$

- rejects $x \in \Sigma^{*}$, if $\exists y, n$ :

$$
\left(s, \vdash x \sqcup^{\infty}, 0\right) \underset{M}{*}(r, y, n)
$$

- halt on input $x$, if $x$ is accepted or rejected
- does not halt in input $x$, if $x$ is neither accepted nor rejected
- is total, if $M$ halts on all inputs


## Definition

A function $f: A \rightarrow B$ is defined by a TM $M$ for every $x \in A, M$ accepts input $x$ with $f(y)$ on the tape (and does not halt or rejects on inputs $x \notin A$ ).

## Functions as functional programs

## Example

Squaring $s q: \mathbb{N} \rightarrow \mathbb{N}$

$$
s q n=n \cdot n
$$

ok, but multiplication • ? infinite table?

## Functions as functional programs

## Example

Squaring $s q: \mathbb{N} \rightarrow \mathbb{N}$ and multiplication $\cdot: \mathbb{N} \times \mathbb{N} \rightarrow N$

$$
\begin{aligned}
s q n & =n \cdot n \\
0 \cdot k & =0 \\
(1+n) \cdot k & =k+(n \cdot k)
\end{aligned}
$$

ok, but addition + ? infinite table?

## Functions as functional programs

## Example

Squaring sq: $\mathbb{N} \rightarrow \mathbb{N}$, multiplication : : $\mathbb{N} \times \mathbb{N} \rightarrow N$ and addition $+: \mathbb{N} \times \mathbb{N} \rightarrow N$

$$
\begin{aligned}
s q n & =n \cdot n \\
0 \cdot k & =0 \\
(1+n) \cdot k & =k+(n \cdot k) \\
0+k & =k \\
(1+n)+k & =1+(n+k)
\end{aligned}
$$

ok, but successor $1+$ ? infinite table? (Sheet 3)

## Algorithms, TMs, programs vs. functions

- finite representations of functions
- finiteness entails not all functions can be represented (later)
- a function that can be represented is called computable
- different programs may represent the same function; e.g. mergesort vs. bubblesort
- programs can be distinguished by their usage of resources; time, space, steps, energy, ... ; functions cannot


## Orders

## Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive


## Orders

## Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive


## Lemma

Strict orders are anti-symmetric

## Orders

## Definition

A relation is a

- partial order if it is reflexive, anti-symmetric and transitive;
- total order if moreover every pair of elements is related either way; and
- strict order if it is irreflexive and transitive


## Lemma

Strict orders are anti-symmetric

## Proof.

We show anti-symmetry vacuously holds, by showing that its assumption is never fulfilled. Suppose both $x R y$ and $y R x$ for some strict order $R$. By transitivity, then $x R x$, contradicting irreflexivity.

## Example

The natural order $\leq$ on $\mathbb{Z}$, defined by

$$
x \leq y \text { if } y-x \in \mathbb{N}
$$

is a partial order and a total order, but not a strict order (consider $(5,5)$ ).

## Example

The natural order $\leq$ on $\mathbb{Z}$, defined by

$$
x \leq y \text { if } y-x \in \mathbb{N}
$$

is a partial order and a total order, but not a strict order (consider $(5,5)$ ).

## Example

$m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that

$$
n=m \cdot p
$$

Divisibility is a partial order, but neither total nor strict (consider $(2,3)$ resp. $(2,2)$ )

## Example

The natural order $\leq$ on $\mathbb{Z}$, defined by

$$
x \leq y \text { if } y-x \in \mathbb{N}
$$

is a partial order and a total order, but not a strict order (consider $(5,5)$ ).

## Example

$m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that

$$
n=m \cdot p
$$

Divisibility is a partial order, but neither total nor strict (consider $(2,3)$ resp. $(2,2)$ )

## Example

The natural order $\leq$ on $\mathbb{Z}$, defined by

$$
x \leq y \text { if } y-x \in \mathbb{N}
$$

is a partial order and a total order, but not a strict order (consider $(5,5)$ ).

## Example

$m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that

$$
n=m \cdot p
$$

Divisibility is a partial order, but neither total nor strict (consider $(2,3)$ resp. $(2,2)$ )

## Example

Let, for tuples $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ und $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ in $M^{k}$

$$
x R_{\text {comp }} y \quad \text { if } \quad x_{i} R y_{i} \text { for all } i=1, \ldots, k
$$

The componentwise extension $R_{\text {comp }}$ of $R$ is a partial resp. strict order, if $R$ is on $M$. Typically not total, even if $R$ is; $(2,1) \nless(1,2)$ on $\mathbb{N}^{2}$.

## Example

The natural order $\leq$ on $\mathbb{Z}$, defined by

$$
x \leq y \text { if } y-x \in \mathbb{N}
$$

is a partial order and a total order, but not a strict order (consider $(5,5)$ ).

## Example

$m \in \mathbb{N}$ divides $n \in \mathbb{N}$, if there is some $p \in \mathbb{N}$ such that

$$
n=m \cdot p
$$

Divisibility is a partial order, but neither total nor strict (consider $(2,3)$ resp. $(2,2)$ )

## Example

Let, for tuples $x=\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ und $y=\left(y_{1}, y_{2}, \ldots, y_{k}\right)$ in $M^{k}$

$$
x R \quad y \quad \text { if } \quad x_{i} R y_{i} \text { for all } i=1, \ldots, k
$$

The componentwise extension $R_{\text {comp }}$ of $R$ is a partial resp. strict order, if $R$ is on $M$. Typically not total, even if $R$ is; $(2,1) \nless(1,2)$ on $\mathbb{N}^{2}$.

Definition
$\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad$ the power set of $M$

## Definition

$\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad$ the power set of $M$
$\mathcal{P}_{k}(M):=\{T \mid T \subseteq M$ and $\#(T)=k\} \quad$ subsets of size $k$

## Definition

$\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad$ the power set of $M$
$\mathcal{P}_{k}(M):=\{T \mid T \subseteq M$ and $\#(T)=k\} \quad$ subsets of size $k$

## Example

$\mathcal{P}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\}$

## Definition

$\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad$ the power set of $M$
$\mathcal{P}_{k}(M):=\{T \mid T \subseteq M$ and $\#(T)=k\} \quad$ subsets of size $k$

## Example

$\mathcal{P}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\} \quad \mathcal{P}_{1}(\{a, b\})=\{\{a\},\{b\}\}$

## Definition

$\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad$ the power set of $M$
$\mathcal{P}_{k}(M):=\{T \mid T \subseteq M$ and $\#(T)=k\} \quad$ subsets of size $k$

## Example

$\mathcal{P}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\} \quad \mathcal{P}_{1}(\{a, b\})=\{\{a\},\{b\}\}$

## Theorem

The subset relation $S \subseteq T$ is a partial order on $\mathcal{P}(M)$

## Definition

$\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad$ the power set of $M$
$\mathcal{P}_{k}(M):=\{T \mid T \subseteq M$ and $\#(T)=k\} \quad$ subsets of size $k$

## Example

$\mathcal{P}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\} \quad \mathcal{P}_{1}(\{a, b\})=\{\{a\},\{b\}\}$

## Theorem

The subset relation $S \subseteq T$ is a partial order on $\mathcal{P}(M)$

## Definition (Refining and coarsening of partitions)

Let $P, Q$ be partitions of $M$. That is, $\bigcup P=M$ and $\forall p \neq p^{\prime} \in P, p \cap p^{\prime}=\emptyset$. $P \leq Q: \Leftrightarrow$ every block of $P$ is a subset of a block of $Q$

## Definition

$$
\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad \text { the power set of } M
$$

$$
\mathcal{P}_{k}(M):=\{T \mid T \subseteq M \text { and } \#(T)=k\} \quad \text { subsets of size } k
$$

## Example

$\mathcal{P}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\} \quad \mathcal{P}_{1}(\{a, b\})=\{\{a\},\{b\}\}$

## Theorem

The subset relation $S \subseteq T$ is a partial order on $\mathcal{P}(M)$

## Definition (Refining and coarsening of partitions)

Let $P, Q$ be partitions of $M$.

$$
P \leq Q: \Leftrightarrow \text { every block of } P \text { is a subset of a block of } Q
$$

If $P \leq Q$, then $P$ is finer then $Q$ ( $Q$ coarser than $P$ )

## Definition

$\mathcal{P}(M):=\{T \mid T \subseteq M\} \quad$ the power set of $M$
$\mathcal{P}_{k}(M):=\{T \mid T \subseteq M$ and $\#(T)=k\} \quad$ subsets of size $k$

## Example

$\mathcal{P}(\{a, b\})=\{\varnothing,\{a\},\{b\},\{a, b\}\} \quad \mathcal{P}_{1}(\{a, b\})=\{\{a\},\{b\}\}$

## Theorem

The subset relation $S \subseteq T$ is a partial order on $\mathcal{P}(M)$

## Definition (Refining and coarsening of partitions)

Let $P, Q$ be partitions of $M$.

$$
P \leq Q: \Leftrightarrow \text { every block of } P \text { is a subset of a block of } Q
$$

If $P \leq Q$, then $P$ is finer then $Q$ ( $Q$ coarser than $P$ )

## Example

The partition $\{\{a\},\{b\},\{c\}\}$ is (strictly) finer than each of

$$
\{\{a\},\{b, c\}\} \quad\{\{b\},\{a, c\}\} \quad\{\{c\},\{a, b\}\} \quad\{\{a, b, c\}\}
$$

## Theorem

(1) If $\leq$ partial order, then its predecessor relation

$$
x<y: \Leftrightarrow x \leq y \text { and } x \neq y
$$

is a strict order

## Theorem

(1) If $\leq$ partial order, then its predecessor relation

$$
x<y: \Leftrightarrow x \leq y \text { and } x \neq y
$$

is a strict order
(2) If $<$ is a strict order, then its reflexive closure

$$
x \leq y: \Leftrightarrow x<y \text { or } x=y
$$

defines a partial order

## Theorem

(1) If $\leq$ partial order, then its predecessor relation

$$
x<y: \Leftrightarrow x \leq y \text { and } x \neq y
$$

is a strict order
(2) If $<$ is a strict order, then its reflexive closure

$$
x \leq y: \Leftrightarrow x<y \text { or } x=y
$$

defines a partial order
(3) The functions $\leq \mapsto<$ in (1) and $<\mapsto \leq$ in (2) are inverse to each other

## Theorem

(1) If $\leq$ partial order, then its predecessor relation

$$
x<y: \Leftrightarrow x \leq y \text { and } x \neq y
$$

is a strict order
(2) If $<$ is a strict order, then its reflexive closure

$$
x \leq y: \Leftrightarrow x<y \text { or } x=y
$$

defines a partial order
(3) The functions $\leq \mapsto<$ in (1) and $<\mapsto \leq$ in (2) are inverse to each other

## Remark

Partial orders defined by strict orders, and vice versa

## Theorem

(1) If $\leq$ partial order, then its predecessor relation

$$
x<y: \Leftrightarrow x \leq y \text { and } x \neq y
$$

is a strict order
(2) If $<$ is a strict order, then its reflexive closure

$$
x \leq y: \Leftrightarrow x<y \text { or } x=y
$$

defines a partial order
(3) The functions $\leq \mapsto<$ in (1) and $<\mapsto \leq$ in (2) are inverse to each other

## Remark

Partial orders defined by strict orders, and vice versa

## Example

$<=\{(0,1),(1,2),(0,2)\}$ defines the partial order

## Theorem

(1) If $\leq$ partial order, then its predecessor relation

$$
x<y: \Leftrightarrow x \leq y \text { and } x \neq y
$$

is a strict order
(2) If $<$ is a strict order, then its reflexive closure

$$
x \leq y: \Leftrightarrow x<y \text { or } x=y
$$

defines a partial order
(3) The functions $\leq \mapsto<$ in (1) and $<\mapsto \leq$ in (2) are inverse to each other

## Remark

Partial orders defined by strict orders, and vice versa

## Example

$<=\{(0,1),(1,2),(0,2)\}$ defines the partial order
$\leq=\{\quad(0,1), \quad(1,2),(0,2) \quad\}$

## Theorem

(1) If $\leq$ partial order, then its predecessor relation

$$
x<y: \Leftrightarrow x \leq y \text { and } x \neq y
$$

is a strict order
(2) If $<$ is a strict order, then its reflexive closure

$$
x \leq y: \Leftrightarrow x<y \text { or } x=y
$$

defines a partial order
(3) The functions $\leq \mapsto<$ in (1) and $<\mapsto \leq$ in (2) are inverse to each other

## Remark

Partial orders defined by strict orders, and vice versa

## Example

$<=\{(0,1),(1,2),(0,2)\}$ defines the partial order
$\leq=\{(0,0),(0,1),(1,1),(1,2),(0,2),(2,2)\}$
(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry. Hence $x<z$.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry. Hence $x<z$.
(2) By definition, $\leq$ is reflexive.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry. Hence $x<z$. (2) By definition, $\leq$ is reflexive. We show it also is transitive. Let $x, y, z \in M$ with $x \leq y$ and $y \leq z$.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry. Hence $x<z$. (2) By definition, $\leq$ is reflexive. We show it also is transitive. Let $x, y, z \in M$ with $x \leq y$ and $y \leq z$. If $x=y$ and $y=z$, then $x=z$. In the other cases $x<z$, using in case $x<y$ and $y<z$ that $<$ is transitive.

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry. Hence $x<z$. (2) By definition, $\leq$ is reflexive. We show it also is transitive. Let $x, y, z \in M$ with $x \leq y$ and $y \leq z$. If $x=y$ and $y=z$, then $x=z$. In the other cases $x<z$, using in case $x<y$ and $y<z$ that $<$ is transitive. To show $\leq$ is anti-symmetric $\leq$, it suffices to observe that $x \leq y$ and $y \leq x$ can only both hold if $x=y$ (if $y=x$ )

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry. Hence $x<z$. (2) By definition, $\leq$ is reflexive. We show it also is transitive. Let $x, y, z \in M$ with $x \leq y$ and $y \leq z$. If $x=y$ and $y=z$, then $x=z$. In the other cases $x<z$, using in case $x<y$ and $y<z$ that $<$ is transitive. To show $\leq$ is anti-symmetric $\leq$, it suffices to observe that $x \leq y$ and $y \leq x$ can only both hold if $x=y$ (if $y=x$ ) ; the other cases contradict irreflexivity of $<$

## Proof.

(1) By definition, $x<y$ holds iff $x \leq y$ and $x \neq y$. Therefore, $<$ is irreflexive. To show $<$ is transitive, assume $x<y$ and $y<z$. First, $x \leq z$ by transitivity of $\leq$. Next, $x \neq z$ since otherwise $x \leq y$ and $y \leq x$ would yield $x=y$ by anti-symmetry. Hence $x<z$.
(2) By definition, $\leq$ is reflexive. We show it also is transitive. Let $x, y, z \in M$ with $x \leq y$ and $y \leq z$. If $x=y$ and $y=z$, then $x=z$. In the other cases $x<z$, using in case $x<y$ and $y<z$ that $<$ is transitive. To show $\leq$ is anti-symmetric $\leq$, it suffices to observe that $x \leq y$ and $y \leq x$ can only both hold if $x=y$ (if $y=x$ ) ; the other cases contradict irreflexivity of $<$
(3) Starting from a partial order $\leq$, the relation defined by $(x \leq y \wedge x \neq y) \vee x=y$ is $\leq$ again, as the construction amount to first removing all loops, and then adding them, noting $\leq$ has all loops. The other direction is similar, using that a strict order $<$ has no loops.

## Definition

Let $\leq$ be a partial order on $M$. Then $x \in M$ is

- least in $M$, if for all $y \in M, x \leq y$
- greatest in $M$, if for all $y \in M, y \leq x$
- minimal in $M$, if for all $y \in M, y \nless x$
- maximal in $M$, if for all $y \in M, x \nless y$


## Definition

Let $\leq$ be a partial order on $M$. Then $x \in M$ is

- least in $M$, if for all $y \in M, x \leq y$
- greatest in $M$, if for all $y \in M, y \leq x$
- minimal in $M$, if for all $y \in M, y \nless x$
- maximal in $M$, if for all $y \in M, x \nless y$


## Definition

Let $\leq$ be a partial order on $M$. Then $x \in M$ is

- least in $M$, if for all $y \in M, x \leq y$
- greatest in $M$, if for all $y \in M, y \leq x$
- minimal in $M$, if for all $y \in M, y \nless x$
- maximal in $M$, if for all $y \in M, x \nless y$


## Definition

Let $\leq$ be a partial order on $M$. Then $x \in M$ is

- least in $M$, if for all $y \in M, x \leq y$
- greatest in $M$, if for all $y \in M, y \leq x$
- minimal in $M$, if for all $y \in M, y \nless x$
- maximal in $M$, if for all $y \in M, x \nless y$


## Definition

Let $\leq$ be a partial order
. Then $x$ is

- least , if for all $y \quad, x \leq y$
- greatest , if for all $y \quad, y \leq x$
- minimal , if for all $y \quad, y \nless x$
- maximal , if for all $y \quad, x \nless y$


## Definition

Let $\leq$ be a partial order
. Then $x$ is

- least , if for all $y$ , $x \leq y$
- greatest , if for all $y \quad, y \leq x$
- minimal , if for all $y \quad, y \nless x$
- maximal , if for all $y \quad, x \nless y$


## Example

$\leq$ generated by predecessor relation

$$
<=\{(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\}
$$

- minimal elements:
- maximal elements:
- least element:
- greatest element:


## Definition

Let $\leq$ be a partial order
. Then $x$ is

- least , if for all $y$ , $x \leq y$
- greatest , if for all $y \quad, y \leq x$
- minimal , if for all $y \quad, y \nless x$
- maximal , if for all $y \quad, x \nless y$


## Example

$\leq$ generated by predecessor relation

$$
<=\{(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\}
$$

- minimal elements: 1,3
- maximal elements:
- least element:
- greatest element:


## Definition

Let $\leq$ be a partial order
. Then $x$ is

- least , if for all $y$ , $x \leq y$
- greatest , if for all $y \quad, y \leq x$
- minimal , if for all $y \quad, y \nless x$
- maximal , if for all $y \quad, x \nless y$


## Example

$\leq$ generated by predecessor relation

$$
<=\{(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\}
$$

- minimal elements: 1,3
- maximal elements: 5
- least element:
- greatest element:


## Definition

Let $\leq$ be a partial order
. Then $x$ is

- least , if for all $y$ , $x \leq y$
- greatest , if for all $y \quad, y \leq x$
- minimal , if for all $y \quad, y \nless x$
- maximal , if for all $y \quad, x \nless y$


## Example

$\leq$ generated by predecessor relation

$$
<=\{(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\}
$$

- minimal elements: 1,3
- maximal elements: 5
- least element:
- greatest element:


## Definition

Let $\leq$ be a partial order
. Then $x$ is

- least , if for all $y$ , $x \leq y$
- greatest , if for all $y \quad, y \leq x$
- minimal , if for all $y \quad, y \nless x$
- maximal , if for all $y \quad, x \nless y$


## Example

$\leq$ generated by predecessor relation

$$
<=\{(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)\}
$$

- minimal elements: 1,3
- maximal elements: 5
- least element:
- greatest element: 5

